Weakly nonlinear acoustic oscillations in gas columns in the presence of temperature gradients

G. Penelet(a), T. Chareyre(a), J. Gilbert(a)

(a) Laboratoire d'Acoustique de l'Université du Maine, UMR CNRS 6613, avenue Olivier Messiaen, 72085 Le Mans cedex 9, France
1.- Introduction

2.- The Burgers equation in a medium with a temperature gradient
 2.1.- Medium without dissipation
 2.2.- Generalized Burgers equation

3.- Applications
 3.1.- Solving process
 3.2.- Propagation of a simple wave
 3.3.- Propagation into an open ended waveguide
 3.4.- Effect of temperature gradient on the brassiness of trombones

4.- Future prospects
1.- Introduction

• Nonlinear acoustics already has a long history and many applications
 [Rudenko and Soluyan, Theoretical foundations of Nonlinear Acoustics, Consultants Bureau, NY, 1977]
 [Hamilton and Blackstock, Nonlinear Acoustics, Acoustical Society of America, NY, 2008]

• Considering NL propagation of plane waves in ducts, many experimental and theoretical studies made in the past decades.

• In particular, when assuming a low mach number \((M=\frac{v_{ac}}{c_0}<<1)\), it is well known that weakly NL propagation can be described by the Burgers equation, which is derived using the Multiple Scale Method.

However the effect of a temperature gradient on non linear propagation of plane guided waves has not been studied a lot

=> interest in the study of the operation of thermoacoustic engines
2.- The Burgers equation in a medium with temperature gradient.

2.1.- Establishment of the Burgers equation

Assumptions:
- inviscid fluid ($\mu=0, \zeta=0$), no heat conduction ($\lambda=0$),
- 1-D propagation along the x-axis
- weakly non linear propagation: $\frac{p-p_0}{p_0} = \frac{\rho}{p_0} \sim \mu, \frac{p-p_0}{\rho_0} = \frac{\rho'}{\rho_0} \sim \mu, \frac{v}{c_0} \sim \mu, \mu << 1$
- adiabatic process: $p' \sim c_0^2 \rho' + \frac{\gamma-1}{2\rho_0} c_0^2 \rho'^2$
- inhomogeneous temperature gradient $T=T_0(x)$: $\rho_0(x) = \frac{M_{mot} p_0}{R T_0(x)}, c_0^2(x) = \frac{\gamma p_0}{\rho_0(x)}$

\[
\begin{align*}
\begin{array}{l}
\rho \left(\partial_t \vec{v} + (\vec{v} \cdot \nabla) \vec{v} \right) = -\nabla p + \eta \Delta \vec{v} + \left(\xi + \frac{\eta}{3} \right) \nabla \left(\nabla \cdot \vec{v} \right) \\
\partial_t \rho + \nabla \cdot (\rho \vec{v}) = 0 \\
\rho T \left(\partial_t s + (\vec{v} \cdot \nabla) s \right) = \lambda \Delta T + F_d
\end{array}
\end{align*}
\] (F_d : rate of dissipation of mechanical energy)
2.- The Burgers equation in a medium with temperature gradient.

2.1.- Establishment of the Burgers equation

\[
\begin{align*}
\left\{ \begin{array}{l}
\left(\rho_0 + \rho' \right) \partial_t v + \rho_0 v \partial_x v + c_0^2 \partial_x \rho' + \frac{\gamma - 1}{\rho_0} c_0^2 \rho' \partial_x \rho' &= -c_0^2 \frac{d_x T_0}{T_0} \left(\rho' + \frac{\gamma - 1}{2 \rho_0} \rho'^2 \right) + o(\mu^2) \\
\partial_t \rho' + v \partial_x \rho' (\rho_0 + \rho') \partial_x v &= \rho_0 v \frac{d_x T_0}{T_0} + o(\mu^2)
\end{array} \right.
\end{align*}
\]

If \(\nu/c_0 \ll 1 \), non linear effects are essentially cumulative (local nonlinear effects neglected)

\[\Rightarrow \] use of the Multiple Scale Method:

\[x \leftarrow x, \ t \leftarrow t + \frac{x}{c_{\text{ref}}}, \text{ with } c_{\text{ref}} = c_0(x_0) \]

(simple wave propagating along \(x \uparrow \))

and additional assumption:

\[\frac{d_x T_0}{T_0} \sim \mu \]

\[\Rightarrow \] Apply the above mentioned change of variables in Eqs. (1) and (2) (retain only variables of order \(\leq \mu^2 \), and eliminate \(\rho' \)) leads after some calculations to:

\[
\partial_x v_+ - f_1(x) v_+ \partial_\tau v_+ = f_2(x) \partial_\tau v_+ + f_3(x) v_+
\]

\[\text{, with } \frac{d_x T_0}{T_0} \sim \mu, \ T_{\text{ref}} = T_0(x_0), \ c_{\text{ref}} = c_0(x_0) \]

\[f_1(x) = \frac{1}{c_{\text{ref}}} \left(\frac{1}{1 + \sqrt{\frac{T_{\text{ref}}}{T_0}}} \right) \]

\[f_2(x) = \frac{1}{c_{\text{ref}}} \left(1 - \sqrt{\frac{T_{\text{ref}}}{T_0}} \right) \]

\[f_3(x) = \frac{1 + \frac{1}{2} \sqrt{\frac{T_{\text{ref}}}{T_0}}}{1 + \sqrt{\frac{T_{\text{ref}}}{T_0}}} \frac{d_x T_0}{T_0} \]
2. The Burgers equation in a medium with temperature gradient.

2.1. Establishment of the Burgers equation

Summary: if \(v/c_0 \ll 1 \), \(d_x T_0 / T_0 \ll 1 \), the resulting Burgers equation is

\[
\partial_x v_+ - \frac{1}{c_{\text{ref}}^2} \frac{\gamma T_{\text{ref}}}{T_0} + \frac{\sqrt{T_{\text{ref}}/T_0}}{1 + \sqrt{T_{\text{ref}}/T_0}} \left(2 - \frac{T_{\text{ref}}}{T_0} \right) v_+ \partial_\tau v_+ = \frac{1}{c_{\text{ref}}} \left(1 - \sqrt{T_{\text{ref}}/T_0} \right) \partial_\tau v_+ + \frac{1 + \frac{1}{2} \sqrt{T_{\text{ref}}/T_0}}{1 + \sqrt{T_{\text{ref}}/T_0}} d_x T_0 T_0 \partial_\tau v_+
\]

NB1: if \(T_0 = T_{\text{ref}} = \text{cte} \), then

\[
\partial_x v_+ - \frac{\epsilon}{c_{\text{ref}}^2} v_+ \partial_\tau v_+ = 0, \quad \epsilon = \frac{\gamma + 1}{2}
\]

NB2: if \((x - x_0) d_x T_0 / T_0 \sim \mu \), then

\[
\partial_x v_+ - \frac{\epsilon}{c_{\text{ref}}^2} v_+ \partial_\tau v_+ = \frac{1}{2c_{\text{ref}}} (x - x_0) \frac{d_x T_0}{T_0} \partial_\tau v_+ + \frac{3}{4} \frac{d_x T_0}{T_0} v_+
\]

NB3: if a simple wave propagating along \(x \) is considered, then one gets

\[
\partial_x v_- + f_1(x) v_- \partial_\tau v_- = -f_2(x) \partial_\tau v_- - f_3(x) v_-
\]
2.- The Burgers equation in a medium with temperature gradient.
2.2.- Generalized Burgers equation

Additional effects can be easily included in the RHS of the Burgers equation:

Volumetric losses
(Mendousse, J. ac. Soc. Am., 1953)

\[b = \frac{4}{3} \eta + \xi + \lambda \left(\frac{1}{C_v} - \frac{1}{C_p} \right) \]

Boundary layer losses
(Chester, J. Fluid Mech., 1964)

\[B = \sqrt{\frac{\eta}{\rho_0}} \left(1 + \frac{\gamma - 1}{\sqrt{\gamma r}} \right) \]

Varying diameter \(D(x)\)

\[d_x D << kD \]

Introducing the dimensionless variables
\[\theta = \omega \tau, \quad \sigma = \frac{\epsilon U \omega x}{c_0^2}, \quad q_+ = \frac{v_+}{U} \]

\[\partial_{\sigma} q_+ - f_1(\sigma) q_+ \partial_{\theta} q_+ = f_2(\sigma) \partial_{\theta} q_+ + f_3(\sigma) q_+ + f_4(\sigma) \partial_{\theta \theta} q_+ + f_5(\sigma) \frac{\partial^{1/2} q_+}{\partial \theta^{1/2}} \]

\[f_1(\sigma) = \frac{T_0}{\epsilon T_{ref}} \left[\frac{T_{ref}}{T_0} + \sqrt{\frac{T_{ref}}{T_0} \left(2 - \frac{T_{ref}}{T_0} \right)} \right] \left(1 - \sigma \frac{\partial_{\sigma} T_0}{T_0} \right) \]

\[f_2(\sigma) = \frac{T_0 c_{ref}}{\epsilon T_{ref} U} \left(1 - \sqrt{\frac{T_{ref}}{T_0}} \right) \left(1 - \sigma \frac{\partial_{\sigma} T_0}{T_0} \right) \]

\[f_3(\sigma) = \frac{1 + \frac{1}{2} \sqrt{\frac{T_{ref}}{T_0}} \frac{\partial_{\sigma} T_0}{T_0} - \frac{\partial_{\sigma} D}{D}}{1 + \sqrt{\frac{T_{ref}}{T_0}}} \]

\[f_4(\sigma) = \frac{S c_{ref}}{\epsilon U} \sqrt{\frac{T_0}{T_{ref}}} \left(1 - \sigma \frac{\partial_{\sigma} T_0}{T_0} \right) \]

\[f_5(\sigma) = -\frac{c_{ref}}{\epsilon U} \sqrt{\frac{T_0}{T_{ref}}} \left(1 - \sigma \frac{\partial_{\sigma} T_0}{T_0} \right) \]
3.- Applications
3.1.- Solving process

\[\partial_\sigma q_+ - f_1(\sigma) q_+ \partial_\theta q_+ = f_2(\sigma) \partial_\theta q_+ + f_3(\sigma) q_+ + f_4(\sigma) \partial^2_\theta q_+ + f_5(\sigma) \frac{\partial^{1/2} q_+}{\partial \theta^{1/2}} \]

(Burg\(^+\))

=> we seek a solution in the form

\[q_\pm = \sum_{n=1} \left(a_n^\pm(\sigma) \sin(n\theta) + b_n^\pm(\sigma) \cos(n\theta) \right) \]

1. Choose \(a_n^+(\sigma = 0) \) and \(b_n^+(\sigma = 0) \) arbitrarily
2. Solve \((Burg^+)\) up to \(\sigma(x = L) \) (Finite Difference scheme)
3. Assigned impedance at position \(x = L \) => obtain \(a_n^-(\sigma(x = L)) \) and \(b_n^-(\sigma(x = L)) \), and solve \((Burg^-)\) up to \(\sigma = 0 \)
4. Compare the resulting \(q^+(0) + q^-(0) \) with the assigned one \(q_{ass}(0) \)
5. Choose a new \((a_n^+(0), b_n^+(0))\) and repeat steps 1 \(\rightarrow\) 4 until \(q^+(0) + q^-(0) = q_{ass}(0)\) (Newton-Raphson method)

NB: discarding nonlinear interaction of counterpropagating waves is a reasonable assumption in the frame of a weakly nonlinear theory [Menguy et al., Acta Acust 86:798, 2000]
3.- Applications
3.2.- Application 1: propagation of a simple wave

\[p\text{pk}(x=0)=2000 \text{ Pa}, \quad f=500 \text{ Hz}, \quad U/c_0=1.4\% \]

solid line: \(\Delta T=0 \)
dashed line \(\Delta T=30 \text{ K} \) \((d_x T_0/T_0=1.7 \times 10^{-2} \text{ m}^{-1}) \)
dash-dotted line: \(\Delta T=80 \text{ K} \) \((d_x T_0/T_0=4.4 \times 10^{-2} \text{ m}^{-1}) \)
3.- Applications

3.2.- Application 1: propagation of a simple wave

\[p_{pk}(x=0)=2000 \text{ Pa}, \ f=500 \text{ Hz}, \ U/c_0 = 1.4 \% \]

- blue line: \(\Delta T=0 \)
- pink line: \(\Delta T=30 \text{ K} \) (\(d_x T_0/T_0 = 1.7 \times 10^{-2} \text{ m}^{-1} \))
- red line: \(\Delta T=80 \text{ K} \) (\(d_x T_0/T_0 = 4.4 \times 10^{-2} \text{ m}^{-1} \))
3.- Applications

3.3.- Application 2: propagation into an open ended waveguide

\[p_{pk}(x=0)=2000 \text{ Pa}, f=500 \text{ Hz}, U/c_0=1.4 \% \]

solid line: \(\Delta T=0 \)
dash-dotted line: \(\Delta T=80 \text{ K} \) \((d_x T_0/T_0=4.4 \times 10^{-2} \text{ m}^{-1}) \)
3.- Applications

3.3.- Application 2: propagation into an open ended waveguide

\[p_{pk}(x=0) = 2000 \text{ Pa}, \quad f = 500 \text{ Hz}, \quad U/c_0 = 1.4 \% \]

- **Blue line:** \(\Delta T = 0 \)
- **Pink line:** \(\Delta T = 30 \text{ K} \quad (d_x T_0/T_0 = 1.7 \times 10^{-2} \text{ m}^{-1}) \)
- **Red line:** \(\Delta T = 80 \text{ K} \quad (d_x T_0/T_0 = 4.4 \times 10^{-2} \text{ m}^{-1}) \)
3. Applications

3.4.- Application 3: On the influence of ΔT on the brassiness of trombones

- Nonlinear acoustic propagation is worth considering when studying brass instruments
- At high dynamic levels, sounds generated by brass instruments have strong high frequency components, which are characteristic of their « brassiness »
- In actual playing conditions, there exist temperature gradients along the waveguide:

Question: does the presence of temperature gradients influence significantly the spectral enrichment of some brass instrument?
3.- Applications

3.4.- Application 3: On the influence of ΔT on the brassiness of trombones

\Rightarrow calculate NL propagation, and compute the spectral centroïd of the radiated acoustic pressure

$$SC_{rad} = \frac{\sum_n n p_n (d)}{\sum_n p_n}$$

which is indicative of the brassiness of the instrument (SC depends on loudness of excitation, fingering, bore geometry...)
3.- Applications
3.5.- Concluding remarks

- The presence of a ΔT impacts both linear and nonlinear propagation
- Considering NL propagation, an increasing ΔT tends to reduce wave steepening
 But the effect is weak (e.g. SC of a trombone) ...

Spectral centroid of radiated acoustic pressure for one particular fingering (1st position) with or without a temperature gradient

Spectral centroid of radiated acoustic pressure for 3 different fingerings associated to 3 bore geometries. NB: the input pressure signal is experimental.
4.- Future prospects

1.- Experimental validation

2.- Extend the theory to $d_x T_0/T_0 \sim 1$?

 => interest for the study of thermoacoustic engines
 ... but there exist complications because
 - separating counterpropagating waves is impossible even in linear regime when $d_x T_0/T_0 \sim 1$
 - one should also account for the variations of $\eta, \xi, \gamma, \lambda$ with temperature
 - ..

3.- Try to reproduce recent experiments on thermoacoustic engines by Biwa et al.

- $\Delta T = 250$ K, fixed
- SW engine => no shock waves
- Annular engine => Traveling shock wave

=> Adapt the present simulation tool to model thermoacoustic engines
 - frequency dependent boundary condition at the interfaces of the thermoacoustic core
 - NL propagation in the remaining of the waveguide (complication in the TBT in which $d_x T_0/T_0 \sim 1$)