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ABSTRACT
Quadratic time-frequency representations (QTFR) to char-
acterize dispersive media are interesting because of their
capacity to concentrate the energy of the signal in a two-
dimensional representation plane. In this work, some dis-
tributions of a special class of QTFR (

���
-Bertrand) are used

to analyse non-stationary signals passing through dispersive
systems like porous media. The entropy of Renyi is used
to determine the well matched distribution and therefore to
evaluate the group delay law of the analysed signal.

1. INTRODUCTION

The aim of this work is to study the propagation of an
acoustic wave in porous media using QTFR, for example the
Bertrand distribution. Because of the dispersive characteris-
tic of such a system, the wave velocity in the porous structure
is a complex function of the frequency, i. e., the energy of the
signal carried by each frequency has its own velocity. So, a
sample of porous medium is excited by an ultrasonic pulse,
and the QTFR of the output signal is observed to evaluate
the group delay law, function of the frequency, and then the
parameters of the material.

The relevance of such signal processing tools is their
capacity to concentrate the energy of a signal in a two-
dimensional plane (time-frequency, time-scale,...) along its
group delay law. In the case of propagation in porous media,
the group delay law is compared to a power law in the time-
frequency plane. Finally, the properties of the Power Class of
QTFR are used. This class of representations allows to gener-
ate a large number of QTFR and each of them matches with
an adapted power law in terms of lisibility and concentra-
tion of energy in the time-frequency plane. Hence, to choose
the most relevant representation, concentration measurement
tools as Renyi entropy are used.

Here, the situation where a signal passes through a dis-
persive system which causes a power law group delay to the
signals is considered. So, a QTFR which localizes efficiently
this kind of signals is needed as well as the Wigner-Ville
QTFR localizes the linear chirp signals.

In the first section of this paper, porous media and sound
propagation in them is studied to show the relevance of
quadratic time-frequency representations of the response of
a porous medium excited by an ultrasonic pulse.

Next, in the second section, signal processing tools
adapted to non-stationnary signals are presented and more
particularly the affine class of quadratic distributions and the
affine Wigner representations. The entropy of Renyi, as a
concentration measurement tool, is used in order to choose

the best distribution which localizes the energy of the signal
along its power group delay law and therefore to evaluate it.

Finally, results obtained using these time-frequency tools
are discussed in the last section. For that, an ultrasonic
pulse is propagated in a sample of porous medium and output
signal representations using different distributions are com-
pared. The energetic attenuation curve as a function of the
frequency is given directly from input and output signal rep-
resentations.

2. SOUND PROPAGATION IN POROUS MEDIA

2.1 Short description of the porous medium

In this problem, a homogeneous isotropic porous material is
considered. The porosity of this material is noted � , and the
saturing fluid is characterized by its compressibility modulus���

, its viscosity � and its density �
	 . It is also assumed that
the frame of the porous solid is not deformable when it is sub-
jected to an acoustic wave; so this wave propagates only in
the fluid and the porous medium can be seen as an equivalent
fluid with a complex compressibility modulus and a complex
density. This is shown by the Euler and mass conservation
equations : ��	
������� �������������� �! #" (1)$ ������ � �  ���%�����'& � & (2)

with � the angular frequency, ���(��� the dynamic tortuosity,$ �(��� the dynamic compressibility of the fluid defined in [1],
and

�
,
 

, respectively the particule velocity and the acoustic
pressure. The sound velocity is derived from the expressions
of ������� and

$ ����� and yields the equation :

) ����� � * ���� 	 ������� $ ����� & (3)

In this expression, the velocity is a complex function of
the frequency � and thus explains the relevance of the
time-frequency representations to study wave propagation in
porous media. But this relation is still not sufficient to char-
acterize the properties of the medium, in particularly the ef-
fects of these properties on the propagation phenomena. So,
the time expressions of (1) and (2) are needed to have access
to the time evolution of the acoustic wave.

2.2 Sound propagation in the medium

To evaluate the dispersion and the attenuation due to the
medium, the propagation equation is derived in eq. 4, with
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the dispersion modelled by a fractionnal derivative as in [2].�,+-���. + �'/ �,+0���� + �'132 ��+-�
4����657+8 � � � 5:9 � 5 �<; �=����>�:? " (4)

with / , 1 and ; which depend on the physical properties
of the material and represent respectively the velocity of the
wave in the fluid included in the material, the dispersion and
the attenuation. Hence the material can be seen as a system
which propagates, filters and attenuates the input signal. In
the last part of this paper, experimented results are shown
with an ultrasonic pulse as an input signal.

3. SIGNAL PROCESSING TOOLS

3.1 Time-frequency representations

This section is a brief description of the time-frequency rep-
resentations [3, 4] and more specially of the affine class of
distributions, because of its relevance for analysing physical
phenomena.

3.1.1 The affine class

The affine class is the group of time-frequency representa-
tions which are covariant by time shift and scales changes,
as seen in eq. 5.. � � � �-�@�A�CB DE � . �GFIH�F(J� �KKL KKLMON � � "QP � �-�@�A�CB MON � FIH=F J� "QR�P � " (5)

with
M � � "IP � the quadratic time-frequency distribution of the

affine class.
These time-frequency distributions are well adapted to

the representation of physical phenomena, wideband radar
or self-similar processes for example. But the sound prop-
agation in porous media introduces wave dispersion and a
special group delay law in the output signal. So, without a
priori on the shape of this signal, more adapted distributions,
as affine Wigner distributions are needed.

3.1.2 Affine Wigner distributions

Quadratic time-frequency representations of the Power class
(
� ; � ) are quite suitable for the analysis of signals passing

through dispersive systems (porous media for example) with
a power function group delay S � � P �UT P � H D [5]. Hence for
this study, time frequency distributions of Bertrand, which
are members of both the affine class and the

� ; � , are used.
This class of quadratic time-frequency representations were
defined by J. and P. Bertrand [6]. The general expression is :�WV �0XN � � "QP � �POY[Z]\ ^ � �7_,� P=`a b0c de �gf � F � F �ihkj

Zml�\ ^ � � � _,� P=`a bGc dn hporq-sCtvuvu6�ihpjxw � �7_,�py � +{z F 	}|v~ V�� Xa bGc dq�uvt � e h H,� h � s{�it6s 9 _
"

(6)

with
� �N � � "IP � the time-frequency representation of Bertrand,P�� ? and w � �7_,� an arbitrary positive and continuous func-

tion and : ^ � �(_�� ���=� y H � �3�y H � � �3�
� Dp� V
� H D X " �'��]? " ��& (7)

�G� �(_�� � ^ � �7_,� � ^ � � � _�� & (8)

These distributions depending on the parameter � , are covari-
ant by scale changes and by translations along a power law
as seen in eq. 9.Z � P � ���A�A�CB y HA� +{z�� ~ V 	 X Z � P �KKL KKL� �N � � "QP � ���A�A�CB � �N \ � � ee 	�� � � P � "QP=`I" (9)

with
Z � P � the Fourier transform of the time signal

. � � � .
The good localization of this kind of time-frequency rep-

resentations along the group delay law
P � H D due to their co-

variance properties ensures few interference terms. Hence in
this paper the aim is to find the well-matched representation
to an a priori unknown signal and then its power law, intro-
duced by the dispersive characteristics of porous media.

3.2 Entropy of Renyi

3.2.1 Definition

Thanks to the analogy between signal energy in the time-
frequency plane and probability densities, the entropy can be
used to evaluate the energy concentration and the information
content of the time-frequency plane. Because of the non-
positivity of some distributions, a particular expression of the
entropy was developped by Renyi [7] :��� � MON � � ���� ���7�}� + 2�2 M �N � � "QP � 9 � 9 P�" (10)

with the parameter order � � ? .
In this work, the entropy of Renyi of third order is used on

normalized versions of
� �

-Bertrand to determine the more
adapted among them in terms of localization along the un-
known power group delay of signals propagated through
porous media.

4. RESULTS

An ultrasonic pulse (bandwidth : 60-420 kHz)[9] is propa-
gated in a sample of porous medium and time-frequency rep-
resentations are used to evaluate some properties of the prop-
agation in this medium. First, the input signal and two out-
put signals (experimental and theoritical) and their Wigner-
Ville distributions (computed using [8]) are represented in
fig. 1, 2 and 3. And from these representations the en-
ergetic attenuation curve as a function of the frequency is
obtained. The physical predictions of wave propagation (dis-
persion relationship with a complex wave number) are re-
spected : high frequencies are more attenuated than low fre-
quencies (see fig. 4). Then, the third order entropy of Renyi
is used to evaluate the interval of the � of

���
-Bertrand which

minimizes
� � � � �N � and then ensures the better localization

along the group delay law of the signal and less interference
terms. As example, fig. 6, fig. 7 and fig. 8 represent dif-
ferent Bertrand distributions (respectively k=-0.1, k=-2 and
k=2) of the experimental output signal. These representa-
tions are more satisfactory than the fig. 2b from Wigner-Ville
distribution in terms of energy concentration. The Bertrand
distribution computed with a parameter � (see fig. 6) in an
interval near the minimum of the third order Renyi entropy
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Figure 1: Input ultrasonic pulse : (a) time signal, (b) Wigner-
Ville distribution

function shown on � g. 5 seems more relevant than the repre-
sentations on � g. 7 and 8 : they are visually less interference
terms.

5. C ONC L USI ON

T he propagation of acoustic waves through porous media has
properties like attenuation of high frequencies and disper-
sion, i. e., the energy carried by low frequencies propagates
more slowly than the one carried by high frequencies. T hese
properties can be characterized by Quadratic time-frequency
representations, in particularly the -B ertrand distributions
which localize the energy of the signal along a special power
group delay law.

From these representations, the energetic attenuation
curve was computed. T he choice of an acceptable represen-
tation, in terms of localization and concentration of energy
in the time-frequency plane, was done from the third order
R enyi entropy function to evaluate the power dispersion law
of unknown analyzed signals.
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