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A method for reconstructing and separating vibratory field on a plate-like structure is
presented. The method, called “Structural Holography” is derived from classical Near-field
Acoustic Holography (NAH) but in the vibratory domain. In this case, the plate displace-
ment is measured on one-dimensional lines (the holograms) and used to reconstruct the
entire two-dimensional displacement field. As a consequence, remote measurements on
non directly accessible zones are possible with Structural Holography. Moreover, as it is
based on the decomposition of the field into forth and back waves, Structural Holography
permits to separate forces in the case of multi-sources excitation. The theoretical back-
ground of the Structural Holography method is described first. Then, to illustrate the
process and the possibilities of Structural Holography, the academic test case of an infinite
plate excited by few point forces is presented. With the principle of vibratory field se-
paration, the displacement fields produced by each point force separately is reconstructed.
However, the displacement field is not always meaningful and some additional treatments
are mandatory to localize the position of point forces for example. From the simple ex-
ample of an infinite plate, a post-processing based on the reconstruction of the structural
intensity field is thus proposed. Finally, Structural Holography is generalized to finite
plates and applied to real experimental measurements

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Since decades, source localization and identification is a very important topic in both academic and industrial projects.
Many methods have become an increasingly powerful research tool and allow today to understand and predict the structure
behavior. However, for most of the methods, characterizing a surface requires measurements on this entire area. In this
paper, a new approach in the vibratory domain is proposed to know the entire vibratory behavior of a plate with a max-
imum of 4 sensor lines. This method is based on the propagation and back-propagation principles, performed in the wave
number domain, developed in acoustics by Williams and Maynard and called Near-field Acoustical Holography (NAH) [1].

Much research has been done to characterize and identify the vibration source acting on a structure. In the middle of
70 s, Pavic [2] and Noiseux [3] developed the structural intensimetry, defined from acoustic analogy, to analyze the flexural
waves propagation in simple structures. Many publications which followed were concentrated on the structural intensity
approach because the energy flow distribution gives information about the energy transmission paths, the sources positions
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and the sinks of mechanical energy. Zhang and Mann showed that the force distribution can be calculated directly in the
wavenumber domain using the two-dimensional fast Fourier transform [4], and used the measured structural intensity and
the force distribution function to study vibrating plates [5]. Gavric showed the potentiality of numerical calculation of
structural intensity [6] and demonstrated that this approach can be used for modal models obtained from experimental
modal analysis [7,8]. Another method for localizing the excitation source is the Force Analysis Technique (FAT) introduced by
Pézerat [9,10], also known as the RIFF technique, which uses a finite difference scheme to discretize the equation of motion
and reconstruct the force distribution acting on structures like beams [11], plates [10] and shells [12,13]. Thereafter, FAT had
also been coupled with NAH to identify vibration sources from radiated noise measurements [14]. As the Force Analysis
Technique, the Virtual Fields Methods has been developed by Berry et al. [15,16] to identify and quantify the local dynamic
transverse forces and distributed pressures acting on the surface of a thin plate from vibratory measurements. The main
difference compared to FAT is the use of virtual fields to extract information on a part of the structure.

Initially developed for acoustic signals emitted by stationary sources [1,17,18], NAH allows now to solve more complex
problems [19] and can be used for continuously visualizing nonstationary acoustic fields through RT-NAH (Real-Time Near-
field Acoustic Holography) [20] or TDH (Time Domain Holography) for reconstructing sound data blocks in the time domain
[21]. NAH is a powerful method to reconstruct the velocity distribution of a vibrating plate or recover the sound field of an
acoustic system from the acoustic pressure hologram measured from a microphone array in the near-field. It makes it
possible to visualize the spatial pressure field radiated by the system for any frequency of interest. NAH uses a specialized
processing technique performed in the wavenumber domain to back-propagate the pressure field. Overcoming the ill-posed
inverse problem is satisfactory done using a regularized procedure [22].

This paper presents a new reconstruction and separation vibratory field method, called Structural Holography. It is based
on the back-propagation process performed in the k-space domain by using the Spatial Fourier Transform. The theory of the
method leads to four coefficients identified with only four 1D sensor lines (holograms). These four coefficients allow to
propagate and back propagate the wave number spectrum on the entire plate. The displacement field is obtained by ap-
plying the Inverse Spatial Fourier Transform on the wave number spectrum. If the holograms are positioned between two
sources, considering the sources as forth waves or back-waves allows to separate them using Structural Holography. A
source separation technique has already been applied in acoustics by Cheng et al. to separate the incident and the scattered
sound fields [23]. This method is based on the principle that any waveform can be decomposed using the two-dimensional
spatial Fourier transform into wave components that propagate in a known manner. The approach proposed in Structural
Holography is different. The measurements are realized outside the area where the forces are localized.

In this paper, theoretical background of Structural Holography is first presented. Numerical studies and experimental
results illustrate the validity of the source separation technique. A structural intensity approach is used subsequently on the
reconstructed displacement to increase the accuracy of the source localization.
2. Theoretical background of structural holography

The theoretical background of Structural Holography is based on the plate bending theory. For thin plates, it is shown
that the Kirchhoff theory yields accurate results. According to the Kirchhoff theory, the forced flexural vibration is governed
by the following fourth-order differential equation [24]:
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where E is the Young modulus, h the thickness of the plate, η the damping, ν the Poisson's ratio, and ( )w x y t, , the transverse
displacement. Let us consider the example of a point force F(t) located at (0,0) as expressed in Eq. (1) so that the force
distribution is null anywhere else. As a consequence, Eq. (1) can be rewritten for a harmonic regime ejwt:
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which only depend on the wave number kx. The coefficients Cmix
F and Ceva

F characterize forth waves, and the two others, Cmix
B

and Ceva
B , represent back waves. This is the major difference with the acoustic domain where propagating waves are re-

presented by only one coefficient as well as back propagating waves. Coefficients Ceva
B and Ceva

F characterize purely eva-
nescent waves for all values of kx (if kf is real, i.e with no damping). The coefficients Cmix

F and Cmix
B define propagating waves

for ≤kx kf and evanescent waves for >k kx f . The aim of Structural Holography is to identify these four unknowns to
reconstruct the whole displacement field of the plate. Thus, Structural Holography requires four 1D holograms to identify
the 4 unknowns of Eq. (4). Indeed, Eq. (4) at four positions of the holograms leads to the following system of four equations:
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where ( )W k y,x hi with i¼1.4 is the wave number spectra on hologram i at the position yhi on the y axis. Solving Eq. (5) allows
us to determine the four coefficients and then to compute the wave number spectrum on the plate using Eq. (4) with
varying y position values. Finally, by applying the Inverse Spatial Fourier Transform (ISFT) to the wave number spectrum, the
displacement field is obtained:

∫ π
( ) = [ ( )] = ( ) ( )

−w x y ISFT W k y W k y e, , ,
dk
2

. 6x x
jk x xx

To summarize, four steps must be followed to reconstruct the displacement on the plate by Structural Holography and
they are schematized in Fig. 1:

� Measure the displacements providing the holograms
� Apply the STF to the holograms to identify the coefficients (Eq. (5))
� Compute the wave number spectrum ( )W k y,x on the plate from Eq. (4)
� Apply the ISTF to the wave number spectrum to reconstruct the displacement ( )w x y,

One has to pay attention to the fact that the solution given by Eq. (2) is only valid in zones where no external force is
applied. As a consequence, the back-propagation is conceptually limited by the position of the force.
3. Vibratory field separation principle

Let us consider now the case where two correlated point forces are acting simultaneously on the plate as presented in
Fig. 2. Between positions yi and yj of point forces, Eq. (4) holds. Thus, inside this area, the solution of Eq. (4) is still given by
Eq. (5). To determine the coefficients Cmix

F , Ceva
F , Cmix

B , and Ceva
B , four 1D holograms are located between the two point forces, as

presented in Fig. 2. Solving the system of equation Eq. (5) gives access to all kind of waves traveling between yi and yj. As
discussed in the previous part, the Structural Holography expression can be separated in two kinds of waves: the forth
waves with Cmix

F and Ceva
F coefficients, and the back waves with Cmix

B and Ceva
B coefficients. As a consequence, the response of

the plate due to Fi can be isolated from the one due to force Fj. To identify the plate behavior only due to source Fi, the wave
number spectrum WFi(kx,y) is computed on the plate with the coefficients Cmix

F and Ceva
F only (Eq. (7)). Conversely, the

response of the infinite plate only due to force Fj can be deduced using only coefficients Cmix
B and Ceva

B (Eq. (8)).
Fig. 1. Synopsys of structural holography.



Fig. 2. Synopsys of source separation by structural holography.

C. Chesnais et al. / Journal of Sound and Vibration 389 (2017) 134–152 137
( ) = ( ) + ( ) ( )− −+ −
W k y k e k e, C C , 7F x x

k y
x

k y
eva
F

mix
F

i
x x

( ) = ( ) + ( ) ( )
+ −

W k y k e k e, C C . 8F x x
k y

x
k y

eva
B

mix
B

j
x x

Structural Holography is thus a vibratory field separation method for reconstructing the whole displacement field using
only information measured on four lines. Some examples of this separation technique will be shown in the next sections.
However, it is implicitly assumed here that the waves travelling in the plate-like structure are correlated. In case of un-
correlated sources, a cross-spectral procedure based on reference signals can be used as done by Lee et al. on aeroacoustic
sources [25]. In addition, it can be underlined here that in the case of reflections on boundary conditions (finite plate), the
Structural Holography only separates waves coming from the left of the holograms and those coming from the right.
4. Near-field and far-field Structural Holography

4.1. Effects of purely evanescent waves

As shown above, the theory of Structural Holography is based on four coefficients and two of them characterize purely
evanescent waves whatever kx. In the case of evanescent coefficient, the propagator is − ( )+

e k yRe x for the propagation process
(forth waves). But it is well known that the evanescent waves quickly decrease with the distance to forces or boundary
conditions [23]. As a consequence, the amplitudes of these waves can be considered as almost null at the positions of the
holograms. If the estimation of these amplitudes with the holograms is disturbed by measurement noise, the back-pro-
pagation process exponentially increases the errors. Let us consider for example a forth wave composed by a propagating
and an evanescent wave. If kx¼89.88 rad/m and kf¼77.84 rad/m for example, the amplitude of the evanescent wave has
decreased of 99 % at a distance λ≃ ≃d /2 4 cmF from the force (Fig. 3). If the first hologram is located at only dF¼7 cm, the
amplitude of the evanescent wave is less than 2,5.10�4 % of the initial value. Any small error in the estimation of this
amplitude will be multiplied by a factor 4�103.

The error in the estimation of the amplitude of evanescent waves can have different origins. They can be due to:

� measurement noise,
� discretization of the hologram,
� length of the hologram (not infinite).
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Finally, two versions of the structural holography can be defined:

� a Near-Field Structural Holography (NSH) composed by 4 holograms. The objective of this version is to reconstruct any
kind of waves including evanescent waves.

� a Far-Field Structural Holography (FSH) composed by only 2 holograms. The aim of FSH is to reconstruct only propagating
field on the plate.

4.2. Far-field Structural Holography (FSH)

In the far-field, the influence of evanescent waves is neglected. Therefore they are not taken into account in FSH when
holograms are positioned far from sources or boundary conditions. Consequently, only coefficients Cmix

B and Cmix
F are used to

compute the wave number spectrum and Eq. (4) becomes:
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where Wi with i¼1,2 is the wave number spectrum ( )W k y,x hi on hologram i at position yhi on y axis. Taking into account
only two holograms simplifies the solution and allows to obtain the analytic formulation of the two coefficients. In the case
of FSH, Eq. (9) can be expressed only as a function of distance d between holograms and distance Δ between the first
hologram and the reconstruction line. Indeed, as = +y y dh h2 1 and Δ = −y yh1, Eq. (9) becomes
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This equation only depends on d and Δ and not on the coordinates of the holograms and the reconstruction line. This
equation clearly shows that it is not necessary to know the relative distance between the force and the holograms: this
expression is independent of this parameter. As a consequence, FSH can be applied even if the location of forces is com-
pletely unknown.

Even if Ceva
F and Ceva

B are neglected in FSH, a part of evanescent wave behavior is still included in Cmix
F and Cmix

B when
>k kx f . To cancel the influence of high wave numbers ( >k kx f ), a filter based on the shape of a tapered window function in

k-space, called Tukey window [26], is applied on Cmix
F and Cmix

B coefficients. An example of this filter is illustrated in Fig. 4. In
between �kf and þkf the wave number spectrum is not filtered (filter¼1), below �αkf and above þαkf , the spectrum is
completely filtered (filter¼0). In between theses zones, the spectrum is continuously decreased.

As the Fourier transforms are performed with discrete data and over a finite hologram, numerical difficulties may occur
in the calculation of coefficients. Therefore, in order not to introduce disturbance during the back propagation operation, it
is necessary to filter part of the evanescent waves before processing [27,28]. The previous filter, applied in the wave-number
domain on the coefficients permits to overcome numerical difficulties caused by the use of the SFT [4]. The choice of a
proper filter size (kx bandwidth) is crucial [5]. If the filter size is too large, the noise may not be removed and the accessible
distance for back-propagation can decrease. If the filter size is too small, useful information may be removed along with
noise, and the results may not lead to the source positions [4].

To summarize, there are two major reasons to use a filter on the coefficients before computing the back-propagated wave
number spectrum. A filter is necessary to decrease the effect of the propagator when −kx is real in the back-propagation
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process (evanescent waves) and to overcome the effect due to the discretization of a finite hologram length.
An example of not filtered and filtered Cmix

F coefficient is presented in Fig. 5. This example shows the increase of the
coefficient amplitude, in the high wave numbers in Fig. 5(a), and reduced by the filtering operation in Fig. 5(b).

4.3. Example of reconstruction using NSH and FSH

Examples of reconstruction using NSH and FSH on the displacement generated by one harmonic point force applied to an
infinite plate are presented in this section. The application on an experimental study is presented in the last section. The
transverse displacement due to one point force is given by [29]:
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1 ( )k rf is the Hankel function, r is the distance between the computed displacement point and the origin (0,0), K0

( )k rf is the modified Bessel function of the second kind and kf is the wavenumber of the flexural wave in the plate. In the
present example, a 1 mm thick aluminum plate (E¼69�109 Pa, ρ¼2700 kg/m3, ν¼0.346) is excited by a harmonic point
force at frequency 2000 Hz. A damping of 2 % is applied and the real part of kf¼89.88 rad/m. Results using NSH and FSH are
shown respectively in Fig. 6 when the holograms are located in the near-field of the force (distance from the point source
dF¼0.03 m λ< /2) and in Fig. 7 when they are located in the far-field (dF¼0.12 m λ> ×1.5 ). The results are presented on y axis
for x¼0. The point force is located at (0,0). The reconstruction of the displacement field is clearly better with NSH when the
holograms are located in the near-field of the source (Fig. 6 (a)). NSH accurately estimates the amplitude of displacement
close to the force (error of 1.47% at dF¼1 cm) thanks to the consideration of all types of waves. However, even if the
reconstruction error is 14.77 % at 1 cm from the source, the performance of FSH is surprisingly good (Fig. 6 (b)). Indeed, the
estimation of the amplitude of displacement near the force is slightly underestimated due to the lack of evanescent waves in
FSH but the results are still close to the reference even when the holograms are located in the near-field.

Fig. 7 presents the reconstructed displacement with the holograms positioned in the far-field. To demonstrate the dis-
turbances due to the evanescent coefficient, the displacement reconstructed by NSH is plotted in Fig. 7(a). As explained in
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Section 4.1 and illustrated in Fig. 3, evanescent waves exist only in the near-field. Taking into account the evanescent
coefficient (NSH) in the far-field configuration reduces the performance of the method and does not allow to back-propagate
the field up to the position of the force. The displacement is back-propagated with a low error percentage only on 2 cm, near
the hologram position, but dramatically increases with the back-propagation distance (error of 139.6% at =d 9 cmF in
Fig. 7 (a)). The reconstructed displacement obtained with FSH is presented in Fig. 7(b) and proves the accuracy of this
approach in the far-field compared to NSH. Indeed the reconstruction of the displacement field is satisfactory up to the
position of the force. The reconstruction error is less than 14 % at 1 cm from the source, less than 2 % at 2 cm and less than
0.5 % beyond 7 cm. That is equivalent to the performance of FSH when the holograms are in the near-field. This demon-
strates that the performance of FSH does not depend on the distance from the source.

Therefore, the use of the NSH or FSH process according to the distance to the force is an essential choice to reconstruct
the displacement field with accuracy. To quantify the influence of this distance on the NSH and FSH performance, a
quadratic error indicator is used. The chosen indicator is defined for a frequency band by the magnitude of the difference
between the reconstructed displacement by Structural Holography (NSH and FSH) and the reference displacement, divided
by the magnitude of the reference displacement:
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where [ ]f f, s1 represents a frequency band, Ni and Nj are the number of points of the displacement along the x and y
directions, ( )x y fw , ,rec is the displacement reconstructed by Structural Holography and ( )x y fw , ,ref is the reference dis-
placement. Only the back-propagated displacement field is considered.

The quadratic error is computed on a constant domain Lx¼�0.04 to þ0.04 cm around the force on x dimension and on a
back-propagation distance Ly only, on y dimension. As NSH is highly unstable when holograms are located in the far-field,



Fig. 8. Quadratic error as a function of the distance to force for the [10:3500] Hz frequency band for NSH (a) and FSH (b) formulations.
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the study on dFh is limited to 1 to 4 cm. Conversely, FSH is supposed to give satisfactory results whatever the distance to the
force, thus the study is done for distances from 1 to 12 cm. Results are illustrated in Fig. 8(a) for NSH and in Fig. 8(b) for FSH.
The color scale indicates the error percentage. The dot in Fig. 8(a) represents the parameters which lead to the reconstructed
displacement illustrated in Fig. 6(a). The dot in Fig. 8(b) represents the parameters leading to the reconstructed displace-
ment illustrated in Fig. 7(b).

The quadratic error indicator proves that the NSH process provides in the near-field a great accuracy for the re-
construction of the displacement field. However the performance of NSH quickly declines and errors higher than 30 % are
observed for distance to the force higher than λ/2. NSH process becomes inappropriate. As a consequence, NSH becomes
unstable if the holograms are not located in the vicinity of the force. This conclusion implies that the position of forces
should be known to apply NSH to be sure to capture evanescent waves.

Except for λ<d /3Fh , FSH presents the same percentage of error whatever the frequency and the distance dFh. Applying
FSH in the near-field of the force ( λ<d /3Fh ) leads to slight error due to the presence of evanescent waves not taken into
account in FSH.

To conclude, NSH is highly sensitive to the measure of the evanescent components. Beyond λ/2, the measure of these
components becomes difficult and leads to huge errors in the back propagation process. However, considering the esti-
mation of the exact amplitude of the displacement field in the vicinity of the source, NSH provides really accurate results if
the holograms are in the near-field of the source. Conversely, FSH is dedicated to the reconstruction of the displacement
field considering propagating waves only. FSH gives satisfactory results if the holograms are in the far-field and only slight
errors if the holograms are in the near-field. In this point of view, FSH is more stable than NSH but cannot reconstruct
exactly the field near the force because of the lack of evanescent waves.

4.4. Influence of the geometric parameter

The holograms are defined by a length Lholo and N points separated by Δx. In the acoustic domain, it is well known that
NAH results are limited by these geometrical parameters due to the SFT on a finite domain [29]. These parameters define in
the k-space domain:

� the wavenumber ranges from -kx
max to kx

max, where kx
max the maximum wavenumber is given by

π
Δ

=
( )

k ,
14x

x

max

� the precision of the wavenumber step Δkx given by

Δ π=
( )L

2
.

15kx
x

To quantify the influence of these geometrical parameters on the NSH and FSH performance and to identify the geo-
metrical limits, the quadratic error indicator is used (Eq. (13)). For all parametric studies, the distance between each ho-
logram is fixed at 1 cm. For the NSH process, the hologram 1 is positioned at a distance lower than λ / 2 (yh1¼3 cm) to be in
the near-field. For the FSH process, the hologram 1 is positionned at a distance higher than λ (yh1¼8 cm) to be in the far-
field. The quadratic error is expressed as a percentage.

Firstly, the influence of the hologram length is evaluated. To set the size of the computed area identical whatever ho-
logram length, the quadratic error is applied on a constant line: Lx¼�0.04 to þ0.04 cm around the force on x dimension
and Ly is the back-propagated displacement at the distance dFh¼1 cm. The hologram length Lholo varies from 0.4 m to 2 m.
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As Δ π=
L
2

kx
x
, zero padding is applied to obtain a constant wavenumber step. Therefore, only the influence of the hologram

length is studied and the value Δ = 1.57kx rad/m is fixed by the zero padding process. Results are illustrated in Fig. 9(a) for
NSH process and in Fig. 9(b) for FSH process.

The estimation errors in NSH and FSH are mainly observed for small holograms and high frequency. This can be ex-
plained by the wavenumber discretization step Δkx which is too large compared to the wavenumber spectrum variations.
With such small holograms, a lot of information is lost even if a zero-padding step is used.

The influence of Δx is also evaluated. For this study, the length of the hologram is deliberately large to avoid the influence
of this physical value, therefore Lholo¼4 m. The step Δx varies from 0.2 cm to 5 cm. Results are illustrated in Fig. 10(a) for NSH
process and in Fig. 10(b) for FSH process. A common characteristic is visible with NSH and FSH for high frequency and large
step Δx. As underlined by the red curves, errors quickly increase for Δx larger than

λ
2
. This can be set as a criterion for the

spatial discretization step. The two main differences between NSH and FSH are:

� when the criterion Δ λ<
2x is fulfilled NSH produces better estimation of displacement near the force than FSH (error

almost null with NSH and near 20 % with FSH). This is essentially due to the lack of evanescent waves in FSH that
underestimates displacement levels near the force.

� A zone with high error levels appears for small Δx with NSH. Such a zone is not present with FSH. This zone is due to the
huge amplification of coefficients of NSH (Eq. (4)) in the high wave number values. The smaller Δx values increase the
higher wave number components, taken into account into NSH resolution. The filtering step used in FSH avoid this
problem.

4.5. Influence of noise

It is shown in Section 4.4 that the uncertainty on the estimation of the evanescent waves disturbs the back-propagation
process. When noise is present during the measurement, it is more difficult to extract the useful information, which should
Fig. 9. Quadratic error as a function of the hologram length for the [10:3500] Hz frequency band for NSH (a) and FSH (b) formulations.

Fig. 10. Quadratic error as a function of the step Δx for the frequency band [10:3500] Hz for NSH (a) and FSH (b) formulations. The red line is λ/2.



C. Chesnais et al. / Journal of Sound and Vibration 389 (2017) 134–152 143
decrease the performance of the method. In this section, the reconstruction error is evaluated as a function of the Signal to
Noise Ratio (SNR) added to the displacements. The quadratic error is computed on a constant line: Lx¼�0.04 to þ0.04 cm
around the force on x dimension and Ly is the back-propagated displacement at distance dFh¼1 cm. The study is realized at
frequency f¼2000 Hz. For the NSH process, the hologram 1 is positioned at a distance shorter than λ / 2 (yh1¼3 cm) to be in
the near-field. For the FSH process, the hologram 1 is positioned at a distance higher than λ (yh1¼8 cm) to be in the far-field.
The SNR is successively set to values from 2 to 50 dB (step 0.25 dB).

Results are presented in Fig. 11 and show completely different behaviour for NSH and FSH when Signal to Noise Ratio
increases. For FSH, the quadratic error is almost constant (around 25 %) whatever the SNR value. This constant error, already
observed in Section 4.4, is not linked to the added noise but to the lack of evanescent waves. This error is just slightly
increased for low SNR values. This demonstrates how stable is FSH according to SNR value. It is a little more than the error
on the reconstruction without noise, presented in Section 4.3. Therefore, the constant error is essentially caused by not
considering of the evanescent waves. Thus the method is very stable even at very high noise levels.

The NSH process is much more sensitive to measurement noise than FSH. For SNR lower than 20 dB, the quadratic error
is higher than 100%. For this (not filtered) version of NSH, the experimental applicability of the method is questionable. The
unstable behaviour of NSH according to the SNR value is due to the amplification of coefficients in the high wavenumber
values. Filter these components (typically for > *k k1.75x f ) should improve the stability and the applicability of NSH.
However, without any filtering and as shown in Fig. 11, NSH provides better results than FSH for high SNR values. This is
coherent with remarks made in Fig. 10. FSH suffers from a constant error due to the lack of evanescent waves. This is not the
Fig. 11. Quadratic errors as functions of Signal to Noise Ratio (SNR) for the frequency band [10:3500] Hz for FSH (solid line) and NSH (circle).

Fig. 12. Displacement field ( )w x y,sum of an infinite plate excited by 2 harmonic forces F1 and F2 (real part). On the right hand side is the sum of the
contribution ( )w x y,F1 (on the top left hand side) and ( )w x y,F2 (on the bottom left hand side) produced respectively by forces F1 and F2.
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case for NSH.
5. Numerical experiment on an infinite plate

The purpose of this section is to show how to find the displacement field due to a specific force when two forces are
applied to a plate. The aim is then to separate the displacements generated by two harmonic point forces applied to an
infinite plate. As in Section 4.3, Eq. (12) is used to simulate the displacement field with the same physical parameters
(E¼69� 109 Pa, ρ¼2700 kg/m3, ν¼0.346) at frequency 2000 Hz. The force F1¼0.5 N generates the wF1(x,y) displacement
field and F2¼2× =F 1 N1 produces the displacement field ( )w x y,F2 . The total simulated displacement is

( ) = ( )w x y w x y, ,Fsum 1 þ ( )w x y,F2 and is illustrated in Fig. 12. The point forces F1 and F2 are respectively located at the co-
ordinates (�0.1,0.2)m and (0.1,0.4) m in x and y directions. The holograms needed in FSH are respectively located at the
positions, =y 0h1 and yh2¼0.01 m. The holograms are defined by N¼401 points in the x direction separated by Δx¼0.01 m.
The length of the holograms is Lx¼4 m.

The principle of vibratory field separation is applied to identify the contributions (that is to say the displacement fields)
of each point force by measuring the displacement due to both forces on the holograms. Holograms are positioned in the
far-field and the coefficients are determined solving the system of Eq. (10). The reference displacement field ( )w x y,sum is
plotted in Fig. 12. By only using Cmix

F and Cmix
B (Eq. (9)) in the vibratory field separation process, Structural Holography

isolates the waves coming from the left side of holograms (with Cmix
F ) to those coming from the right (with Cmix

B ). The fields
wF1

rec and wF2
rec reconstructed by FSH (Fig. 13) are very similar to the reference ones (Fig. 12). The initial limitation of Structural

Holography theory is clearly visible here: the reconstruction area is restricted to zones with no external forces. In the
present case, these zones are defined:

� between �0.1 m and þ ∞ for field wF1
rec,

� between �∞ and þ 0.1 m for field wF2
rec,

� between �0.1 m and þ0.1 m for field wsum
rec

This point can be clearly seen as a limitation of applications of Structural Holography when comparing to classical force
reconstruction methods like FAT [9,10] or the source separation technique [23]. However, one has to keep in mind that
Structural Holography does not need the measurement of the whole field like the cited methods. As a consequence, the field
of applications of Structural Holography is evidently different than the one of classical methods. This will be addressed more
precisely in the following sections.

To better evaluate the performances of FSH, the reconstructed displacement ( )w x y,F1
rec is presented as a function of x

(Fig. 14) and y (Fig. 15) axes and compared to the reference displacement ( )w x y,F1 . Although F1¼F2/2, one observes a good
estimation of the separated displacements compared to the reference for either propagation or back-propagation of field
produced by point force F1. The comparison of the real parts of the displacement obtained by the reference calculation and
by FSH as a function of y is presented in Fig. 15. The displacement amplitude near the force is different (error of 31% at
dF1¼1 cm where dF1 is the distance between the reconstructed point displacement and the force F1). As shown in Section 4,
Fig. 13. Reconstructed displacement ( )w x y,F1
rec (a) and reconstructed displacement ( )w x y,F2

rec (b) computed with Eq. (9). The two vertical lines show the
hologram positions.
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Fig. 14. Reconstructed displacement for the position (a) y¼�9 cm (back-propagation) and (b) y¼8 cm (propagation) computed by FSH (circle) compared
to reference displacement (in solid line).
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Fig. 15. Reconstructed displacement at x¼21 cm computed by FSH (circle) compared to reference displacement (in solid line). y¼0 cm is the hologram
position yh1 (vertical solid lines).

Fig. 16. Structural intensity Ix as a function of x (a) and Iy as a function of y (b) obtained from the reference displacement ( )w x y,sum .
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the FSH formulation does not take into account the complete evanescent behavior and necessitates only two holograms.
Moreover, the filter operation limits the information present in the high wave number of coefficient Cmix

F . This loss of
information causes this difference of amplitude. However, this difference is localized near the force (the reconstruction
errors is less than 6 % at dF1¼2 cm). Therefore, Structural Holography allows to separate the displacements fields of sources
and to reconstruct them with a good accuracy.



Fig. 17. Structural intensity Ix obtained (a) from reference displacement wref and (b) from the reconstructed displacement. The two vertical lines represent
the hologram positions (2 holograms lines).

Fig. 18. Structural intensity Iy obtained (a) from reference displacement wref and (b) from the reconstructed displacement. The two vertical lines represent
the hologram positions (2 holograms lines).

Fig. 19. Experimental setup. An aluminium plate is excited by a dynamics shaker.
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Fig. 20. Directly measured displacement field of an aluminium plate excited by a shaker with a pseudo random signal at frequency f¼1418 Hz.

Fig. 21. (a) Reference displacement and (b) reconstructed displacement by structural holography. The two vertical lines represent the hologram positions.
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6. Structural intensity

As already shown, Structural Holography allows to reconstruct the displacement field due to a force despite the presence
of other forces acting on the plate. It is the separation vibratory field principle. However, the knowledge of the displacement
or velocity field does not provide sufficient information to localize the forces applied on the plate. Thereby, a post processing
which consists in computing the structural intensity using the reconstructed displacement is proposed in the present
section. The interest in computing the structural intensity arises for practical reasons: net energy flow distribution gives
information of energy transmission paths and positions of sources and sinks of mechanical energy [7].

The Structural Intensity of the flexural waves in a plate (or density of the energy flow per length unit [W/m]), is a vector
quantity which can be expressed from the velocity field [2]. The formulation used here is a simplified formula of the
Structural Intensity presented by Pascal [30,31] in far-field and free field conditions:

≈ { ∇ *} ( )I DM v vIm , 16s

where Im denotes the imaginary part, Ms the mass per unit of area,
η

ν
= ( + )

( − )
D

Eh j1
12 1

3

2
and v is the velocity field. This



Fig. 22. Structural intensity in x and y directions at frequency 1418 Hz. (a) Ix and (c) Iy obtained from reference displacement field. (b) Ix
rec

and (d) Iy
rec

obtained from displacement field reconstructed with FSH. The two vertical lines represent the hologram positions.
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formulation describes with good accuracy the flow outside the vortex area and gives an exact quantitative evaluation of the
total flow when the measures are realized in the far-field [31].

Moreover the intensity represented by Eq. (16) is dominated by the irrotational part of the intensity field that is very
useful to localize energy sources and sinks. The rotational part indicates how the energy loops, while the irrotational in-
tensity indicates how the energy flows from the source towards the far-field. Therefore, for an hologram position in the far-
field, the irrotational intensity gives a better representation of structural energy because the masking effects of energy loops
that are related to the rotational intensity is not considered [32].

The structural intensity of the reference displacement wsum is computed with Eq. (16). The structural intensity fields Ix
and Iy are shown in Fig. 16(a) and (b), respectively. As can be seen, the influence of force F1 is somewhat masked by the one
of force F2 because the amplitude of F2 is two times higher than the amplitude of F1.

The structural intensity fields Ix and Iy, computed on the reference displacement wF1(x,y) generated by force F1 only, are
plotted in Fig. 17(a) and Fig. 18(a) respectively. They are compared to the structural intensity Ix1

rec and Iy1
rec, computed on the

reconstructed displacement ( )w x y,F1
rec obtained by FSH after applying the separation principle to isolate the effect of force F1.

In the valid reconstruction zone, the reference and the reconstructed intensity fields agree very well and the position of



Fig. 23. Synopsys of Structural Holography to identify the force behavior on the entire force application area.
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force F1 is clearly visible using this intensity post processing on FSH results.
The structural intensity Ix1

rec, allows a good localization of the force F1 and a good amplitude estimation (Fig. 17). The
intensity Iy1

rec computed on dimension y (Fig. 18) does not yield results equal to the reference Iy1 (Fig. 18(a)). Indeed, at
coordinates (0,21;- 0.08), the error on the intensity amplitude is 15% whereas at the same position the error for Ix1

rec is about
2,5%. The hologram is on x axis and does not allow the measure of all the phenomena on dimension y. This hologram
configuration causes a slight underestimation of Iy1

rec.
One of the most important features of the structural intensity is its ability to localize and characterize the sources of

energy on a plate [33]. In the present work, the use of structural intensity on the reconstructed displacement shows good
localization and identification of the intensity field caused by the force F1. Therefore, additional useful information is
provided by this post-processing easily applicable to Structural Holography.
7. Experimental results

This section illustrates the application of the method in real conditions. Measurements are made on a rectangular
aluminum plate (E¼69� 109 Pa, ρ¼2700 kg/m3, ν¼0,346), hanged from one side. The dimensions of the plate are
212�144 cm. The thickness is h¼1 mm. The plate has an average damping of 1 % mainly due to the presence of small
viscoelastic patches glued on the plate. Measurements were performed on a grid of 107 by 101 points with an inter-space of
Δx¼Δy¼1.35 cm on a measurement plane of ×L Lx y where Lx¼144,45 cm and Ly¼137 cm.

The plate was excited with a MB dynamics MODAL 50 shaker (Fig. 19). The excitation force was a pseudo random signal,
applied to the point xF¼73 cm and yF¼77 cm in the scanned zone. The displacement field on the plate was measured with a
Polytec PSV-400 laser vibrometer positioned at 6 m from the plate. 20 averages were applied for each mesh point. As an
example, the measured displacement at frequency f¼1418 Hz is illustrated in Fig. 20. It can be taken as the reference in the
following.

The hologram positions are yh1¼63 cm and yh2¼63þ1.35 cm. Thereafter, the reference and reconstructed displacement
fields are illustrated relatively to the hologram positions. The holograms are defined by Nx¼107 points in x direction se-
parated by Δx. The length of the holograms is Lx. In these real experiments, =k 232, 7 rad/mx

max and Δkx¼4,35 rad/m.
Due to the plate size and the damping, the displacement field is mainly a direct field and so is rather not reverberant. This

is why force position is clearly visible on reference measurement in Fig. 20. In that case, forth and back waves identified by
Structural Holography will mainly be due to waves generated by the force. This test case has been chosen as a validation test
for Structural Holography. As the holograms are positioned in the far-field, FSH is used to compute the plate displacement.



Fig. 24. Structural intensity in x and y directions at frequency 1418 Hz. (a) Ix and (c) Iy obtained from reference displacement field. (b) Ix
rec

and (d) Iy
rec

obtained from displacement field reconstructed with FSH.
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Result is illustrated in Fig. 21 and compared with the reference displacement. The comparison between reference and FSH
result is satisfactory. Both maps show fields with same wavelength, centred on the same point.

Structural intensity Ix and Iy are computed using the reference and the reconstructed displacement field and plotted in
Fig. 22. In this real experiment, the identification of intensity fields using FSH gives good results compared to direct
measurements. The intensity field Ix is well reconstructed in both spatial distribution and amplitude using only measures on
two holograms. In y direction, the reconstruction is not as good mainly because of the holograms direction (x axis).

To reconstruct the entire force behavior, Structural Holography is applied in this Section from few hologram positions on
x and y dimensions. The process is schematized in Fig. 23. The holograms yhA allow to reconstruct the displacement on A
area (step 1). The holograms xhB compute the displacement on B area and the common area between the reconstructed
displacements A and B is computed with (AþB)/2 (step 2). Step 3 is the result of step 2 reproduced all around the force Fi. By
following this process, the entire displacement is computed. The structural intensity Ix and Iy are identified and illustrated in
Fig. 24. The filter applied on the coefficients and the average between the reconstructed displacements described by step
2 decrease the measurement noise. As shown in Section 6, the estimation of intensity field in direction of the holograms
lines (Iy in Fig. 18(b)) is slightly underestimated compared to reference. This underestimation is not visible in Fig. 24 thank to
the averaging of results obtained with holograms with different orientation. Therefore, by using this process, Structural
Holography identifies the whole intensity field present around the force with only few holograms.
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8. Conclusion

A new approach based on the same principle as Near-field Acoustic Holography was proposed to reconstruct the dis-
placement field of a plate with a limited number of measurements. This method called Structural Holography is based on
the back-propagation process performed in the k-space domain by using the Spatial Fourier Transform on lines. Unlike the
classical methods, Structural Holography is not dedicated to estimation of force distribution by measuring displacement on
the whole surface of the structure but permits to reconstruct displacement fields with only 2 or 4 measurements lines
(holograms). Moreover, as Structural Holography expression can be separated in two kinds of waves, the forth waves and
backwaves, this method is thus a vibratory field separation method.

In the theoretical background, the general formulation of Structural Holography presents 4 coefficients. 2 coefficients
characterize purely evanescent waves. As the evanescent waves decrease quickly with the distance to force or boundary
conditions, the amplitudes of these can be almost null at the positions of holograms and induce error in the back propa-
gation process. Therefore, two versions of Structural Holography are presented in this paper: the Near-field Structural
Holography (NSH) process composed 4 holograms and the Far-field Structural Holography (FSH) process, where the eva-
nescent waves are neglected (2 holograms). In practice, FSH is more useful than NSH because it gives satisfactory results for
many configurations. FSH provides an accurate reconstruction with holograms positioned in the far-field and in the near-
field. Moreover, results are reliable whatever the Signal-to-Noise Ratio.

The vibratory field separation by Structural Holography is applied to a numerical experiment with an infinite plate. Two
forces with different amplitudes are separated and the displacement of the two forces is reconstructed by FSH. A post
processing, which consists in computing the structural intensity on the reconstructed displacement by FSH, is applied and
gives additional useful information on the force behavior.

Finally, Structural Holography is experimentally applied to localize and identify the vibratory field produced by a source.
It is generated by a shaker in the case of an experimental measure. The force is firstly identified with two holograms
positioned on one dimension and the operation is repeated around the force application area to compute the entire in-
tensity field. To conclude, Structural Holography allows to localize and identify the vibratory field around a force without
knowledge of its position with only few holograms positioned in the far-field.
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