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An improvement of the Force Analysis Technique (FAT), an inverse method of vibration,
is proposed to identify the low wavenumbers including the acoustic component of
a turbulent flow that excites a plate. This method is a significant progress since the usual
techniques of measurements with flush-mounted sensors are not able to separate the

component is too high. Moreover, the main cause of vibration or acoustic radiation of
the structure might be due to the acoustic part by a phenomenon of spatial coincidence
between the acoustic wavelengths and those of the plate. This underlines the need to
extract the acoustic part. In this work, numerical experiments are performed to solve both
the direct and inverse problems of vibration. The excitation is a turbulent boundary layer
and combines the pressure field of the Corcos model and a diffuse acoustic field. These
pressures are obtained by a synthesis method based on the Cholesky decomposition of the
cross-spectra matrices and are used to excite a plate. Thus, the application of the inverse
problem FAT that requires only the vibration data shows that the method is able to
identify and to isolate the acoustic part of the excitation. Indeed, the discretization of the
inverse operator (motion equation of the plate) acts as a low-pass wavenumber filter. In
addition, this method is simple to implement because it can be applied locally (no need to
know the boundary conditions), and measurements can be carried out on the opposite
side of the plate without affecting the flow. Finally, an improvement of FAT is proposed.
It regularizes optimally and automatically the inverse problem by analyzing the mean
quadratic pressure of the reconstructed force distribution. This optimized FAT, in the case
of the turbulent flow, has the advantage of measuring the acoustic component up to
higher frequencies even in the presence of noise.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Turbulences in a flow, caused by boundary layers or the presence of obstacles close to a structure, generate vibrations
and can be a major source of noise. In the context of reducing transport noises, this is one of the main acoustic sources with
the engine noise. The considerable improvements on this latter and the advent of the new electric vehicles make the
aerodynamic noise increasingly become a dominant acoustic source.
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Vibration problems of a plate excited by a turbulent flow are complex since they are connected to fluid mechanics and
vibrations. Studies dealing with these problems are not new, they are numerous and they had often been motivated by boat
and aircraft [1,2]. However, they can be adapted to cars where the fluid is light and the speeds are small compared to the
speed of sound.

In our study, the source of vibration is a Turbulent Boundary Layer. Existing numerical simulations of this kind of
excitation are based on the Navier–Stokes equations such as the Direct Numerical Simulation (DNS). But these methods are
very restrictive in terms of computational cost especially if one must take into account the compressibility of the fluid [3].
This is why the semi-empirical models, which need to be experimentally adjusted, are often used. They are classified into
two categories, those that model only the aerodynamic part as Corcos [4] or Chase [5] and those that take into account the
compressibility of the fluid as the second model of Chase [6] allowing the study of the acoustic component.

Experimentally, the acoustic part is very difficult to assess by usual techniques of measurement, with flush-mounted
sensors for example, because the aerodynamic part has a very high amplitude. Even if a sensor array is used to separate the
small wavelengths of the aerodynamic component and those of the acoustic that are larger, the latter is embedded in the
background noise. This is a major problem, because in many cases, the vibration and the acoustic radiation of the structure
can be linked to this component. Recently, Arguillat et al. [7] developed a powerful technique that can measure the two
components. However, this technique has two major disadvantages. The first is the difficulty of implementation, because it
requires the use of an antenna with 63 sensors embedded in the structure. The second is related to the measurement and
the computation time because the pressure must be recorded from 63 angles, the wavenumber–frequency spectra must be
calculated for each frequency and interpolated with a theoretical model.

The Force Analysis Technique (FAT) [8] is proposed here to identify this turbulent wall pressure, especially the acoustic
part and the low wavenumbers. Thus, the excitation is estimated by measuring the displacement field of the plate and by
injecting it into the equation of motionwhere the spatial derivatives are calculated by a finite difference method. In this way,
the acoustic component is measured using the vibration of the plate that is sensitive to excitation in the low wavenumbers.
The idea of using the structure as a filter is not new [9]. Martin and Leehey [10] show how it is possible to measure the low
wavenumbers with a membrane excited by turbulent wall pressures. This method is a modal approach and requires the
knowledge of the boundary conditions, which is a limitation for industrial applications. The FAT method, that we propose to
use in this paper, is local and there is no need to know the boundary conditions to compute it.

This paper was motivated by the results of a first experimental study [11]. The authors wanted to use FAT in order to
measure the wall pressure fluctuations beneath a turbulent boundary layer in a wind tunnel. Finally, they identified a
spectrum 20 dB below the spectrum measured by a flush-mounted sensor and this is about the same gap found by Arguillat
et al. [6] between the aerodynamic and the acoustic components in the same wind tunnel. Chevillotte et al. therefore
hypothesized that the method identifies the acoustic component of the TBL. This is confirmed by the presence of resonance
peaks in the spectrum corresponding to the frequencies of transverse acoustic modes of the tunnel. The simulations
proposed in this paper allow us to confirm this hypothesis since the excitation signals are well known. Through these
simulations, where we can control the excitation and the SNR, we have developed an optimization method for the
regularization of FAT in the case of the identification of the low wavenumbers in turbulent wall pressures.

In order to test this method, a numerical simulation (Fig. 1) is implemented, the parameters of which are close to the
experimental conditions. That is why, time signals are used and some noise is added to the displacement fields. First, the
characteristics of the studied aeroacoustic sources are presented. The direct problem of Fig. 1 is then described in Section 3.
The pressure signals, resulting from a synthesis method based on the Cholesky decomposition, correspond to the Corcos
model and to a diffuse acoustic field. The displacement field is calculated by modal decomposition. Then the forces
identified by FAT in the inverse problem are compared with the excitation signals in Section 4. The first simulations concern
only the diffuse field in order to set the inverse method and the regularization of FAT is improved by analyzing the mean
quadratic pressure of the reconstructed fields. Unlike the classical method FAT where the regularization is set by the user
and constant with frequency, this enhancement allows FAT to automatically and objectively regularize the inverse problem
at each frequency. Finally, FAT and its optimization are tested on the synthesized turbulent pressures.
Fig. 1. Synopsis of simulations: the excitation, the direct and inverse problems of vibration where p denotes the pressure field that excites the structure,
w the displacement of the plate and FT the Fourier Transform.



Fig. 2. Vibrating plate excited by a TBL where U1 is the fluid velocity and δ is the boundary layer thickness.
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2. Overview of aeroacoustic source characteristics

This section presents the characteristics of the studied excitation pðx; y; tÞ which is a Turbulent Boundary Layer (TBL).
The resulting wall pressure is decomposed into two parts as shown in Fig. 2:
�
 the aerodynamic component characterized by the convection wavenumber [12]

kconv ¼
ω

Uc
; (1)

where Uc is the convection velocity, generally deduced from the relationship Uc ¼ KU1 with U1 the fluid velocity in the
laminar flow and K a coefficient between 0.6 and 0.8 [12,13];
�
 the acoustic component related to waves generated by turbulence at the top of the plate and propagating in all directions
with the acoustic wavenumber

kac ¼ ω

c0
; (2)

where c0 refers to the speed of sound. Note that this component may also contain contributions due to the plate
vibration. This is particularly true if the problem is in the vicinity of the coincidence frequency and when the coupling
effects between the plate and the fluid are not negligible. In this study, there is therefore no separation between the
acoustic radiation of the plate and the acoustic part of the TBL.

Generally, the wavenumber–frequency spectra Spp0 ðkx; ky;ωÞ are used to analyze these excitations [12]

Spp0 kx; ky;ω
� �¼ 1

4π2
∬ þ1

�1 Spp0 rx; ry;ω
� �

e� jkxrxe� jkyry drx dry; (3)

where rx ¼ x�x0, ry ¼ y�y0, and Spp0 ðrx; ry;ωÞ the cross-spectrum between the wall pressures pðx; y; tÞ and pðx0; y0; tÞ

Spp0 rx; ry;ω
� �¼ lim

T-1
2π
T

E P x; y;ωð ÞPn x0; y0;ωð Þ� �
; (4)

where Pðx; y;ωÞ is the finite Fourier transform of pðx; y; tÞ with T the duration of the signal

P x; y;ωð Þ ¼ 1
2π

Z T=2

�T=2
p x; y; tð Þejωt dt; (5)

and Pnðx; y;ωÞ its complex conjugate.
With this kind of representation, one can easily distinguish the two components: the acoustic component in the low

wavenumbers and the aerodynamic component with very small wavelengths (see Fig. 3). In addition, the wavenumber
representation allows one to study the vibration and the radiation of a plate under TBL conditions by introducing the
flexural wavenumber kf [14]:

kf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ρð1�ν2Þ

Eh2
4

s ffiffiffiffi
ω

p
; (6)

where ρ, E, ν are respectively the mass density, Young's modulus, Poisson's ratio of the material and h is the thickness of
the plate.

Fig. 3 shows the evolution of this wavenumber as a function of frequency in parallel with that of the aerodynamic and the
acoustic components. In this study, the convection velocity is much lower than the speed of sound (low Mach number).
Therefore, the slope of the kconv line is higher than the slope of the kac line (Eqs. (1) and (2)), and the aerodynamic coincidence
obtained at the angular frequency ωconv for kconv ¼ kf is in the very low frequencies whereas the acoustic coincidence obtained at
ωac for kac ¼ kf is in the very high frequencies. In the wavenumber domain, the aerodynamic energy is located around the point
kx ¼ kconv (where x is the direction of the flow) and most of this energy moves rapidly toward the high wavenumbers when
increasing the frequency. The acoustic part is mainly located around the origin in a circle with a radius equal to kac and according
to Eq. (2), this radius grows with the frequency.

One important characteristic of the excitation is that the aerodynamic component has an amplitude much higher than
the acoustic one [18]. However, the convection wavenumber is very high whereas the acoustic and flexural wavenumbers



Fig. 3. Flexural (—— solid line), convection (- - - dashed line) and acoustic (⋯ dotted line) wavenumbers with respect to the angular frequency ω. The
wavenumber–frequency spectrum of the excitation is shown schematically for three frequency ranges [12]: before the aerodynamic coincidence ωoωconv,
in the mid-frequency region ωconvoωoωac and after the acoustic coincidence ω4ωac.
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have the same order of magnitude in a wide frequency range (see Fig. 3). That is the reason why the vibration and the
radiation of the plate are very sensitive to the acoustic part.

3. Direct problem: numerical experiment

The purpose of this section is to present a simulated experiment that is implemented in order to test the identification of
turbulent wall pressures by FAT. The direct problem of vibration presented in Fig. 1 simulates experimental conditions with
additive noise in the vibration signals given in the time domain. The main goal of this simulation test is to see how solving
the inverse problem yields identifying the efforts of which the wavenumber–frequency and the frequency spectra are
representative of a TBL.

This section presents the full resolution of the direct problem of a plate excited by a TBL: the excitation signals (models
and synthesis) and the direct problem of vibration.

3.1. Aerodynamic component: Corcos model

In this study, the origin of the turbulent flow is related to turbulent boundary layers. There are some frequency spectrummodels
and they are wisely reviewed by Hwang et al. [15]. It is shown that the semi-empirical model of Goody [16] seems to fit the
experimental results in the best way. It is true for a very wide range of flow velocities because the model takes into account the
Reynolds number through a parameter called RT. Therefore, this model is used in the simulations and its expression is given by

Spp ωð Þ ¼
3τ2wδ

ωδ
U1

� �2
U1 0:5þ ωδ

U1

� �0:75	 
3:7
þ 1:1 R�0:57

T
ωδ
U1

� �h i7 ! ; (7)

with RT ¼ u2
n
δ=ν0U1, and where un, δ, ν0, τw are respectively the friction velocity, the boundary layer thickness, the kinematic

coefficient of viscosity and the wall shear stress. The numerical values of these parameters are given by Farabee and Casarella [17]
and by Hwang et al. [15].

There are also some models of wavenumber–frequency spectra. Howe [18] offers a detailed description of the main
models. For the aerodynamic part, the Corcos model [4] for which it is assumed that the fluid is incompressible is often used
because it is very easy to implement. It does not consider the acoustic part. This model defines the cross-spectrum between
two points by combining a term of propagation along x, and two decreasing exponentials describing the correlation lengths
along x and along y:

Saeropp0 ðrx; ry;ωÞ ¼ SppðωÞ e�ωðjrxj=αxUcÞe�ωðjryj=αyUcÞejωðrx=UcÞ; (8)

where the coefficients αx and αy define the decay of the spatial coherence.

3.2. Acoustic component: diffuse field

The aim of the study is to understand how the inverse method FAT identifies the excitations with a cross-spectrum
similar to that of the turbulent wall pressures. That is why there is no attempt to accurately model the force field from a TBL.
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Thus, the acoustic component is artificially added to the Corcos model using a diffuse field [19]:

Sacpp0 ðrx; ry;ωÞ ¼ ASppðωÞsinc kac
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þr2y

q� �
: (9)

The coefficient A reflects the relationship between the aerodynamic and the acoustic energies. In this way, the total cross-
spectrum of the wall pressure can be modelled from Eqs. (8) and (9):

Spp0 ðrx; ry;ωÞ ¼ SppðωÞ e�ωðjrxj=αxUcÞe�ωðjry j=αyUcÞejωðrx=UcÞ þA sinc kac
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þr2y

q� �� �
: (10)

Once again, there is no attempt to model exactly the excitation. The aim is only to see how the inverse problem allows one
to identify this kind of excitation for which the acoustic level is much lower than the aerodynamic one. The choice of the
coefficient A can be questionable, but in this study its value is set to 5 percent and corresponds to a ratio measured by
Arguillat et al. [7] on a particular case of TBL in a wind tunnel. Additional simulations were computed with coefficients lower
than 5 percent and the conclusions presented later in Section 4.2.2 remain the same.

3.3. Synthesis of time signals complying with a cross-spectrum template: Corcos model and diffuse field

This section describes how to synthesize the time signals pðx; y; tÞ which correspond to the sum of the Corcos model and
a diffuse acoustic field. A technique presented by Wittig and Sihna [20] provides the simulation of multicorrelated random
processes. Recently, Hekmati et al. used this method for turbulent wall pressures [21]. A simplified explanation of this
method is proposed here:
1.
 write the cross-spectrum matrix SðωÞ in which each term is the Corcos and diffuse field cross-spectrum Spp0 ðrx; ry;ωÞ
between two points calculated from Eq. (10). With M points in the space domain, SðωÞ is a ðM �MÞ matrix;
2.
 factorize the matrix SðωÞ by the Cholesky decomposition

SðωÞ ¼HðωÞHHðωÞ; (11)

where HðωÞ is a lower triangular matrix and HHðωÞ its conjugate transpose;

3.
 generate a vector Γ of random phases with M elements

Γ i ¼ ej2πγi ; (12)

where γi is a uniformly distributed random number between 0 and 1. We note that the expected value of each element is

E½Γi� ¼ 0; (13)
4.
 create a vector PðωÞ for a given angular frequency ω

PðωÞ ¼HðωÞΓ: (14)

Each element of the vector PðωÞ represents the Fourier transform at the angular frequency ω of the time signals pðx; y; tÞ.

5.
 In the end, steps 1 through 4 are performed for each angular frequency ω up to the Nyquist frequency f e=2. An inverse

Fourier transform provides the time signals pðx; y; tÞ.

We can prove easily that the cross-spectrum matrix SPðωÞ of the field PðωÞ in Eq. (14) corresponds to that desired SðωÞ, the
cross-spectrum matrix of the Corcos model and a diffuse acoustic field. Indeed, SPðωÞ which is obtained using Eq. (4) yields

SPðωÞ ¼ E½PðωÞPHðωÞ�: (15)

By replacing PðωÞ by its expression (14), it becomes

SPðωÞ ¼ E½HΓ½HΓ�H� ¼ E½HΓΓHHH� ¼H E½ΓΓH�HH : (16)

According to Eq. (13) and since the random numbers γi are independent, the expected value E½ΓΓH� is the identity matrix I.
Finally, according to Eq. (11)

SPðωÞ ¼ SðωÞ: (17)

The pressure field PðωÞ complies with the Corcos and diffuse field cross-spectrum.

3.4. Results of the synthesis

Results are shown in Fig. 4 where the estimated wavenumber–frequency spectra are calculated by averaged period-
ograms with segments of 128 points and 50 percent overlap between adjacent blocks that are weighted by a Hann window
which allows 14 averages. The numerical values of the TBL parameters are gathered in Table 1 and those of the synthesis in
Table 2. The parameters of the TBL are given by Hwang [15]. Coefficients αx and αx are found in the literature for smooth
walls [12,13,22].



Fig. 4. Wavenumber–frequency spectra Spp0 ðkx ; ky;ωÞ of the synthesized time signals which correspond to the sum of the Corcos model and a diffuse
acoustic field for three different frequencies: (a) 400 Hz, (b) 1 kHz and (c) 1.6 kHz. The theoretical wavenumber–frequency spectra are shown for the same
frequencies in (d)–(f).

Table 1
Numerical values of the TBL parameters.

Fluid velocity U1 ¼ 50 m=s Kinematic viscosity ν0 ¼ 1:54� 10�5 m2=s
Convection velocity Uc¼35 m/s Wall shear stress τw ¼ 3 N=m2

Friction velocity un ¼ 1:58 m=s Corcos coefficients αx ¼ 8; αy ¼ 1
Boundary layer thickness δ¼ 11:4 cm
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Thewavenumber–frequency spectra of Fig. 4 correspond to themodel according to Eq. (10). The aerodynamic part characterized
by the convective peak moves towards the high wavenumbers when the frequency increases, while the acoustic component,
a circle centered at (kx¼0, ky¼0), excites more wavenumbers in the high frequencies.

Fig. 5 shows the spectrum of the synthesized time signals computed by an averaged periodogram with the same
parameters as mentioned previously and averaged over the entire spatial domain. It matches again with the chosen model
of frequency spectrum. These signals are used to test FAT and will be used as excitations for the direct problem discussed in
the next section.
3.5. Calculation of the vibration

Modal decomposition, method explained by Guyader [14], is used for the calculation of the vibration. This method allows
us to have a displacement field wðx; y; tÞ in the negative z direction (in order to be close to the experimental conditions). Let
us consider a rectangular plate whose dimensions are Lx and Ly along x and y (these lengths correspond to those in Table 2)
and excited by a pressure field pðx; y; tÞ, the equation of motion and the boundary conditions are

ρh
∂2w
∂t2

þD
∂4w
∂x4

þ∂4w
∂y4

þ2
∂4w

∂x2∂y2

� �
¼ pðx; y; tÞ; ðaÞ

wðx; y; tÞ ¼ ∂2w
∂x2

¼ 0 for x¼ 0 and x¼ Lx; ðbÞ

wðx; y; tÞ ¼ ∂2w
∂y2

¼ 0 for y¼ 0 and y¼ Ly; ðcÞ

8>>>>>>>><
>>>>>>>>:

(18)



Table 2
Spatial and temporal parameters of the synthesis.

Dimensions Lx ¼ Ly ¼ 0:5 m Sampling frequency fe¼4 kHz
Discretization Δx ¼ Δy ¼ 0:4 cm Number of samples N¼1000

Fig. 5. Comparison between the Goody model and the Power Spectral Density (PSD) of time signals synthesized by the Cholesky decomposition.
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with D¼ Eh3=12ð1�ν2Þ. The displacement is decomposed on the normalized eigenfunctions ϕm;nðx; yÞ

wðx; y; tÞ ¼ ∑
1

m ¼ 1
∑
1

n ¼ 1
amnðtÞ ϕmnðx; yÞ; (19)

where ϕmnðx; yÞ ¼ ð2= ffiffiffiffiffiffiffiffiffi
LxLy

p Þ sin ðmπx=LxÞ sin ðnπy=LyÞ. After projection of Eq. (18a) on eigenfunctions ϕmnðx; yÞ and the
heuristic introduction of a modal damping term [14], the coefficients amn(t) of Eq. (19) verify

€amn tð Þþ2ζmnωmn _amn tð Þþω2
mnamn tð Þ ¼ pmnðtÞ

ρh
; (20)

where pmn(t) refers to the projection of pðx; y; tÞ on eigenfunctions ϕmnðx; yÞ, ωmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kmn=ρh

p
is the natural angular frequency

with Kmn ¼Dððmπ=LxÞ4þðnπ=LyÞ4þ2ðmπ=LxÞ2ðnπ=LyÞ2Þ, ζmn ¼ λmn=2ρhωmn is the damping ratio and λmn the generalized
damping. Without loss of generality the damping is artificially constant with the order of the eigenmode in order to simplify
the problem. The impulse response of the system defined by Eq. (20) is

hmn tð Þ ¼ e� ζωmntffiffiffiffiffiffiffiffiffiffiffiffi
1�ζ2

p
ωmn

sin
ffiffiffiffiffiffiffiffiffiffiffiffi
1�ζ2

q
ωmnt

� �
: (21)

Finally, coefficients amn(t) are obtained by a convolution such as

amn tð Þ ¼
Z þ1

�1
hmn t�τð Þ pmnðτÞ

ρh
dτ; (22)

and provides the displacement of Eq. (19).
The inverse problem tested here to identify the turbulent wall pressure is an experimental technique that requires a

regularization in the presence of noise. To simulate experimental conditions, some noise is added to the displacement

wbðx; y; tÞ ¼wðx; y; tÞþbðx; y; tÞ; (23)

where b(t) is a normally distributed random signal with zero mean and a standard deviation s. The latter is adjusted in order
to have a given Signal to Noise Ratio (SNR), defined as the ratio at each point between the power of the signal wðx; y; tÞ and
that of the noise bðx; y; tÞ.

3.6. The studied plate

The structure excited by this TBL is a glass plate with a thickness equal to 3.85 mm. This is the typical case of a
windscreen and its parameters are given in Table 3. The number of modes Nmn in the plate model depends on the maximum
of the wavenumber spectrum for the last mode (m,n) which has the highest order. This maximum should be in higher
wavenumbers than the aerodynamic part.

The theoretical evolution of the aerodynamic and acoustic wavenumbers as a function of frequency is shown together
and with the flexural wavenumber of the glass plate in Fig. 6. The parameters used in the Corcos model are given in Table 1.



Table 3
Plate parameters.

Young's modulus E¼ 70� 109 Pa Poisson's ratio ν¼ 0:22

Density ρ¼ 2700 kg=m3 Damping ζ¼ 0:05
Thickness h¼3.85 mm Number of modes Nmn ¼ 125� 125

Fig. 6. Flexural, convection and acoustic wavenumbers with respect to the frequency for the studied case. Aerodynamic and acoustic coincidences (vertical
lines) are shown in (a) the low frequencies (from 0 to 150 Hz); (b) the high frequencies (from 0 to 8 kHz).
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The aerodynamic coincidence is at very low frequencies (f conv ¼ 34 Hz) because the slope of kconv is very high, while the
acoustic coincidence is at frequency f ac ¼ 3:2 kHz. According to Fig. 3, in this case, the aerodynamic component moves very
quickly towards the high wavenumbers as the frequency increases and the acoustic part has the strongest influence on the
vibration and radiation of the wall since the acoustic and flexural wavenumbers are of the same order of magnitude over a
wide frequency range.

4. Inverse problem: identification of the wall pressure

4.1. The Force Analysis Technique (FAT)

Let us consider the plate described by Eq. (18a). In FAT, the force distribution is estimated by injecting the displacement
field in this equation. For this, the spatial derivatives are calculated by finite difference schemes. The discretized equation of
motion to calculate the force distribution at point (i,j) is

pFATi;j ¼Dðδ4xi;j þδ4yi;j þ2δ2x2yi;j Þ�ρhω2wi;j; (24)

where δ4xi;j , δ
4y
i;j and δ2x2yi;j are given in [23]. It requires 13 points of measured displacement around the point ði; jÞ to compute

them. The previous studies show that it is possible to reduce the discretization up to 2 points per flexural wavelength [24].
The major problem with this kind of method is the amplification of measurement errors. Indeed, the estimation of

the fourth derivative in the plate equation is very sensitive to short wavelengths related to the measurement noise.
A regularization of FAT is proposed to avoid this. It consists in applying a spatial windowing and a low-pass wavenumber
filtering on the reconstructed force. In practice, the cutoff wavenumber kFATc is defined by

kFATc ¼ a � kf ; (25)

where a is generally equal to 1, 2, 3 or 4 depending on the Signal to Noise Ratio (SNR) [23].
In this study, the spatial window is a Tukey function which weights the force at the boundaries of the domain over a

length equal to λFATc ¼ 2π=kFATc [23]. The filtering was performed by a spatial convolution between the force and a sinc
function windowed by a Hanning function of length 2λFATc [23].

Although the choice of the regularization coefficient a depends on the subjective evaluation of noise, this method gives
very good results [25]. However, an improvement of this regularization is proposed in this paper in order to automatically
and objectively calculate the optimal coefficient a at each frequency. Thus, it widens the frequency range for which the
method is valid. This optimization is described in the following.

Note that the problem to calculate the force distribution from the displacement (and not the inverse) gives an interesting
and a non-usual point of view. Indeed, this inverse problem can be seen as a linear shift-invariant system in the space
domain while the usual direct problem (the calculation of the displacement from the force distribution) is not, due to the
boundaries of the structure. This is due to the fact that only the equation of motion is considered here; the boundary
conditions appear in the calculated force distribution as forces and moments located at the edges. In terms of wavenumber
analysis, the fact that the studied problem is a linear shift-invariant system implies that there is no wavenumber conversion
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between the vibration and the excitation in the inverse problem. The wavenumber components of the vibration field due to
other wavenumber components in the excitation give zero when it is injected in the equation of motion, except at the
boundaries.

The pressure exciting the plate can then be identified in the whole surface of the plate. Of course, the finite dimensions of
the plate restrict the calculation of the wavenumber spectrum of the excitation, because the parietal pressure cannot be
identified outside the plate boundaries. Computed wavenumber spectra correspond nevertheless to those of the truncated
wall pressure exciting the plate in the studied area.
4.2. Results

4.2.1. Preliminary study: identification of the diffuse field
A preliminary study is proposed to set the inverse method FAT. In this part, only the diffuse field is used in the direct

problem. Thus, the cross-spectrum of the excitation is only that of Eq. (9). This first setup allows us to study the high
frequencies without having a strong spatial discretization which considerably reduces the computation time. Table 4 shows
the simulation parameters, whereas the parameters of the excitation and the plate are shown in Tables 1 and 3. In this study,
mesh grids of the force distribution and the displacement field are the same. M is then the number of points in the entire
space domain.

The result presented in Fig. 7 is the identification of the diffuse field by the inverse operator, without noise on the
displacement and without any regularization. Thereafter this solution is considered as the reference and the optimal
solution of FAT. Acoustic coincidence f ac is represented by a dashed line. From about 200 Hz, the lower limit associated with
the size of the measurement region, and up to this frequency (3.2 kHz according to Fig. 6), the method is able to reconstruct
the whole acoustic energy. But after this coincidence, the acoustic energy is not entirely reconstructed. FAT cancels the
filtering of the excitation due to the vibration of the plate and the excitation could be fully identified for these frequencies
(higher than 3.2 kHz). However, using the finite difference scheme to estimate the spatial derivatives in the inverse problem
of Eq. (24) implies a discretization with a spacing between sensors that causes a low-pass filtering in the wavenumber
domain of the solution. This phenomenon is studied by Leclère and Pézerat in [24], where the authors show that the cutoff
of this filter is close to the flexural wavenumber kf. It explains why FAT does not identify the diffuse field after the acoustic
coincidence because the excitation in the wavenumber domain is not entirely located inside the circle of radius kf. The
chosen discretization, that sets the transfer function of this filter [24], in this particular case allows the method to capture
the acoustic component up to about 4.5 kHz (to an accuracy of 1 dB).

Noise then is added to the displacement field with a SNR equal to 40 dB. The force distributions identified by FAT for
different values of the regularization parameter a are compared in Fig. 8. The first observation is the high variability of the
spectra obtained with the different values of a. While the method filters too severely the excitation when a¼1 (kFATc ¼ kf )
and underestimates the energy of the acoustic field from 1 kHz, it does not filter enough when a¼2 (kFATc ¼ 2 kf ) and
overestimates the force from the same frequency. The latter effect is due to the noise which is mainly located in the high
Table 4
Spatial and temporal parameters for the simulation.

Dimensions Lx ¼ Ly ¼ 1 m Sampling frequency fe¼20 kHz
Discretization Δx ¼ Δy ¼ 1:5 cm Number of samples N¼5000

Fig. 7. Power Spectral Densities (PSDs) of the diffuse field that excites the plate and the pressures identified by the inverse operator without noise on the
displacement field (reference solution of FAT).



Fig. 9. Influence of the regularization coefficient a on the identified force distributions jpFATðx; y;ωÞj at the frequency f¼2400 Hz (SNR ¼40 dB). er is a
spatial error criterion defined in Eq. (26).

Fig. 8. Influence of the regularization coefficient a in FAT on the identification of the diffuse field that excites a plate (SNR ¼40 dB).
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wavenumbers (short wavelengths) for which the method is very sensitive. When the coefficient a increases, it takes more
into account the high wavenumbers and it amplifies the effect of noise. In addition, this phenomenon is enhanced when the
frequency increases because the cutoff of the regularization filter kFATc (Eq. (25)) becomes higher.

The spatial representations of the reconstructed fields at a given frequency in Fig. 9 confirm these observations. When
a¼1, the regularization filter is too strong and the solution is too compact. Conversely, if a¼1.8, the solution has a high
spatial complexity and does not look like the excitation pressure. In order to evaluate the quality of the identification, a
spatial error criterion is introduced

er ωð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈ðjpðx; y;ωÞj�jpFATðx; y;ωÞjÞ2〉s

〈jpðx; y;ωÞj2〉s

s
; (26)

where 〈 〉s is the average in the spatial domain. This criterion is the total error between the excitation and the pressures
identified by FAT for a given angular frequency ω. When the regularization is strong (a¼1 in Fig. 9) the error is important
because the windowing and the filtering produce a significant loss of information. When the regularization is too weak (a¼1.8
in Fig. 9) the error is also high because the noise with small wavelengths does not enable to have a good identification. The idea
is to find a compromise between these two situations.
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With the aim to find an optimal value of a, we chose to study the mean quadratic pressure Ep which is the L2 norm of the
reconstructed pressures divided by the surface of the domain

Ep ¼ 1
LxLy

Z Lx

0

Z Ly

0
SFATpp x; y;ωð Þ dx dy; (27)

with the Power Spectral Density (PSD) SFATpp ðx; y;ωÞ of the identified pressures:

SFATpp ðx; y;ωÞ ¼ E½jpFATðx; y;ωÞj2�: (28)

This indicator is one of the parameters studied in the regularization of inverse or ill-posed problems such as in the L-curve
method [26] but these techniques require the calculations of least-square residues which involve to solve the direct
problems and to know the boundary conditions and the excitations outside the observed area. Here, the local aspect of the
method FAT must be kept and unlike the L-curve method, the energy of the reconstructed pressures is simply analyzed
without calculating the direct problem.

The inverse problem is applied several times for a given frequency, by varying the value of coefficient a. The energy of the
reconstructed field Ep is calculated for each case. Results are shown in Fig. 10(a) for the frequency f¼2400 Hz (the same as in
Fig. 9) and for three different levels of noise applied to the displacement field. In all three cases, when a is small, the solution
has a very low energy, because the filtering is too high. When a increases, the energy stabilizes before rising sharply. For
these values, the noise interferes with the identification of the pressure field. Finally, the optimum is in the area where the
energy is stabilized, just before the strong change of curvature. One way to find it is to detect the minimum of the derivative
of Ep as a function of a (see Fig. 10(b)). For example, the optimum is obtained for a¼1.4 when the SNR is equal to 40 dB and
this solution seems intuitively the best in Fig. 9. Of course the higher the SNR, the greater the optimal value.

The optimum regularization parameter a can be obtained for all frequencies. This requires computing only the inverse
problem by varying a and calculating the mean quadratic pressure for each frequency. As shown in Fig. 11, if the SNR is
lower, the optimal value is smaller in order to regularize correctly the inverse problem. Similarly, with increasing frequency,
the optimized regularization parameter decreases to limit the impact of noise in the high wavenumbers.
Fig. 10. (a) Mean quadratic pressure and (b) its derivative with respect to a of the force field identified by FAT at the frequency f¼2400 Hz. Three different
noise levels are applied to the displacement field. The vertical lines correspond to the optimal values of a (minima of the derivative).



Fig. 11. Optimal value of a as a function of frequency for three different noise levels applied to the displacement field.

Fig. 12. PSD of the diffuse fields reconstructed by the optimized FAT for a SNR equal to (a) 60 dB, (b) 50 dB and (c) 40 dB. The optimal values of the
regularization parameter a are those presented in Fig. 11.
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Fig. 12 shows the PSD of the pressures identified with FAT optimized by the calculation of the mean quadratic pressure Ep.
The regularization coefficients are those of Fig. 11. The first point is that the solutions obtained through the optimization
tend toward the reference (inverse operator without noise). In this way, the method is able to reconstruct the diffuse field
up to about 5 kHz with an SNR of 60 or 50 dB, and up to 3.5 kHz for a SNR of 40 dB (to an accuracy of 2 dB). But above all,
this optimizing technique with the analysis of the mean quadratic pressure Ep and a regularization coefficient a that
depends on frequency ensures a complete identification of the diffuse field up to the acoustic coincidence. For example, a
comparison between Fig. 12(c) where this technique is used and Fig. 8 where the choice of the coefficient is arbitrary and
independent of the frequency shows that for a given SNR this technique greatly improves FAT.

4.2.2. Identification of the turbulent wall pressures: the Corcos model and the diffuse field
In this section, the identification of turbulent wall pressure is studied. A second simulation is performed with the Corcos

model and the diffuse acoustic field of Eq. (10). All simulation parameters are given in Tables 1–3. Results are shown
in Fig. 13. They compare the wavenumber–frequency spectra of the excitation signals pðx; y; tÞ and the pressures pFATðx; y; tÞ
identified by FAT when the measured displacement field has a SNR of 40 dB. Thanks to the wavenumber filtering of the



Fig. 13. Wavenumber–frequency spectra Spp0 ðkx ; ky;ωÞ of the TBL excitation for (a) 400 Hz, (b) 1 kHz, (c) 1.6 kHz and wavenumber–frequency spectra
SFATpp0 ðkx ; ky;ωÞ of the pressures identified by FAT (a¼1.5, SNR ¼40 dB) for the same frequencies (d) 400 Hz, (e) 1 kHz and (f) 1.6 kHz.

Fig. 14. PSD of the TBL excitation: aerodynamic ( dashed line) and acoustic ( dotted line) components; the pressures reconstructed by the inverse
operator without noise (—— solid line) and by the optimized FAT (- � -) from the noisy displacement (SNR ¼40 dB).

D. Lecoq et al. / Journal of Sound and Vibration 333 (2014) 2505–2519 2517
method, the solution of the inverse problem does not identify the aerodynamic component but highlights very accurately
the acoustic part: for the three studied frequencies in Fig. 13, it is possible to reconstruct the acoustic component in terms of
amplitude and bandwidth.

To generalize these observations, the PSD calculated at one point is plotted in Fig. 14 where the acoustic and aerodynamic
components represent the excitation obtained by the signal synthesis. The solid curve corresponds to the spectrum of the
pressures identified by applying the inverse operator in Eq. (24) without noise on the displacement field and then without any
regularization step (wavenumber filtering and spatial windowing). This curve confirms the effect of the filtering provided by
the discretization of the inverse operator that isolates the acoustic energy from 1.4 kHz. Moreover, this phenomenon is
accentuated when the frequency increases as the aerodynamic part moves away in the very high wavenumbers. According to
the results presented in Section 4.2.1, the method could isolate and identify the acoustic component up to 5 kHz.

For lower frequencies, it captures the acoustic component and some part of the aerodynamic component because the
convection wavenumber kconv is closer to the flexural wavenumber kf (see Fig. 6). However, applying the optimized FAT
presented above to the noisy signals allows us to reconstruct only the acoustic part in these low frequencies because of the
additional wavenumber filtering in the regularization step. Indeed, according to Fig. 15, the optimization method imposes



Fig. 15. Optimal value of a as a function of frequency (SNR ¼40 dB). These values are used in the optimized FAT of Fig. 14.

Fig. 16. Mean square velocity of the plate excited ( ) by the acoustic component, ( ) by the aerodynamic part, (——) by both components and (- � -)
by the pressure identified by the inverse problem.
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a strict regularization in these frequencies in order to eliminate the short wavelengths related to the noise and to the
aerodynamic component.

An advantage of this experimental technique is that the plate is very sensitive to the acoustic part. This sensitivity can be
highlighted by analyzing the mean square velocity of the structure given by

Ev ¼ 1
LxLy

Z Lx

0

Z Ly

0
Svv x; y;ωð Þ dx dy; (29)

with Svvðx; y;ωÞ being the PSD of the plate velocity. Fig. 16 shows the evolution of Ev as a function of frequency for the plate
excited (1) by the acoustic component, (2) by the aerodynamic part, (3) by both components and (4) by the pressure
identified by the inverse problem. At low frequencies, up to approximately 200 Hz, the mean square velocity of the plate
excited by the aerodynamic component is almost equal to that corresponding to the acoustic part. When the frequency
increases, this high-wavenumber component is too far from the flexural wavenumber kf and the low acoustic part becomes
the dominant source. This dominance is so high from about 600 Hz that the mean square velocity of the plate excited by
both components is almost equal to that excited only by the acoustic part. This high sensitivity of the panel to the acoustic
component over this wide frequency band makes the plate be a sensor with a better SNR to measure low wavenumbers in
the excitation.

Finally, the curve of Fig. 16 representing the mean square velocity of the plate excited by the pressure calculated by FAT
shows that the method identifies the main sources of vibration: the aerodynamic and acoustic components in low frequency
and only the acoustic part in higher frequency.

5. Conclusion

This paper presents a numerical experiment for identifying the wall pressures generated by TBL. The excitation, resulting
from the synthesis of signals by the Cholesky decomposition, is a simplified model combining the Corcos model and an
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acoustic diffuse field. In this particular case, the results clearly show that FAT allows one to reconstruct exclusively the low
wavenumbers and thus the acoustic component of the excitation. A new method for optimizing the regularization of FAT,
based on the analysis of the mean quadratic pressure of the reconstructed fields, is introduced and improves this inverse
method. Thus, the optimized solution obtained provides an identification of the acoustic component up to the acoustic
coincidence. In addition, this optimization does not require to calculate a theoretical direct problem as it is usually in the
L-curve method and the local character of FAT is preserved (there is no need to know the boundary conditions and the
dynamic behaviour of all the structure). An important perspective is to generalize these observations to other kinds of
turbulent flows or structures such as shells [27,28]. It is also planned to test the method on a real experience where the
displacement field is measured on the other side of the wall by a non-intrusive technique as real-time near-field acoustic
holography [29,30]. Indeed, the coupling of FAT with the standard near-field acoustic holography had already been tested
[31] and appeared to give good results.
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