
J Nondestruct Eval  (2017) 36:31 
DOI 10.1007/s10921-017-0409-5

Characterization of Structural Noise Patterns and Echo
Separation in the Time-Frequency Plane for Austenitic Stainless
Steels

M. Khelil1 · Jean-Hugh Thomas2,3 · L. Simon2 ·
R. El Guerjouma2 · M. Boudraa4

Received: 4 May 2016 / Accepted: 20 March 2017
© Springer Science+Business Media New York 2017

Abstract The aim of this study is to characterize the
structural noise for a better flaw detection in heteroge-
neous materials (steels, weld, composites…) using ultrasonic
waves. For this purpose, the continuous wavelet transform is
applied to ultrasonic A-scan signals acquired using an ultra-
sonic non destructive testing (NDT) device. The time-scale
representation provided, which highlights the temporal evo-
lution of the spectral content of the A-scan signals, is relevant
but can lead to misinterpretation. The problem is to iden-
tify if each pattern from the wavelet representation is due
to the structural noise or the flaw. To solve this problem, a
detection technique based on statistical significance testing
in the time-scale plane is used. Information about the struc-
tural noise signals is injected into the decision process using
an autoregressive model, which seems relevant according to
the spectral content of the signal. The approach is tested on
experimental signals, obtained by ultrasonic NDT of metal-
lic materials (austenitic stainless steel) then on a weld in this
steel and indeed enables to distinguish the components of the
signal as flaw echoes, which differ from the structural noise.
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1 Introduction

The austenitic stainless steels are used in various structures,
in particular in the parts of the primary circuit within the
nuclear reactors. It is then useful to monitor the state of
these materials. Among the methods used to characterize
the austenitic stainless steels’ damages, non destructive test-
ing (NDT) proved to be effective to detect various types of
defects, whose presence could imperil industrial machines
in process. Among NDT techniques, the ultrasonic inspec-
tion is very widespread used, which consists e.g. in emitting
an ultrasonic pulse in the material and observing the pos-
sible echoes reflected by discontinuities. To carry out an
ultrasonic acquisition, the controlled surface is scanned in
a regular way by using a transmitting/receiving ultrasonic
probe. In each scanned point, an ultrasonic shoot is carried
out by the transmitter and the back wall echoes are recorded
by the receiver. Thus for a given sensor, ultrasonic data are
obtained in a four-dimensional space (see Fig. 1): (x, y) sen-
sor space coordinates, (t) time spent by the echoes to reach the
receiver, and (A) the amplitude of the echoes. The data result-
ing from an ultrasonic acquisition can be represented as a set
of one-dimensional signals (A-scan), or as images (B-scan,
C-scan, D-scan) allowing visualization and interpretation of
the information provided by data acquisition. The B-scan
representation [(y,z) plane] is a cross-sectional view of the
test material’s features, i.e., a line of A-scans. The C-scan
[(y,x) plane] and D-scan [(x,z) plane] representations pro-
vide a plane view of the location and size of the test material
features respectively for a specific depth (z) and a specific
position (y).

The problem is often turned to the following questioning:
How detecting damage from the observation of representa-
tions of the signal A-scan or the image B-scan? In addition,
diagnosing the state of the austenitic stainless steels from
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Fig. 1 Principal modes of
representation (A-scan, B-scan,
C-scan, D-scan) provided by
NDT based on ultrasonic signal
emission/reception

ultrasonic inspection is difficult due to the fact that ultrasonic
waves generated into such materials cause the propagation of
both coherent and incoherent waves. The incoherent waves
called structural noise are due to scattering in the material,
which is a complex phenomenon largely studied in the lit-
erature [1–3]. The presence of structural noise may hide the
acoustic signature of the damage to detect. Thus, the ultra-
sonic NDT of the austenitic stainless steels is of major interest
theoretically and experimentally. To be able to detect defects
in this complex medium, many methods proposed are based
on a representation of the signal [4,7,9–17]. It was demon-
strated that the frequency is an important parameter to take
into account. For instance Saniie et al. showed that the fre-
quency content of the echoes scattered by grains depends on
their size distribution and on the absorption conditions [4].

The echoes can then be characterized by estimating the
maximum energy frequency defined as the frequency for
which the power spectrum of the ultrasonic signal reaches
the maximum value. The frequency evaluation of backscat-
tered echoes using autoregressive (AR), Prony and Music
methods [5,6] made the authors prefer the AR approach
[7]. But very often the frequency representation of the A-
scan signal is not sufficient. A time-frequency or time-scale
representation [8] is necessary to improve the spatial accu-
racy of the defect localization. This representation also
provides a better characterization of a waveform, exhibit-
ing its time evolving frequency content [9]. Several signal
processing tools as wavelet analysis, short time Fourier
transform or Wigner–Ville distribution can lead to this rep-
resentation [8]. Wavelets have been widely used in the field
of NDT for this purpose, on 1D A-scan signals or on 2D
signals like B-scan images. Robini et al. [10] use in par-
ticular a wavelet packet decomposition to highlight flaw
information in B-scan images. From several sub-images
obtained by the decomposition at various depths of a B-scan
image, a thresholding procedure is implemented to select the
most relevant coefficients. Then a denoised B-scan image is
reconstructed.

Other operators as morphological filters were applied to
B-scan images to remove the noise [11]. The wavelet-based
reconstruction scheme is also applied to 1D A-scan signals
for enhancing the signal-to-noise ratio (SNR) [12]. Either
discrete wavelet transform (DWT) or continuous wavelet
transform (CWT) is used in the study done by Kaya et al.
[12]. The method first involves decomposing the signal into
several frequency sub-bands. Then some coefficients are set
to zero before reconstructing the time signal. Split spectrum
processing (SSP) can also provide a filtered signal in the
time domain by recombining elements separated in different
spectral bands [13,14]. Kaya et al. [12] show that the DWT
may lead to less relevant results than the CWT in the case of
closely spaced multiple targets because of the constraint on
the spectral processing range of the DWT.

In addition, the choice of the so-called mother wavelet has
a significant influence on the results. In this way, Oruklu et al.
[15] compare several mother wavelets to implement the DWT
on experimental and simulated data. They conclude that the
Battle–Lemarie wavelet with six vanishing moments and the
Vaidyanathan wavelet with 24 vanishing moments provide a
flaw-to-clutter ratio enhancement of 5–12 dB when the mea-
sured flaw-to-clutter ratio is 0 dB or less. It is also of major
interest to use the CWT in order to build a specific wavelet
well-suited to the experimental ultrasonic signals. Abbate
et al. [16] design a mother wavelet from the acoustic wave
reflected by a flaw, and thus take into account the frequency
response of the transducer. They apply the CWT successfully
to steel samples with simulated flaws with different dimen-
sions. Other models as Gaussian chirplet have been proposed
for characterizing ultrasonic backscattered echoes [17].

Therefore, according to the literature, wavelet analysis can
be used for characterizing the echoes, extracting a signature,
which links the time occurrences to their spectral content.
The analysis provides finally a data representation, which
will be considered by some experts to take a decision. Then
the representation can be enhanced through different strate-
gies: one approach consists in filtering the noise that does
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not seem to correspond to the useful signal with the risk of
deleting relevant information [10–12]. The other approach
is searching a filter more adapted to the echoes to recognize
[16,17]. But after all, whatever the approach, it is necessary
to automatically take the decision from the representation.
The method presented in this paper works on the time-scale
plane representation of the experimental data. It is based on
separating, in this plane, the pattern of the flaw or of the weld
echo from that of the background grain noise. The separa-
tion algorithm implements hypothesis testing decision. Other
studies applying statistical tests provide satisfactory results to
detect welds badly oriented in relation to the ultrasonic beam
[18] for instance or to detect flaws using the Bayes classifi-
cation from frequencies, (some of them due to defects, the
others to the materials grains) [19].

Our approach consists in injecting a prior knowledge on
the frequency content of the structural noise in the hypoth-
esis testing. This prior knowledge allows us to modify
the scalogram and then the representation to highlight the
appearance of a flaw or weld echo. Hypothesis testing is
carried out to determine the best hypothesis between: “pat-
tern corresponding to structural noise is present” (H0) versus
“pattern revealing something else is present such as the sig-
nature of a flaw” (H1). As a consequence, hypothesis testing
requires structural noise characterization. In this paper, the
power spectral density (PSD) estimates the spectral content
of ultrasonic signals revealing a structural noise, using an
autoregressive model. The decision making of this study
is based on works related to geophysical research [20–22],
which show that the approach is well adapted to separate the
signatures in the time-frequency plane computed from sea
surface temperature data. In this paper, the aim is to separate
the signature of the structural noise from other signatures
such as flaws. The material (austenitic stainless steel) and
the ultrasonic signals studied are described in the second
section. The approach used which consists in representing
A-scan signals in the time-scale plane by wavelet analy-
sis, characterizing structural noise and detecting flaws in the
material is reported in the third section. Experimental results
are reported in the last section.

2 Materials and Ultrasonic Signals

The approach is tested on experimental signals obtained by
an ultrasonic scan of metallic materials: a rolled austenitic
stainless steel 316L (Material A), and a similar steel 316L
with a welding zone (Material B). Two side-drilled holes
were machined in the bottom right of the material A. This
sample is tested using a transversal wave with a 60◦ beam
angle in the (y,z) plane with respect to the vertical axis. The
choice of this inspection angle is twofold: It allows one to
detect tilted flaws and only transverse waves are refracted

Fig. 2 B-scan image of material A highlighting a rebound echo (area
1), structural noise (area 2), strong structural noise (area 3) and defect
echoes (area 4)

into the material, which makes the diagnosis more workable.
The transducer used for this control has a 2 MHz central fre-
quency. The signals are acquired with a sampling rate of
50 MHz. For this test, 643 A-scans are recorded. Figure 2
shows the B-scan image obtained from this material, in the
plane (y,z): axis z represents the depth of the material and
axis y represents a set of A-scan signals collected step by
step over the width of the material. In this image, four areas
are distinguishable: Area 1 representing echoes of rebounds
due to the mounting-block of the transducer, area 2 represent-
ing a structural noise in the base metal, area 3 representing a
strong raising noise and area 4 representing echoes of defects.
These areas were identified by experts of EDF who also made
artificial flaws, visible in area 4 of the B-scan as two main
oblique lines.

Two A-scan signals, A-scan no. 440, (see Fig. 3) and A-
scan no. 597 (see Fig. 4) are extracted from the positions
marked in Fig. 2. The first signal is without any defect and
the second one crosses two defects (see area 4 in Fig. 2). Both
signals are corrupted by the same structural noise (see area 2
in Fig. 2). The second part of the signals (at the bottom of the
B-scan image) shows a more energetic structural noise (see
area 3 in Fig. 2) than the first part. A rebound echo can be
observed (see the horizontal thick line in area 1 in Fig. 2) due
to the transducer mounting-block in [3–5µs] of the A-scan
signals (see also Figs. 3, 4).

The material B is a mock-up of 316L industrial austenitic
stainless steel weld manufactured using an arc welding pro-
cess with coated electrodes. The welding position is flat
position. The electrode diameter is 4 mm and the welding
speed is 170 mm/min. The welding energy is 0.8 kJ/mm. The
metal weld under investigation has a V-shaped chamfer filled
by the steel material AISI 316L. The welded zone is 50 mm
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Fig. 3 Ultrasonic signal A-scan no. 440 at the position marked in Fig.
2. According to the zones identified by experts from the B-scan of Fig.
2, area 1 (rebound due to the transducer installation) is in [1–8µs], area
2 (structural noise) in [16–34µs] and area 3 (strong raising noise) in
[37–60µs]

Fig. 4 Ultrasonic signal A-scan no. 597 at the position marked in Fig.
2. According to the zones identified by experts from the B-scan of Fig.
2, area 1 (rebound due to the transducer installation) is in [1–8µs], area
2 (structural noise) in [18–20µs] and area 4 (flaws) in [40–66µs]

thick, the top width is 150 mm and the weld root is 50 mm.
The length of the welding zone is supposed to be large enough
to obtain elongated parallel grains. The grain orientation is
from 15◦ to 20◦ with respect to the vertical axis.

The material B is tested using a transversal wave with a
45◦ beam angle in the (y,z) plane with respect to the vertical
axis. In the presence of welds, because of the grain structure,
the deviation of the ultrasonic beam within the weld mate-
rial may cause difficulties in locating defects [23]. From the
knowledge of the grain orientation of the weld studied, the
angle of refraction of 45◦ gives optimal results with a trans-
ducer producing longitudinal waves. The transducer used for

Fig. 5 Stainless steel D703 weld macrographs [24]

Fig. 6 B-scan image of material B highlighting a rebound echo (area
1), the welding zone (area 2), structural noise (area 3) and strong struc-
tural noise (area 4)

this control has a 2 MHz central frequency. The signals are
acquired at a 20 MHz sampling rate. For this test, 184 A-scans
are recorded. This sample contains a D703 weld [24] which
is characterized by lengthened grains expanded through sev-
eral passes. The macrographs in Fig. 5 show the different
grain structures of the material and highlight the boundaries
between the weld and the surrounding structure. They are
used to describe accurately the sample and then validate the
diagnosis provided by the method.

Figure 6 shows the B-scan image obtained from this
material in the (y,z) plane. In this image, four areas are dis-
tinguishable, area 1 representing a rebound echo due to the
transducer mounting-block, area 2 representing the welding
zone, area 3 representing structural noise in the base metal
and area 4 representing strong raising noise echoes due to the
reflections of the transverse waves at the bottom of the weld
at the weld-surrounding structure interface.

For this study, two particular A-scan signals are chosen:
one (A-scan no. 11 in Fig. 7) related to the base metal prop-
agation (area 3), and the other (A-scan no. 102 in Fig. 8) to
the weld (area 2). The noise embedded in the A-scan no. 11
signal is strong while the noise level in the weld area is rela-
tively weak in A-scan no. 102 signal. Rebound echoes (area
1) are present in the first samples of both signals.
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Fig. 7 Ultrasonic signal A-scan no. 11 at the position marked in Fig.
6. According to the zones identified by experts from the B-scan of Fig.
6, area 1 (rebound due to the transducer installation) is in [5–11µs] and
area 3 (structural noise) in [13–50µs]

Fig. 8 Ultrasonic signal A-scan no. 102 at the position marked in Fig.
6. According to the zones identified by experts from the B-scan of Fig.
6, area 1 (rebound due to the transducer installation) is in [5–11µs], area
2 (structural noise) in [12–19µs] and area 4 (strong structural noise) in
[22–43µs]

The aim of the technique proposed in the next section is to
underline the parts of the A-scan signals, which differ from
the characteristics of the structural noise.

3 Method

3.1 Principle

The starting point of the study, which is described by a syn-
optic panel shown in Fig. 9, is the time-scale representation
of an A-scan signal.

This representation is obtained by performing the CWT
of the signal in order to represent its scalogram which may
be difficult to interpret (see Fig. 10).

Then, the aim is to provide quantitative information to
make the interpretation of each pattern (composed of several
high coefficients of the scalogram |Wx (τ, s)|2) easier and to
know if these patterns correspond to the structural noise or
to some flaws. For this purpose, hypothesis testing is carried
out. From different patterns extracted from the scalogram
of an A-scan signal, the goal is to decide between the two
following hypotheses:

• the pattern corresponds to the structural noise (H0),
• the pattern indicates something else such as the signature

of a flaw for example (H1).

Thus hypothesis testing requires to characterize the struc-
tural noise. The approach used is based on the study of the
experimental PSD of some ultrasonic signals highlighting a
structural noise according to macrographs or experts. The
PSD can also be computed using an autoregressive (AR)
model [5].

3.2 Time-Scale or Time-Frequency Representation

The CWT Wx (τ, s) of the signal x(t) consists in projecting
x(t) onto a basis designed from scaled and translated versions
ψτ,s(t) of the mother wavelet ψ(t) such as

Wx (τ, s) =
+∞∫

−∞
x (t) ψ∗

τ,s (t) dt, (1)

where ψτ,s(t) is considered as the analyzing wavelet,

ψτ,s(t) = 1√
s
ψ

(
t − τ

s

)
, (2)

s the scale parameter and τ the time localization parameter
[8]. * denotes the complex conjugate operator. The use of
several scales s in the wavelet transform enables to obtain a
time-scale representation of the signal x(t) called scalogram
defined as

SW,ψ (τ, s) = |Wx (τ, s)|2 . (3)

Among the analyzing wavelets usually employed in signal
processing, the so-called Morlet wavelet is chosen in this
study, because of its characteristic parameters α0 and ω0

which may easily be suited to the recorded ultrasonic echoes.
Figure 11 highlights both real and imaginary parts of the
Morlet wavelet for α0 = 1 and ω0 = 6 rad s−1. The Morlet
wavelet is defined by [8]:
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Fig. 9 Synoptic panel of the
analysis method proposed

Fig. 10 A-scan no. 440 signal scalogram in dB

ψ (t) = π−1/4√α0 e jω0t e−α2
0 t

2/2, (4)

where α0 fits the decrease in amplitude of the wavelet and
where the pulsation ω0 sets the period of the oscillations. A
choice of α0 = 1 and ω0 = 6 rad s−1 yields an acceptable
wavelet in the sense that the wavelet admissibility condition
[8,25] is almost fulfilled. The term π−1/4√α0 standardizes
the energy of the wavelet so that

∫ +∞

−∞
|ψ (t)|2 dt = 1. (5)

The Morlet mother wavelet (with a scale s = 1) cor-
responds to a band-pass filter centered on the frequency
f0 = ω0/2π . Here is f0 = 0.95 Hz for ω0 = 6 rad s−1. The
Fourier transform �s( f ) of the analyzing wavelet ψ0,s(t)
corresponds to a band-pass filter centered on the frequency
fs = f0/s = ω0/2πs (see Fig. 12). This frequency prop-
erty establishes the rule to match up a time-scale plane (t, s)
with a time-frequency plane (t, fs). The continuous wavelet
transform computation is carried out via the software [26].

Fig. 11 Real part (solid line) and imaginary part (dashed line) of the
Morlet mother wavelet for ω0 = 6 rad s−1 and α0 = 1

Fig. 12 Morlet wavelet analyzing spectrum for ω0 = 6 rad s−1and
α0 = 1 obtained by contraction of the mother wavelet at scale s =
4.77 × 10−7 corresponding to frequency fs = 2 MHz
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3.3 Autoregressive Modeling

By autoregressive modeling, it is possible to synthesize a
signal b̂(t) whose statistical properties (specifically the auto-
correlation function) are similar to that of a sample of the
structural noise b(t) [5]. It consists in filtering a white noise
with variance σ 2, with an autoregressive filter composed of
p coefficients ai (i = [1, p]). The filter coefficients as well as
the white noise variance are obtained by resolving the Yule–
Walker equation system [5]. Then the synthesized signal b̂(t)
discretised with sampling period Ts is written at time nTs

b̂ (nT s) = u (nT s) −
p∑

i=1

ai b̂ ((n − i) Ts) (6)

where u(nTs) is a white noise with variance σ 2. One of
the major interests of this model is that Sb̂( f ) the PSD for

frequency f of the autoregressive signal b̂ (t) is known ana-
lytically:

Sb̂( f ) = σ 2Ts∣∣1 + ∑p
i=1 ai e

−2 jπ f iTs
∣∣2 . (7)

Thus this PSD highlights the frequency content of the struc-
tural noise. The main difficulty of autoregressive modeling is
the choice of the order p of the model. However, some crite-
rion J (p) can be used as the Final Prediction Error FPE (p)
[see Eq. (8)] or the Akaike’s Information Criterion AIC (p)
[see Eq. (9)] to estimate the number p̂ of filter coefficients
[5]:

J (p) = FPE (p) =
N + p

N − p
σ 2
p, (8)

J (p) = AIC (p) = 2p + N log σ 2
p . (9)

N is the number of samples of the signal and σ 2
p is the driving

white noise variance in the case of an AR model of order p.
The estimated order p̂ of the model corresponds in general
to the minimal value of the criterion such as

p̂ = Arg min
p

J (p) . (10)

3.4 Hypothesis Testing

Hypothesis testing is introduced to find out whether a pattern
of the time-scale plane corresponds or not to the structural
noise. In our study, the amplitudes of the signal x(t) rep-
resentative of structural noise are distributed according to a
Gaussian probability density function (PDF), which is illus-
trated in Fig. 14. It is established that the real part Re(X ( f ))

and the imaginary part Im(X ( f )) of the Fourier transform
X ( f ) of such a signal x(t) are also distributed according
to a Gaussian PDF [21,27]. Since the square of a Gaus-
sian distributed random variable is distributed according to a
chi-squared PDF χ2

1 with one degree of freedom, the square
of the spectrum modulus of x(t) is deduced to have a chi-
squared PDF χ2

2 with two degrees of freedom. This statement
was demonstrated [28] and assessed [29] in the case of the
spectrogram representation of data. Let us consider a vertical
section Vn1 (s) = |Wx (n1, s)|2 of the scalogram |Wx (n, s)|2
at time n1. Vn1 (s) corresponds to the frequency content of
the signal x(n1Ts) and thus can be seen as its instantaneous
spectral power density. This assumption can be validated as
in [21], by generating L autoregressive models of structural
noise, by computing their scalograms, by isolating one ver-
tical section V l

n1
(s)(with l = 1, L) per scalogram and by

finding out the average of L sections V l
n1

(s) (l = 1, L)

for each scale s or each frequency. When this average cor-
responds to the theoretical PSD [Eq. (7)] then one can say
that the scalogram |W (n, s)|2, just as |X ( f )|2, is distributed
according to a chi-squared PDF χ2

2 with two degrees of free-
dom.

If the signal x(t) is white noise with variance σ 2
0 , the

decorrelation of the samples in the frequency domain implies

E
[
X ( f ) X∗ (

f ′)] = σ 2
0 δ

(
f − f ′) , (11)

where E[ ] indicates the statistical expectation and δ the Dirac
impulse. f and f ′ denote frequencies.

Using the two following properties [8] of the continuous
wavelet transform,

Wx (τ, s) =
∫ +∞

−∞
X ( f )�s ( f ) e2 jπ f τd f, (12)

∫ +∞

−∞
|�s ( f )|2 d f = 1, (13)

involving the Fourier transform X ( f ) of the signal x(t)
and the Fourier transform �s ( f ) of the analyzing wavelet
ψ0,s(t), the scalogram expectation of a white noise with vari-
ance σ 2

0 follows:

E
[
|Wx (τ, s)|2

]
= σ 2

0

∫ +∞

−∞
|�s ( f )|2 d f = σ 2

0 . (14)

In this case the scalogram is distributed according to a chi-
squared PDF χ2

2 with two degrees of freedom:

|Wx (τ, s)|2
1
2σ 2

0

→ χ2
2 , (15)
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where 1/2 comes from the freedom degrees of the PDF and
where “ →” means: is distributed according to.

When the signal x(t) is not a white noise, but a colored
noise, Eq. (15) is rewritten as

|Wx (τ, s)|2
1
2 Ps

→ χ2
2 , (16)

where Ps corresponds to the frequency content (PSD) of the
signal at frequency k/(NTs). This frequency is associated to
the scale s such as k/(NTs) = f0/s. According to Eq. (7),

Ps = Sb̂ (k/NTs) = σ 2Ts∣∣1 + ∑p
i=1 ai e

−2 jπki/N
∣∣2 . (17)

Let g(z) be the PDF of a random variable Z distributed
according to a chi-squared PDF χ2

2 with two degrees of free-
dom. The right-tail probability Q for the χ2

2 random variable
is defined as

Qχ2
2
(γ ) =

∫ +∞

γ

g(z)dz = Prob(Z > γ ) = α. (18)

Here, Qχ2
2
(γ )is also referred to as the probability of false

alarm since deciding (H1) that a defect appears in the signal
when the signal should be only structural noise (H0) can be
thought of as a false alarm. From (16), a defect in the signal
is highlighted if the quantity 2 |Wx (n, s)|2 /Ps is above the
threshold γ , that is

Prob

(
|Wx (τ, s)|2

1
2 Ps

> γ

)
= α, (19)

and then,

Prob

(
|Wx (τ, s)|2

1
2 γ Ps

> 1

)
= α. (20)

Thus the decision rule depends on the quantity

G(τ, s) = |Wx (τ, s)|2
1
2 γ Ps

. (21)

– let us decide H1 if G (τ, s) > 1: a defect appears in the
signal.

– let us decide H0 if G (τ, s) ≤ 1: the signal is a structural
noise.

This decision is made at each point of the time-frequency
plane with a confidence interval 1 − α. Therefore, it is nec-
essary to choose the probability of false alarm α to apply the

method, which is equivalent to set the threshold γ . Indeed,
the quantity G (τ, s) depends on the data (the scalogram
|W (n, s)|2 of the A-scan considered), on prior knowledge of
the frequency content of the structural noise (Ps) and on the
threshold γ . The only parameter to tune is then this threshold
γ . This can be advantageously done, as a calibration process,
on a material with artificial flaws whose positions are known
or from discussions with experts to adjust the sensitivity in
such a way that actual defects could be detected.

4 Results

The approach is tested on experimental A-scan signals
obtained by ultrasonic inspection of a metallic material, an
Austenitic Stainless Steel (A) and a weld in this steel (B).

Fig. 13 Typical structural noise signal extracted from the B-scan image
(area 2) in Fig. 2

Fig. 14 Experimental amplitude distribution of the structural noise sig-
nal in Fig. 13 and the Gaussian function obtained from the mean and
the variance of the noise
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Fig. 15 Choice of the order of the autoregressive model from criteria
final prediction error (FPE) and Akaike’s information criterion (AIC)
defined in Eqs. (8) and (9). The vertical dash-dotted lines indicate the
order chosen for the study (p = 18) and the point marks the order
corresponding to the minima of the criteria (p = 53)

Fig. 16 Structural noise in the frequency domain: experimental PSD
(dB) of the structural noise signal in Fig. 2 (solid line), experimental
PSD of the AR signal of order 18 (dotted line) and theoretical PSD of
b̂ (t) according to Eq. (7) with the filter coefficients provided by the AR
model (dash-dotted line)

4.1 Structural Noise Autoregressive Modeling

A typical signal of structural noise b(t) (see Fig. 13) is
extracted from the B-scan image (see Fig. 2). This signal
has a normal PDF (see Fig. 14), which is checked by the test
of Shapiro and Wilk [30]. The normal PDF of the full zone
of structural noise (area 2) has also been verified. The signal
is then modeled using an autoregressive process. The order
of the model is estimated by the Akaike’s criteria FPE [Eq.
(8)] and AIC [Eq. (9)], represented in Fig. 15. The curves
obtained show a quick decrease of the criteria according to
the order of the model. The minimum of the two functions is

Fig. 17 Autoregressive coefficients of the structural noise signals
extracted in the second area in Fig. 2

Fig. 18 Theoretical power spectral densities of the structural noise
signals calculated from the coefficients in Fig.17 using Eq. (7)

obtained for order p = 53. However, it is to be noticed that
the difference of both criteria between the orders 18 and 53
remains lower than 6% of the variation range of the criteria.
It means that for orders greater than p = 18, the decrease
of the criteria is not significant. Then for the study, p = 18
has been chosen as the order of the AR model, involving less
computation than for p = 53.

Figure 16 shows the theoretical PSD obtained by Eq. (7)
or (17), that of the AR signal b̂(t) of order 18 and that of the
structural noise b(t) represented in Fig. 13, both computed
by the Welch periodogram [31,32].

Figure 16 shows clearly a relevant modeling of the struc-
tural noise through the comparison between the Power
Spectrum Densities of the structural noise signal and the AR
signal. The choice of a signal representative of the structural
noise has a small influence on the results as soon as the signal
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Fig. 19 Time-frequency representations of A-scan no. 440: a scalogram, b scalogram modified according to Eq. (21)

Fig. 20 Time-frequency representations of A-scan no. 597: a scalogram, b scalogram modified according to Eq. (21)

is extracted from the noise area (area 2) of the B-scan repre-
sentation (see Fig. 2). To validate this point, several structural
noise signals have been extracted from this area. From their
18-order AR models, the PSDs have been computed. Figure
17 shows the AR coefficients of each A-scan signal. Figure
18 represents the theoretical PSD of the synthesized signals
computed from the coefficients in Fig. 17.

The theoretical PSDs are similar and the AR model coef-
ficients are stable. The use of an average noise obtained
by the mean calculation of the A-scan signals in the noise
area or the use of an autoregressive signal whose coeffi-
cients are obtained by the mean calculation of the coef-
ficients in Fig. 17 leads to very similar time-frequency
representations.

4.2 Decision in the Time-Frequency Plane

4.2.1 Material A

The purpose of this part is to show the results obtained for
the A-scan signals, extracted from the B-scan image (see Fig.
2). The scalogram modified according to Eq. (21) of signal
A-scan no. 440 (see Fig. 3) is presented in Fig. 19b near
the original scalogram in Fig. 19a. A similar representation
for the scalograms of signal A-scan no. 597 (see Fig. 4) is
given in Fig. 20. It is important to notice that keeping the
highest contour levels of the scalograms in Figs. 19a and 20a
cannot provide the scalograms in Figs. 19b and 20b. Indeed
the decision process depends on the frequency considered.

123



J Nondestruct Eval   (2017) 36:31 Page 11 of 14  31 

Fig. 21 Time-frequency representations of other A-scans: modified scalograms of b A-scan no. 137 [a top], c A-scan no. 560 [a middle] and d
A-scan no. 623 [a bottom]

The contours in Figs. 19b and 20b correspond to the area
where the modified scalogram G(τ, s) is above 1 [Eq. (21)].
According to hypothesis testing as described in Sect. 3.4,
these contours indicate the areas where the signal cannot
be considered as a structural noise (hypothesis H1), with a
confidence interval of 95% (1 − α = 0.95). Indeed, the
echoes due to high-level noise in [40–50µs] and the rebound
echoes in [0–10µs] are emphasised in Fig. 19b. Figure 20b
also shows the rebound echoes in [0–10µs] and the defect
echoes in [50–65µs]. Both Figs. 19 and 20 highlight the
advantage of the change operated on the original scalogram.

Results from the application of the method to other A-
scans are shown in Fig. 21. According to Fig. 2, A-scan no.
137 is expected to cross some structural noise in the base
metal (area 2) and a strong raising noise (area 3). But Fig. 21
(b) shows that the noise in area 3 is not stronger than that of
area 2 for this y coordinate. A-scan no. 560 and A-scan no.
623 have been chosen around A-scan no. 597. A similar flaw
echo is noticed in [60–65µs] in Fig. 21c and in [30–35µs]

in Fig. 21d. These echos, considered with that in Fig. 20b in
[50–55µs], give information which could lead to estimate the
location and the size of the flaw. In addition, it is noticeable
that the rebound echoes in [0–10µs] are all represented by a
similar pattern in the time-frequency representation in Figs.
19, 20, 21. It is also the case for the strong structural noise
in Figs. 19b and 21c in [40–50µs].

4.2.2 Material B

The modified scalogram of signal A-scan no. 11 (see Fig. 7),
extracted from the B-scan image in Fig. 6, is represented in
Fig. 22. The structural noise used in the modeling is extracted
from an A-scan signal within the third area of the B-scan
image (see Fig. 6) in the base metal. The modified scalogram
of signal A-scan no. 102 (see Fig. 8) crossing a welding zone
is given in Fig. 22.

The areas inside the contours also correspond to values of
the modified scalogram G(τ, s) above 1 [Eq. (21)]. In fact,
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Fig. 22 Time-frequency representations of A-scan no. 11: a scalogram, b scalogram modified according to Eq. (21)

Fig. 23 Time-frequency representations of A-scan no. 102: a scalogram, b scalogram modified according to Eq. (21)

in Fig. 22 rebound echoes are visible at the beginning of the
signal. In the middle of the signal, noise echoes with an ampli-
tude level higher than the modeled noise are highlighted. In
Fig. 23, in addition to the rebound echoes, the echoes due to
the reflections at the bottom of the weld are found out. These
echos of high amplitude emerge from the structural noise
because of the roughness of the bottom of the weld, which
causes numerous dispersive reflections. However it is notice-
able that some echoes in the welded zone have no contour in
the interval [20–25µs]. This zone is regarded as a structural
noise because it represents a very low level of noise. This is
probably due to the alignment of the grains in this welded
zone.

5 Conclusion

The method presented here consists first in characterizing the
structural noise in austenitic stainless steels. Secondly, when
flaws or welds are present in the material, using both CWT
and hypothesis testing allows us to differentiate the structural
noise from other echoes in the ultrasonic signal. The CWT
gives a time-scale (or a time-frequency) representation which
may be difficult to interpret, that is why hypothesis testing is
proposed. The aim of this study is to provide a quantitative
interpretation of each pattern (constituted by the amplitudes
within some areas of this time-scale representation) in order
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to know if these patterns correspond to structural noise or to
flaws. The knowledge on the frequency content of structural
noise is injected in the decision process leading to the propo-
sition of a modified scalogram expected to emphasize echoes
that are not considered as structural noise. This knowledge is
provided by the autoregressive model linked to the structural
noise signal.

According to the results obtained and their analysis, the
approach implemented based on modeling the structural
noise and on hypothesis testing in the time-scale (or time-
frequency) plane, seems to be of great interest. Indeed, the
method leads within an ultrasonic signal A-scan to differenti-
ate various echoes from the structural noise. A similar study
could be applied to other materials with strong structural
noise such as the centrifuged cast steels and the concretes.
Various kinds of structural noise could be modeled with the
method and a perspective would be to recognize waveforms
different from these classes of noise. The method could work
on time-frequency or time-scale representations provided by
another technique than the CWT. This approach could be
used to consider the height of the plane defects emerging,
which is based on the difference of time of flight between
diffraction and corner echoes, the echoes of diffraction being
often drowned within the structural noise in particular for the
centrifuged cast steels.
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