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A B S T R A C T

This paper deals with the processing of signals measured by a spherical microphone array,
focusing on the utilization of near-field information of such an array. The processing, based on
the spherical harmonics decomposition, is performed in order to investigate the radial-
dependent spherical functions and extract their argument – distance to the source. Using the
low-frequency approximation of these functions, the source distance is explicitly expressed. The
source distance is also determined from the original equation (using no approximation) by
comparing both sides of this equation. The applicability of both methods is first presented in the
noise-less data simulation, then validated with data contaminated by the additive white noise of
different signal-to-noise ratios. Finally, both methods are tested for real data measured by a rigid
spherical microphone array of radius 0.15 m, consisting of 36 microphones for a point source
represented by a small speaker. The possibility of determination of the source distance using
low-order spherical harmonics is shown.

1. Introduction

The genuine three-dimensional symmetry of the spherical microphone array makes such an array a very strong and powerful tool
capable of operating in complex reverberant fields enabling a description of a field radiated by a vibrating structure. Recently, the
spherical array itself as well as the corresponding signal processing has been the subject of ongoing research. It has been
advantageously utilized in sound source localization and sound field reconstruction techniques such as beamforming and near-field
acoustical holography, respectively [1–4]. The analysis based on the spherical harmonics decomposition and the design of such an
array is theoretically presented in a recent papers [5,6] and subsequent references. An exhaustive description of the sound field
expansion in terms of the spherical harmonics can be found in [7]. Previous studies dealing with sound field analysis by a spherical
array assumed the sources to be placed in the far-field of an array [8,5,9]. The capabilities of an array in its near-field have been
presented in very recent papers [10,11] together with the definition of this close region, or in compact form in [12]. The capability of
capturing the spherical wavefront radiated by a source (in the near-field of an array) provides additional information that can be
utilized in processing.

The main objective of beamforming-based methods is the determination of the direction(s) of the arrival of sound wave(s)
radiated by a far-field source(s) [13]. Such an analysis usually provides a map of sources surrounding the measurement array. On the
contrary, holography-based techniques exploit the near-field information in order to increase the spatial resolution of reconstruc-
tion. Considering the interior problems, in which all the sources are located outside a certain sphere (the measurement sphere), the
theory of spherical near-field acoustical holography, summarized in [7], makes the reconstruction of the surrounding sound field
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possible up to the distance of the nearest source. The a priori knowledge of the source position (mainly the distance from an array –
in the case of a spherical array) may not be easy to achieve. For example, while attempting to reconstruct the sound field generated
by a source moving in the near-field of an array [14] as close to the source as possible, it could be impractical to measure the source
distance “manually”. Therefore, this paper deals with the utilization of the near-field information in order to determine this distance
numerically from the measured data. The idea of determination of the source distance based on the measured data appeared in [15].

The method described in this article assumes the characteristic of the sources to be similar to the point source (such as sources of
radiating sections that are relatively small in relation to their operating wavelengths). The aim of this method is to determine the
distances to such sources based exclusively on the measurement data. To emphasize this assumption, we will use the notation origin
of a spherical wave instead of the source in the following description. It is also assumed that, in certain applications, such sources
could be separated in the spatial and/or time domain by common separation methods (e.g. blind source separation, etc.). Moreover,
the determined distance could be further utilized in the source extraction methods, such as the Point Source Separation (PSS)
method, in which multiple incoherent point sources in a free field are assumed [16]. Once the point source locations are determined,
the interfering signals could be separated by PSS. Note that in connection with a spherical array consisting usually of quite a large
number of microphones (with respect to common separation/extraction method assumptions; e.g. 4 in mentioned reference), the
PSS method could decompose particularly complex sound fields. An example of a real application could be the determination of the
distance to the speaker's mouth, in which a manual measurement is not convenient, especially when the speaker's movement is
expected.

In Section 2, processing based on spherical harmonics, which is used for the determination of the distance to the origin of a
spherical wave, is briefly reviewed. In Section 3, the basic design parameters of the spherical array focusing on its near-field are
discussed. Then in Section 4, the distance to the origin of a spherical wave based on the Fourier coefficients is validated using the
model data set. The validation using the data measured by a rigid spherical microphone array consisting of 36 microphones is
performed in Section 5 followed by discussion of the uncertainty and the Monte Carlo simulation in Section 6. Finally, the results are
summarized in Section 7.

2. Spherical array signal processing

In this section, processing based on the spherical harmonics decomposition is briefly reviewed and subsequently focused on the
performance in the near-field of an array.

2.1. Spherical Harmonics-based Signal Processing

Spherical harmonics decomposition represents an integral transform, in which the basis functions are represented by harmonic
functions defined on the spherical surface (the spherical Fourier transform). These harmonic functions satisfy the spherical wave
equation for angular variables (elevation and azimuth). Thorough description of these functions is given in [7].

Consider the acoustic pressure p to be measured on a sphere of radius r=a. Employing the standard spherical coordinate system
r θ ϕ( , , ) [7], the spectrum (marked by variable ω) of measured pressure p a θ ϕ ω( , , , ) can be decomposed as
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where j stands for the imaginary unit and integer numbers n andm represent the orders and all corresponding degrees (m n n∈ [− , ]),
respectively. In Eq. (1), P a ω( , )mn are the Fourier coefficients given by the forward spherical Fourier transform
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where the integration is performed over a sphere. The coefficients Pmn will be used in Section 4 for the determination of the distance
to the origin of a spherical wave. The asterisk stands for the complex conjugation. Since the spherical harmonics represent the modes
of a sphere, the processing is sometimes referred to as phase-mode processing in connection with beamforming techniques [8]. The
radial dependence of these basis functions focusing on the region close to an array is discussed in the next section.

2.2. Near-field spherical microphone array

The transition between the near and the far field of an array is usually related to the approximation error of spherical wavefront
in relation to the plane wave. Therefore, in the case of the capability of an array to capture the spherical wavefront, such information
could be advantageously utilized for not only distance determination, but also for better spatial separation of multiple sources [11].
As expected, the array near field capabilities depend on its design as well as the processing frequency. The radial processing focusing
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on this close region of an array is reviewed in this section. In designing the spherical microphone array, the critical parameters
influencing its spatial resolution are the total number of the microphones spatially sampling the surrounding sound field, as well as
their distribution around the sphere surface – for detailed discussion on this topic see [6]. These parameters restrict the maximum
order of spherical harmonics N n= max( ) that could be used in processing without any aliasing effect (considering the surrounding
sound field to be harmonic-order limited, P n N= 0: ∀ >mn ). This restriction limits the infinite summation in Eq. (1) up to the order
n=N and discretizes the spherical Fourier transformation in Eq. (3). The error caused by this limitation is usually termed the base
system error and diminishes to zero as N increases to infinity [3].

To evaluate the near-field information, the plane wave (generated by a source at infinity – in the far field) and the spherical wave
(generated by a source in the near field of an array) impinging the measurement sphere are to be studied separately. The
corresponding Fourier coefficients can be expressed as [11]
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where θ ϕ( , )0 0 represents the direction of propagation of the plane wave, r θ ϕ( , , )s s s represents the location of point source and k is the
wavenumber. The so-called far-field mode-strength function b k r( , )n derived for an open and rigid sphere considering the plane
wave impinging the sphere can be expressed as
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where jn represents the spherical Bessel function of the first kind of order n, and hn represents the spherical Hankel function of the
first kind of order n. The prime stands for the derivative with respect to the argument. While the rigid sphere influences the
surrounding sound field by its acoustically hard surface (zero surface velocity), the open sphere is considered acoustically
transparent and does not influence the sound field.

On the contrary, assuming the point source located in the near-field of an array (a spherical wave impinging the sphere), the
analogous near-field mode-strength function is

b k r r kb kr h kr( , , ) = i ( ) ( ).n
n

n n
s
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By exploring Eq. (6) (using bn(kr) for the open and rigid sphere defined in Eq. (5)) it is clear that the spherical wave behavior is
embodied by the function h kr( )n s . By graphical comparison of both plane and spherical mode-strength functions (see Fig. 3 in [11]),
the near field criterion can be expressed as

r N
k

≈ .NF (7)

In this region, the possibility of capturing spherical wavefront by an array can be assumed. Note the dependency on array design
hidden in the maximal order N and dependency on frequency, as mentioned earlier. Determination of the distance r r≤s NF is the
subject of the next section.

3. Determination of the distance to the origin of a spherical wave

In this section, the determination of the distance rs based on the spherical Fourier coefficients of the measured pressure is
described. The motivation of such approach is gained by the possibility of distance determination in situations, in which the direct
measurement by mechanical or optical meter is impractical and/or complicated. Starting with the simple determination of distance
of the static point source, this approach could find its usability in case of the point-like source moving in the near field of an array.
Moreover, the generalization of this method for more complicated and/or multiple sources including the source separation
processing techniques is the subject of further research.

The overall spherical wave mode-strengths can be calculated for all possible spherical modes (the orders n of spherical
harmonics) from the Fourier coefficients (Eq. (4)) of all respective degrees m n n∈ [− , ] as
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Eq. (8) represents the overall strength of the corresponding spherical mode of order n. The determination is based on the division of
two adjacent mode-strengths
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In the following sections, the derivation is first presented in the case without any approximation of the radial functions, and then
with the approximation valid for low frequency assumption.

3.1. No approximation

By dividing two adjacent mode strengths (see Eq. (9)) and expressing for the distance-dependent functions, one can obtain the
equation
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While the left-hand side of Eq. (10) is exponentially decaying with respect to the argument, the right hand side is a constant for the
given configuration (a n k, , ). Therefore, finding the equality of both sides leads to the determination of the distance to the origin of a
spherical wave. Although it is possible to use an arbitrary value of n for the determination, the maximum order is always subject to
the signal-to-noise ratio. The nature of the Fourier coefficients has already been discussed in [3], in which the rapid decay of the
coefficients while n ka> has been demonstrated. This behavior is also obvious in our model validation. In the left part of Fig. 1, the
area of applicability of this method is shown (hatched together with shaded) depending on the order n of spherical harmonics and kr.
Note that the above-mentioned condition for the coefficients is not as strict, and is represented by the upper diagonal line
(SNR ≈ 0 dB). Those coefficients that are above the noise level are still usable for the determination. Therefore, the applicability of
this method is limited for higher orders, whose coefficients are significantly influenced by the noise.

3.2. Low-frequency approximation

Our earlier results of the distance determination using the approximation-based method have been presented in [17].
Considering kr n⪡s , it is possible to approximate spherical radial functions (jn and hn) and extract the distance rs. Again, by dividing
two adjacent mode strengths (see Eq. (9)) and using the approximations [7]

h kr
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n
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≈ 2 + 1n

n

+1 s

s s (11)

and

Fig. 1. Regions of applicability of both methods. Left: no-approximation method, the region of applicability is depicted by hatched together with shaded area. Right:
with low-frequency approximation, the region of applicability is depicted by shaded area.
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the latter being valid for the rigid sphere (not for the open sphere), the distance to the origin of a spherical wave can be extracted and
expressed as
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In similar way, the area of applicability is shown in the right part of Fig. 1. In this case, the consideration used for approximation
restricts the usable coefficients to only those satisfying both conditions.

4. Model validation

In this section, both methods are validated using the model data represented by a point source located at distance r = 0.3 ms from
the origin (center of the sphere) for three different signal-to-noise ratios (SNR, modeled using the MATLAB function awgn as the ratio
of signal power to noise power). For the purposes of this article, the array performance is evaluated according to the maximum order
N while the aliasing effect is not considered – the model sphere of radius a=0.15 m is sampled in many more points than would be
adequate for the given order. The Fourier coefficients are calculated according to Eq. (3) implemented by the Singular Value
Decomposition (SVD). This approach is described in [3]. The determination for the order n, labeled in following pictures and tables,
is performed using this order and the (n + 1) order (division of two adjacent mode strengths). A scheme of a typical experiment is
depicted in Fig. 2.

4.1. Noise-less data

Firstly, the ideal situation with a model point source with kr = 2.77s (f=500 Hz) with no added noise is exemplarily shown in

Fig. 2. A scheme of typical experiment.
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Fig. 3. The results of the approximation-based method are presented in the top part of this figure while the results of the no-
approximation method are presented in the bottom part. The determination is performed up to n=10 to show the convergent
behavior (to the true source distance shown by the green horizontal line) of the approximation-based method; however, according to
the above discussed validity of this method, the higher orders will not be useful in the case of noisy data. The red vertical line
representing the actual value of krs is shown to evaluate the fulfillment of the approximation condition kr n⪡s . In the bottom picture,
the left-hand side of Eq. (10) is depicted for the given orders by solid curves, while the constant values of the right hand side are
depicted by dashed lines. The mutual intersections are highlighted by the dots and actual distance is represented by the black vertical
line. Of course, the same as before holds for higher orders, however, the determination is not limited at the lower orders. The
determined distances are presented in Table 1 as well – the values in gray-marked cells do not satisfy the approximation condition

Fig. 3. Noise-less data model simulation. Top: approximation-based method. Bottom: no-approximation method. The determination for the order n, labeled in the
pictures, is performed using this order and the (n + 1) order (division of two adjacent mode strengths). (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)

Table 1
Noise-less data model simulation. Determined values of rs (m). True value is r = 0.3 ms and kr = 2.77s .

Method Order

0 1 2 3 4 5 6 7 8 9

Approx. rs (m) 0.08 0.22 0.38 0.39 0.35 0.33 0.32 0.31 0.31 0.31
No approx. rs (m) 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
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and cannot be considered as usable results in general. Such an array capable of processing the data up to the 10th order would be,
according to Eq. (7), able to utilize the near-field information up to the distance r = 1 mNF at f=500 Hz. Nonetheless, it should be
noted that the required number of microphones is related to the maximum order N of the spherical harmonics. For example,
considering nearly uniform sampling scheme discussed in [6] the required number of microphones would be at best N( + 1)2, but in
practice larger.

4.2. Noisy data

The second model example shows the distance determination while the noise-less data were contaminated by the additive white
noise of SNR=15, 10 and 5 dB. As has been already discussed, the noise mainly influences the higher orders, whose coefficients are
comparable to the noise level. This finding applies for both methods, as clearly seen in Fig. 4. In this case, the determination becomes
significantly erroneous for orders higher than 4. The bottom part of this figure shows the possibility of distance determination using
Eq. (10) – the behavior of determination using lower orders will become clear from the following table. The determined distances
can be seen in Table 2 for three different SNR. These values represent the average values of five realizations. The gray-marked values
do not satisfy the approximation condition. The graphic representation of these values can also be seen in Fig. 5.

Fig. 4. Noisy data model simulation – SNR=15 dB. Results of one realization. Top: approximation-based method. Bottom: no-approximation method. The
determination for the order n, labeled in the pictures, is performed using this order and the (n + 1) order (division of two adjacent mode strengths).
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Table 2
Noisy data model simulation. The average values of five realizations of the determination of rs (m). The true value is r = 0.3 ms and kr = 2.77s .

Method SNR=15 dB

Order

0 1 2 3 4 5

Approx. rs (m) 0.08 0.22 0.38 0.38 0.30 0.19
No appr. rs (m) 0.30 0.30 0.30 0.29 0.27 0.19

SNR=10 dB

Approx. rs (m) 0.08 0.22 0.37 0.40 0.23 0.16
No appr. rs (m) 0.33 0.30 0.29 0.31 0.21 0.17

SNR=5 dB

Approx. rs (m) 0.08 0.22 0.35 0.31 0.21 0.15
No appr. rs (m) 0.36 0.29 0.28 0.25 0.20 0.16

Fig. 5. Noisy data model simulation. Average values of five realizations of the determination of rs (m). Top: approximation-based method. Bottom: no-approximation

method. The determination for the order n, labeled in the pictures, is performed using this order and the (n + 1) order (division of two adjacent mode strengths).
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5. Real experiment

In this section, both methods are validated using the data measured by the rigid sphere of radius a=0.15 cm consisting of 36
microphones. Such an array is theoretically capable of operating up to the 5th order (of course, depending on the sampling scheme),
however, because of a slight aliasing effect, the maximum order N=4 is assumed. Moreover, in the following example, the 4th order is
significantly influenced by noise. A small speaker was used to represent a point-like source at a distance r = 0.3 ms from the origin.
The arrangement of the measurement is depicted in Fig. 6. In this experiment, the frequency f=400 Hz has been chosen to reduce
slightly the value of kr = 2.22s in order better to satisfy the approximation condition when using a relatively low maximum order. For
both methods, the determined distances are stated in Table 3. Again, the values in the gray-marked cells do not satisfy the
approximation condition. It can also be seen that the result for the highest order is strongly influenced by noise, which transpires by
the unfeasible distance 0.14 m in case of the approximation-based method and no intersection of the curves in case of no-
approximation method. Therefore, in this case, only the determination based on the low orders using Eq. (10) is usable.

6. Discussion of uncertainty and Monte Carlo simulation

The precision of estimation of the source distance based on the proposed methods is influenced by several factors. The impact of
these factors is discussed in this section, followed by their overall evaluation by the Monte Carlo simulation.

6.1. Discussion of uncertainty

As with any acoustic measurement, the measurements using a spherical microphone array suffer from the uncertainties of several
quantities. The microphones qualitative properties (including the preamplifier), measurement front-end properties and environ-
mental conditions (reflections, background noise) belong to the common sources of measurement uncertainties. Moreover, the
accuracy of the sensor placement within the selected pattern of the phased array, and the sensors sensitivity and phase mismatch are
specific sources of uncertainties using array-processing algorithms, including the proposed methods. Usually, it is possible to
minimize the influence of mainly the specific sources of uncertainties using an array calibration – which in any case is necessary to
perform before the arrays employment.

The overall uncertainty budget, including the quantity-estimation methods, their probability distributions and sensitivity
weights, is very complex. For the purposes of this article, the use of a calibrated system (array and subsequent processing chain) is
assumed, and the remaining quantities contributing to the overall measurement uncertainty are exhibited as random noise in the
measured data. The influence of such noise in the data is evaluated using the Monte Carlo simulation.

Fig. 6. Rigid sphere consisting of 36 microphones. The point-like source is represented by a small speaker placed at a distance 30 cm from the origin.

Table 3
Real measured data. Determined values of rs (m), the true value is r = 0.3 ms and kr = 2.21s .

Method Order

0 1 2 3

Approx. rs (m) 0.13 0.31 0.38 0.14
No approx. rs (m) 0.31 0.35 0.30 –
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6.2. Monte Carlo simulation

The noise sensitivity of the proposed methods has been evaluated using the Monte Carlo simulation. The data (complex acoustics
pressures) acquired using a rigid spherical array capable to operate up to 10th order of the spherical harmonics (same as one used
for model validation in Section 4.1) have been modeled considering a point source located at a distance 30 cm from the array's
origin. A zero-mean complex Gaussian noise with a variable variance has been iteratively added to the data, while the accuracy and
variance of the source distance estimation have been evaluated by the proposed methods. Note that the noise is independent in both
the time and space (between individual microphones). In the top part of Fig. 7, an estimated source distance using the method
without the approximation is depicted for each mode ratio depending on the signal-to-noise ratio. In this case, the source frequency
is equal to 200 Hz, which corresponds to the best distance estimation using a ratio of lower modes (1/0 or 2/1). Obviously, higher
modes are not excited by the radiation of this source. In the bottom part of the same figure, the variance of the distance estimation is
depicted in a similar way. In general, the method using approximation displayed worse performance and is not depicted here for
brevity. In Fig. 8, the frequency dependence of the variance of the source distance estimation is shown for several signal-to-noise
ratios for the method without approximation. The usability of a certain mode ratio for a given frequency band is clearly seen. Again,
the method using approximation has shown worse performance. In general, increasing the number of microphones improves the
overall performance of the methods.
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Fig. 7. Estimated source distance (top) together with its variance (bottom) using the method without the approximation for each mode ratio depending on the signal-
to-noise ratio.
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7. Conclusions

This paper focuses on the utilization of near-field information of data measured by the spherical microphone array in order to
determine the distance to the origin of a spherical wave impinging on the array. The determination is based on the division of two
adjacent overall spherical wave mode-strengths calculated using the Fourier coefficients of the spherical harmonics. Two methods,
first using low-frequency approximation and the second using an original equation without approximation, are presented. The
results of these methods as well as their comparison are presented with both model simulations (for different signal-to-noise ratios)
and real measurement. The possibility of using low orders of spherical harmonics to determine the source distance has been shown.
Concerning the design of an array while optimizing its near-field parameters, it is clear that both raising the maximum order and
increasing the radius of the sphere will lead to the larger near-field extent.

The main advantages of the approximation-based method are its explicit formulation and therefore its ease of computation.
However, regarding the opposite restrictions represented by the condition of approximation and the rapidly decaying behavior of the
coefficients, it is always problematic to select the orders suitable for the source distance determination. On the other hand, the no-
approximation method enables use of low orders, but the distance determination is more complicated and more computer-time-
consuming. The robustness of the proposed method has been evaluated by sensitivity on noise using the Monte Carlo simulation.
The method without the approximation has shown better performance over the method using the approximation. Moreover,
increasing the number of microphones improves the overall performance.

This approach could find its application in situations in which the direct measurement of the distance to the source is impractical.
Because of its functionality in the near-field, it could be connected with Near-field Acoustical Holography in order to determine the
region of validity of the sound field reconstructions. The tracking of a point source moving in the near-field of an array, as well as the
expansion of this approach to more complicated sources or multiple sources (e.g. by implementing sequential source separation/
extraction methods), are the topics of the following research.

It should be noted that when the assumption of spherical wavefront is not fulfilled exactly, the method will not provide correct
results. The accuracy of distance determination in the case of a disturbed spherical wavefront and its further influence to the PSS will
be studied further.
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Fig. 8. Frequency dependence of the variance of the source distance estimation for several signal-to-noise ratios for the method without the approximation.
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