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Real-time near-field acoustic holography (RT-NAH) is used to recover non-stationary sound sour-

ces using a planar microphone array. Direct propagation is described by the convolution of the

wavenumber spectrum of the source under study with a known impulse response. The deconvolu-

tion operation is achieved by a singular value decomposition of the propagator and Tikhonov reg-

ularization is performed to stabilize the solution. The inverse problem has an innate ill-posed

characteristic, and the regularization process is the key factor in obtaining acceptable results. The

purpose of this paper is to present the instantaneous regularization process applied to RT-NAH

method. Bayesian estimation of the regularization parameter is introduced from prior knowledge

of the problem. The computation of the regularization parameter is updated for each block of con-

stant time interval allowing one to take into account the fluctuating properties of the sound field.

The superiority of Bayesian regularization, compared to state-of-the art methods, is observed

numerically and experimentally for reconstruction of non-stationary sources. RT-NAH is also

enhanced to allow the reconstruction of long signals. Updating the regularization parameter

accordingly to the fluctuations of the SNR is revealed to be a necessary effort to reconstruct

highly non-stationary sources. VC 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4998571]

[ATW] Pages: 924–934

I. INTRODUCTION

Near-field acoustical holography (NAH) is an effective

experimental tool to reconstruct acoustic sources using dis-

crete sound field measurements.1 Averaging time evolution

over the whole acquisition duration makes it possible to

work on converged cross spectra. However, most acoustic

excitations have a non-stationary behavior: a car door slam-

ming, pass-by noise, rotating sources, aeroacoustic noise,

etc. Extensions of NAH have been proposed to address such

cases.2–8 As standard NAH is usually computed for a single

frequency and then devoted to stationary sources, “Time

domain holography”2 was proposed for non-stationary sour-

ces: it consists of repeating NAH procedure on each spectral

line and then applying the inverse Fourier transform to

reconstruct a time evolution of sound field by an inverse

Fourier transform. The process is well-adapted to short peri-

ods of time with limited bandwidth. A similar use of NAH

has been suggested by Deblauwe et al.3 to track the time

fluctuation of a particular frequency component. It aims to

repeat the NAH process on time data blocks for a single fre-

quency using short-time Fourier transform centered on the

frequency of interest. Both methodologies are based on the

use of Fourier transforms in the time domain. Blais and

Ross4 pointed out time aliasing discrepancies created by this

process. The authors proposed then to implement time

domain NAH using the numerical Laplace transform.5 Wu

et al. also used the Laplace transform to derive an analytical

expression of the inverse propagator (so-called “temporal

kernel”) in the spherical coordinates and in the time

domain.6 Finally, the estimated sound field radiated by the

source is the result of the sound field measured by the array

convolved with the kernel. Wu further explored this

approach and recently proposed a novel method to character-

ize transient sources radiated by arbitrary shapes.7 The

inverse propagator is determined in the frequency domain

either by the boundary element method or by the Helmholtz

equation least squares. With the aid of the residue theorem,

the inverse Fourier transform is calculated to obtain the time

kernels. Finally, Bai and Lin8 proposed a method named

“near-field equivalence source imaging” based on the design

of multichannel inverse filters to recover the strengths of

non-stationary equivalent sources positioned near the source.

These inverse filters can be interpreted as time kernels: once

they are evaluated, the evolution of the sound field is

obtained by a convolution with the measurements.a)Electronic mail: thibaut.le-magueresse@microdb.fr
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For all of the aforementioned methods, the inverse prob-

lem appears to be ill-posed as the solution exhibits unstable

behavior when the input data are perturbed by noise.

Regularization methods have proved their efficiency to ensure

the stability of the solution for standard NAH problems and

non-stationary problems.9–11 The use of time kernels has the

advantage of making possible the instantaneous estimation of

the source field on the surface of interest, however, these

approaches suffer from the same issue: the regularization pro-

cess does not take into account the fluctuation of the energy

of the acoustic signals. Statistical properties of the sound field

are time-dependent and the amount of regularization has to be

variable as well. Applying a constant filtering of singular val-

ues regardless of the instantaneous signal to noise ratio can

entail significant errors of reconstruction. It seems that a

time-dependent description of the acoustic radiation has to be

provided with the aim of

• applying regularization process adapted to the fluctuation

of signal energy relative to the time-varying noise energy;
• avoiding aliasing discrepancies produced by the inverse

time Fourier transform.

Two strategies are available in the literature which

depend on the domain of interest: the space-time domain for

the first strategy and the time-wavenumber domain for the

second. Both finally reconstruct the instantaneous sound

field in the space domain.

The transient NAH based on time-domain equivalent

source method operates directly in the time domain without

applying any Fourier transform.12,13 Equivalent sources at

each sample time are identified by solving an inverse prob-

lem. The proposed algorithm is by nature recursive and

Tikhonov regularization has to be performed for each

inverse problem resulting in a cumulative effect of errors.

Reconstruction results have been enhanced by combining

the method with the free-field time reversal.14 A similar iter-

ative algorithm, called the time-domain plane wave superpo-

sition method (TD-PWSM), has been developed by Zhang

et al. using an impulse response calculated in the time-

wavenumber domain.15,16 The decomposition into the plane

waves basis allows both propagative and evanescent waves

to be taken into account, which significantly improves the

spatial resolution.

Real-time NAH (RT-NAH) also continuously recon-

structs the time evolution of the acoustic field under study.17

A deconvolution problem is solved by using a discrete inverse

response (different from that of TD-PWSM) in the time-

wavenumber domain. Unlike TD-PWSM, the method requires

the computation of the wavenumber spectra in the measure-

ment plane. In RT-NAH, the inverse problem is continuously

solved for each point of the wavenumber domain indepen-

dently thanks to the convolution product. For this reason, the

RT-NAH calculation time is more attractive than the first

strategy for industrial implementation. Furthermore, RT-NAH

does not use the equivalent source idea, exploited in TD-

PWSM, that consists of representing the sound field with a

finite number of monopoles positioned on a virtual distance

from the source plane. The position of the virtual source is an

input parameter which significantly influences the results.

Optimal choice of the retreat distance is not known yet and

only empirical hints are so far available in the literature.18

Both strategies offer a unique insight into instantaneous

reconstruction of acoustic radiation. Most importantly, the

reconstruction error of these methods is limited by the use of

a time-dependent regularization. Empirical Bayesian regular-

ization applied to acoustic inverse problems has been intro-

duced by Antoni.19 In the case where additive noise source

distributions are supposed to be Gaussian, the Bayesian

approach leads naturally to the general-form Tikhonov solu-

tion obtained from the knowledge of the propagation model,

the measurements, and the regularization parameter. This

parameter is calculated by making a compromise between the

fidelity to the real measured data and the fidelity to available

a priori information. Optimally tuning the regularization

parameter arises as a major issue in determining the quality

of the reconstruction. Some specific methods20,21 have been

developed to automatically evaluate the parameter. The

L-curve (LCV) and the generalized cross validation (GCV),

among others, seem to prevail in the vibro-acoustic field. The

Bayesian approach (BA) also offers a solution for estimating

the regularization parameter. Its superiority compared to the

state-of-the-art methods (GCV and LCV) has been proven in

stationary inverse problems.22

The aim of this paper is to evaluate the performance of

instantaneous Bayesian regularization applied to the recon-

struction of long non-stationary sources using RT-NAH.

Moreover, the interest in updating the regularization parame-

ter per block over time is highlighted.

II. FORWARD PROPAGATION IN THE
TIME-WAVENUMBER DOMAIN

Let us consider the acoustic propagation between a cal-

culation plane zc and a measurement plane zm generated by a

non-stationary source placed at zs as sketched in Fig. 1.

The sound pressure is decomposed into plane waves

using the two-dimensional Fourier transform along x and y
directions,

Pðkx; ky; z; tÞ ¼
ðþ1
�1

ðþ1
�1

pðx; y; z; tÞejðkxxþkyyÞdxdy; (1)

with kx and ky the wavenumbers along the x axis and y axis,

respectively. The acoustic propagation in the time-wavenumber

domain is expressed as a time-convolution between the wave-

number spectrum of sources at the calculation plane,

Pðkx; ky; zc; tÞ, and the impulse response hðkx; ky;Dz; tÞ,

Pðkx; ky; zm; tÞ ¼ Pðkx; ky; zc; tÞ�thðkx; ky;Dz; tÞ
þ Bðkx; ky; tÞ; (2)

with Pðkx; ky; zm; tÞ being the instantaneous wavenumber

spectrum measured at the measurement plane, Bðkx; ky; tÞ the

additive noise, Dz ¼ zm � zc the distance of back propaga-

tion, and �t the convolution operator in time. The impulse

response is obtained as the solution of the Helmholtz equa-

tion in the time-wavenumber domain,
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@2P kx; ky; z; tð Þ
@z2

� 1

c2

@2P kx; ky; z; tð Þ
@t2

� k2
x þ k2

y

� �
P kx; ky; z; tð Þ ¼ 0; (3)

with c being the celerity of the acoustical waves and

Pðkx; ky; z; tÞ ¼ 0 for t < s, where s ¼ ðDzÞ=c is the propaga-

tion delay. The derivation of this equation leads to an analyt-

ical expression of the impulse response function,23,24

hðkx; ky;Dz; tÞ ¼ hðXr; s; tÞ ¼ dðt� sÞ � gðXr; s; tÞ; (4)

where dðsÞ is the Dirac function, Xr ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
is the

transition angular frequency, and

g Xr; s; tð Þ ¼ sX2
r

J1 Xr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p� �

Xr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p C t� sð Þ; (5)

with J1 being the Bessel function of the first kind of order 1

and where CðtÞ is the Heaviside function.

In practice, the measured sound field is regularly sam-

pled at time instants t ¼ nDt; n ¼ 1; 2; :::;N and the direct

problem is reformulated as

Pðkx; ky; zm; nDtÞ ¼ Pðkx; ky; zc; nDtÞ�thðkx; ky;Dz; nDtÞ
þ Bðkx; ky; nDtÞ; (6)

where hð:::; nDtÞ stands for the discretized version of the

impulse response hð:::; tÞ. Sampling the impulse response

causes phase and magnitude discrepancies, as mentioned by

Grulier et al.24 They proposed corrections based on designing

low-pass filters to overcome these difficulties by comparing the

theoretical transfer function with the discrete Fourier transform

of the impulse response. Another solution recommended17,24 to

reduce such errors is to replace direct sampling by average

sampling, for instance, by using the trapezoidal formula

�g n½ � ¼ g Xr; s; nð Þ ¼ 1

Dt

ðnDtþDt=2

nDt�Dt=2

g Xr; s; tð Þdt: (7)

Due to the property of the impulse response, the forward

problem can be written as a discrete sum,

Pðzm;nDtÞ ¼
Xn

m¼0

Pðzc;mDtÞhðkx;ky;Dz;nDt�mDtÞ

þBðnDtÞ: (8)

In addition, from Eq. (5), the impulse response is equal

to zero for t < s, corresponding to the time needed by the

waves to propagate from the calculation plane to the mea-

surement plane. Considering ns the smallest sample for

which s � ns � Ts, with Ts the sampling period, the forward

problem of Eq. (8) is expressed as a classical linear problem,

Pzm
ðnsÞ
..
.

..

.

..

.

Pzm
ðN � 1Þ

2
6666666664

3
7777777775
¼

hDzðnsÞ 0 � � � � � � 0

..

. . .
. . .

. ..
.

..

. . .
. . .

. ..
.

..

. . .
.

0

hDzðN � 1Þ � � � � � � � � � hDzðnsÞ

2
6666666664

3
7777777775

Pzc
ð0Þ
..
.

..

.

..

.

Pzc
ðN � nsÞ

2
6666666664

3
7777777775
þ

Bð0Þ
..
.

..

.

..

.

BðN � nsÞ

2
6666666664

3
7777777775
: (9)

Using matrix formalism, Eq. (9) reads

Pzm
¼ HDzPzc

þ B; (10)

with Pzm
and Pzc

being the instantaneous wavenumber spec-

tra at the measurement plane and the calculation plane,

respectively, and HDz a Toeplitz matrix.

III. BA TO DECONVOLUTION

A. Probabilistic formalism

The aim of the deconvolution is to reconstruct the wave-

number spectra Pzc
from the measured wavenumber spectra

Pzm
. If we consider the wavenumber spectra as random varia-

bles, the goal consists of finding the conditional probability

FIG. 1. Sketch illustrating the geome-

try of interest.
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density function (pdf) of Pzc
given Pzm

, denoted by ½Pzc
jPzm
�.

This pdf is unknown but can be estimated according to

Bayes’ rule which expresses the posterior probability as

Pzc
jPzm

� �
¼

Pzm
jPzc

� �
Pzc½ �

Pzm½ �
; (11)

where ½X� represents the probability density function of ran-

dom variable X and ½XjY� the conditional probability of X
given Y. The density ½Pzm

jPzc
� represents the likelihood func-

tion, i.e., the pdf of the measurements Pzm
knowing the

instantaneous wavenumber spectrum of the source Pzc
. The

prior ½Pzc
� is the pdf of the sources before observing the

measurements. Finally, the quantity ½Pzm
� expresses the pdf

of the measurements for all possible sources considered.

1. Modeling the probability density functions

Experimental errors have many different origins and,

as a consequence of the central limit theorem, they are

well modelled by a Gaussian pdf.25 In the time-

wavenumber domain where the wavenumber spectrum is a

complex value, additive noise then follows a complex

zero-mean Gaussian law N cð0; b2XbÞ where b2 stands for

the unknown energy of noise and Xb is a known structure

matrix defining the nature of the noise (an identity matrix

is usually chosen to enforce zero correlation of noise

between microphones):

Bjb2
� �

¼ N c 0; b2Xb

� �
¼ 1

pNb2NjXbj
exp �

kBk2
Xb

b2

 !
;

(12)

where jXj denotes the determinant of matrix X and the nota-

tion jjXjj2Yx
¼ XHY�1

x X is used.

The likelihood function ½Pzm
jPzc
� is derived using the

direct problem expressed in Eq. (10). Since measurements

are perturbed by the additive noise defined above, Pzm
condi-

tionally follows a complex Gaussian law with mean HDzPzc

and covariance matrix b2Xb,

Pzm
jPzc

; b2
� �

¼ NðHDzPzc
; b2XbÞ: (13)

Last, prior information about the nature of sound sour-

ces in the time-wavenumber domain is also chosen as a

Gaussian distribution. This hypothesis is mathematically

convenient even if other choices could be adopted;26 how-

ever, these will not be investigated in this paper. The prior

probability density function of sources thus reads

Pzc
ja2

� �
¼ N c 0; a2

� �
¼ 1

pNa2NjXsj
exp �

jjPzc
jj2Xs

a2

 !
;

(14)

with a2 standing for the unknown energy of sources and Xs

being a known structure matrix defining time correlation of

sources, also chosen as the identity matrix in the current

study.

B. Maximum a posteriori estimation

The most probable solution of the inverse problem is

obtained by determining the maximum a posteriori estima-

tor. This value is given by maximizing the numerator in Eq.

(11), or alternatively by minimizing the opposite of its loga-

rithm which is easier to manipulate. This leads to the follow-

ing cost function:

J ¼ �ln Pzc
; a2; b2jPzm

� �
: (15)

Enforcing the derivative of this cost function to zero

with respect to the solution Pzc
brings us to an analytical

expression of the sources,

Pg
zc
¼ V

l s

s2 þ g2

k
UHPzm

¼ H
†
Dz g2
� �

Pzm
; (16)

where V and U are the singular orthonormal matrices, s is a

diagonal matrix containing singular values stemming from

the singular values decomposition of the Toeplitz-form

matrix HDz ¼ UdscVH; g2 ¼ b2=a2 is the regularization

parameter, and H
†
Dzðg2Þ is the inverse and regularized form

of the matrix HDz. It is noteworthy that this solution is simi-

lar to the Tikhonov solution. In addition, regularization is

applied here only once from the overall vector Pzm
contain-

ing the measured time-wavenumber spectrum.

C. Empirical Bayesian regularization

In the empirical Bayesian framework, the regularization

parameter is determined by maximizing the posterior proba-

bility density function ½g2jPzm
� marginalized with respect to

Pzc
, i.e.,27

g2jPzm

� �
¼
ð

g2jPzm
;Pzc

� �
Pzc½ �dPzc

(17)

/
XM

k¼1

jUH
k Pzm
j2

s2
k þ g2

 !M�2YM
k¼1

s2
k þ g2

� �0
@

1
A; (18)

where M is the number of microphones mounted in the array.

An estimation of the regularization parameter is then deter-

mined by the minimization of the cost function,

g2
MAP ¼ Argmin

g2

ð�ln g2jPzm

� �
Þ (19)

¼ Argmin
g2

ðJ2ðg2ÞÞ; (20)

with

J2ðg2Þ ¼
XM

k¼1

lnðs2
k þ g2Þ þ ðM � 2Þlna2 (21)

and

a2 g2
� �

¼ 1

M

XM

k¼1

jUH
k Pzm
j2

s2
k þ g2

: (22)
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The second hyper-parameter is also estimated as

b2 ¼ a2 � g2.

It is remarkable that the implementation of this regulari-

zation process is extremely simple as it boils down to the

search of a minimum of a 1D cost function.

D. Batch deconvolution

In RT-NAH, a global regularization strategy is faced with

two difficulties. First, deconvolution has to be performed from

Eq. (10) where the squared-matrix HDz has dimensions

ðN � nsÞ � ðN � nsÞ, with N � ns the total number of samples

to be reconstructed. If the non-stationary phenomenon is char-

acterized by a long duration (approximatively a second for

example) sampled at Fs¼ 16 kHz for instance, the storage and

calculation capabilities of the computer have to be consider-

able. Second, the regularization of the singular values is

applied to the overall duration of the signal. In situations where

short non-stationarities occur, a global regularization strategy

is generally not optimal since the regularization parameter is

itself likely to evolve as a function of time. With this perspec-

tive in mind, the inverse process has to be applied many times

on shorter blocks in order to (1) limit the size of the matrix to

invert and (2) update the regularization parameter value.

The batch deconvolution will be computed iteratively

on K blocks of L samples, each with KL¼N, where L corre-

sponds to the impulse response length; the latter has to be

chosen sufficiently large to accurately describe the decay of

the impulse response. Time blocks of L samples of the

instantaneous wavenumber spectrum are processed itera-

tively. In order to avoid aliasing problems due to the discon-

tinuities introduced at the edges of the truncated intervals,

the dimension of the problem is expanded: M zeros are intro-

duced at the beginning and at the end of the blocks.

Likewise, the Toeplitz matrix HDz of Eq. (10) is upgraded to

dimensions ð2M þ LÞ � ð2M þ LÞ. For one block of data,

the direct problem reads

(23)

The solutions obtained by inverting system (23) for each

block of data are then combined by summation: the M first

samples are added to the previous block and the last ones are

added to the next block. Moreover, a Hanning windowing is

applied to the measured vector insuring a 50% of overlap.

Figure 2 depicts the procedure. Note that this procedure is

exact; the only possible source of error comes from the trun-

cation of the impulse response h to L samples.

IV. NUMERICAL VALIDATIONS

A numerical study has been conducted to evaluate the

performance of BA regularization in RT-NAH as compared

with the state-of-the-art methods, namely LCV and GCV.

Similar studies have been conducted in the case of recon-

struction of stationary sources.28,29

A. Numerical set-up

The numerical procedure involves the propagation of a

point source situated in the source plane at zs to the

calculation plane at zc under a free-field hypothesis in the

time domain. The point source is positioned at (0.2, 0.4, 0)
m and is defined by a signal with a linear frequency modula-

tion in the band [300 Hz, 3000 Hz] and a Gaussian amplitude

modulation. The signal is sampled at Fs¼ 16 kHz, thus pro-
viding 256 samples in a time snapshot of 16 ms centered on

s(t). The sound pressure is propagated to 49 points distrib-

uted evenly in the space by a step of 0.1 m. The propagation
from the calculation plane to the measurement plane is car-

ried out by the convolution of the field at zc ¼ 0:01 m and

the impulse response function according to Eq. (8).

Two indicators are introduced to assess the reconstruc-

tion results in an objective manner. They characterize, in

the space domain, the accuracy of the time sound fields

pðx; y; zc; tÞ reconstructed on the calculation plane by apply-

ing the inverse two-dimensional spatial Fourier transform, for

each time instant, to the time wavenumber spectrum estab-

lished from the components of Pzc
for each wavenumber pair

(kx, ky). The indicators represent the quality of the phase and

the magnitude reconstruction and are, respectively, noted T1

and T2 for each point i, j of the spatial domain,
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Tij
1 ¼

hp xi; yj; zc; tð Þ~p xi; yj; zc; tð Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hp2 xi; yj; zc; tð Þih~p2 xi; yj; zc; tð Þi

q ; (24)

Tij
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h~p2 xi; yj; zc; tð Þi
hp2 xi; yj; zc; tð Þi

s
; (25)

where ~p2ðxi; yj; zc; tÞ denotes the reference sound field in the

time-space domain. The so-defined indicators are equal to 1

if the reconstruction is exact.

B. Comparison with other regularization methods

The performance of each method is analyzed on a large

domain of observations. The position of the array varies

from 5 cm to 50 cm and the signal to noise ratio (SNR) from

5 dB to 60 dB. For each distance and SNR configuration,

ten random samples have been recorded. Figures of merit

ð1� T1Þ and ð1� T2Þ corresponding to the non-regularized

(NR), LCV, GCV and BA solutions are plotted in Fig. 3.

These indicators are averaged over the ten random samples

and over the whole scan area. For readability reasons, indica-

tors are set to an upper limit of 1.

These results exhibit acceptable solutions when the array

is close to the source, whatever the SNR. For distances above

0.1 cm, the non-regularized solution becomes unstable and

results given by GCV and LCV are also unsatisfactory: the

value of indicator T2 becomes very large, even if the phase

reconstruction is satisfactory. To explain the reason why all

methods are more sensitive at large backpropagation distan-

ces, the condition number is introduced as the ratio of the

maximum to the minimum singular values, Kij ¼ sij
max=sij

min.

Its value reflects the ill-posed severity of the problem. Its

averaged value over the wavenumber is evaluated as a func-

tion of propagation distance in Fig. 4. For high wavenumber

pairs, the condition number becomes high [16.3 dB for a dis-

tance of 0.15 m for the pair (kx, ky)¼ (7,7)], which reflects the

difficulty to reconstruct evanescent components at a distance

larger than 0.1 m in our case. Based on non-regularized

results, the presence of a tiny fraction of noise (SNR¼ 60 dB)

is enough to destabilize the reconstructed sound field.

Finally, for the major part of the examined domain, the

Bayesian regularization offers satisfactory results. The

improvement provided by Bayesian regularization signifi-

cantly increases with the severity of the ill-posed characteris-

tic of the problem (large distance of back propagation,

important SNR). Bayesian regularization thus offers the pos-

sibility to use RT-NAH for longer distances.

A reconstructed time-signal at position (0.2, 0.4) m by

the four methods using an array positioned at 10 cm from

the source plane is shown in Fig. 5. This favourable case

illustrates the quality of the reconstruction for all of the

methods.

In contrast, Fig. 6 displays a severe case for the near-field

holography as the distance of back-propagation is 40 cm. One

FIG. 3. (Color online) Indicators

1� T1 (above) and 1� T2 (below)

averaged over ten random samples and

over the space of calculation. From left

to right: indicators for the non-

regularized, LCV, GCV, and BA

solutions.

FIG. 2. (Color online) Batch deconvolution process applied to reconstruct

long signals by RT-NAH method.
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can observe that the regularized solution diverges with the

LCV and the GCV methods. This case illustrates the ill-posed

behavior of the inverse problem: a little variation in the input

causes a large variation at the output. Only the Bayesian regu-

larization gives satisfactory results in this case.

The remarkably good results of the BA comes from the

fact that the synthesized sound field from the source to the

microphones fulfilled exactly the assumptions of the stochas-

tic model on which the proposed Bayesian method is

founded: the source and the noise have been randomly sam-

pled from a complex Gaussian distribution. Conversely, the

estimation of the regularization parameter by LCV or GCV

does not come from an explicit stochastic model.

C. Instantaneous regularization

This subsection illustrates the batch deconvolution of a

long non-stationary signal. The distance of retro-propagation

is set to Dz ¼ 19 cm and a point source is positioned at (0.2,

0.4, 0) m generating a Morlet signal of central frequency

2000 Hz. The SNR is set to 10 dB and 512 samples are used

to describe the source signal. First, the signal has been recon-

structed by the RT-NAH method using a matrix HDz of

dimension 512 � 512. In this case, one single inversion is

required and one single regularization parameter is evaluated

for each of the (kx, ky) pairs. For the same simulation config-

uration, batch deconvolution is applied as described in Sec.

III D. The measured signal is divided into 5 blocks of 128

samples and 50% overlap is considered. The results are

shown in Fig. 7.

In batch deconvolution, the regularization parameter fol-

lows the evolution of the SNR: the amount of regularization is

important when the acoustic signal is weak and low when the

source conveys energy. Moreover, the proposed batch decon-

volution method suppresses a limitation of RT-NAH concern-

ing the length of the reconstructed time-signal. Figure 8 depicts

the reconstruction of a non-stationary signal of 1 s. The simula-

tion parameters are the same as in the previous study case and

16 000 samples have been reconstructed.

V. EXPERIMENTAL RESULTS

Experiments have been undertaken in order to confirm

the simulation results. Reconstruction of parietal pressure

FIG. 4. Condition number as a function of distance for wavenumber pairs

(7,7), (6,6), and (5,5).

FIG. 5. Exact (solid line) and recon-

structed (dotted line) signals without

regularization (a), regularized by LCV

(b), GCV (c), and BA (d) methods at

(0.2, 0.4) m for a SNR of 40 dB, zc

¼ 0:01 m, and Dz ¼ 0:1 m.
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field on a steel plate is proposed to validate the instantaneous

Bayesian regularization results. The steel plate has dimen-

sions of 0.32 m � 0.3 m. It is mounted on a rigid structure and

elastic straps are used to enable it to vibrate freely. The shaker

excitation point is placed at ð0:41; 0:18Þ m. Meanwhile a rigid

rod maintains the contact between the plate and the shaker.

The forced excitation signal is shown in Fig. 9.

An impulse signal at t¼ 0 ms is set as the trigger to acti-

vate the acquisition. The signals are recorded at a sampling

frequency of 25 800 Hz providing 512 samples. The antenna,

located 0.11 m from the plate, is composed of 49 microphones

regularly-spaced by 0.1 m, covering a total scan area of 0.7

� 0.7 m.2 The array’s frequency bandpass is about [490 Hz,

FIG. 7. (Color online) (a) Reconstructed signal at (0.2, 0.4, 0.01) m by

global and (b) batch deconvolution. (c) Values of the regularization parame-

ter in each block (averaged on wavenumbers) are shown in solid line and of

the global regularization parameter in dotted line.

FIG. 8. (Color online) (a) Reconstructed signal at (0.2, 0.4, 0.01) m com-

puted by batch deconvolution and (b) the corresponding instantaneous value

of the regularization parameter.

FIG. 6. Exact (solid line) and recon-

structed (dotted line) signals without

regularization (a), regularized by LCV

(b), GCV (c), and BA (d) methods at

(0.2, 0.4) m for a SNR of 40 dB, zc

¼ 0:01 m, and Dz ¼ 0:4 m.
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1770 Hz]. Since the array spans well the plate, no zero pad-

ding is operated on the space data. The entire set-up is shown

in Fig. 10.

The batch deconvolution is applied on a block of 64

samples with 50% overlap, providing 15 blocks. The recon-

struction results given by the four methods (NR, LCV, GCV,

BA) are compared with the measured sound field at

zc ¼ 0:01 m in Fig. 11, for a point close to the source excita-

tion (0.2 m, 0.2 m). Even if the results provided by the

Bayesian method under-estimate the maximum amplitude of

the reference signal, it allows the recovery of the shape of

the signal measured at 0.01 m whereas the other methods fail

to do so.

Spatial reconstructions of the acoustic pressure fields

provided by LCV, GCV, and BA regularizations are shown

in Fig. 12 at time instants t¼ 7.6, 10, 12.1, and 13.8 ms.

Similar to the simulation results, Bayesian regularization

provides more accurate results in terms of reconstructed lev-

els and localization of sound sources. In fact, the side lobes

present in the LCV and GCV results could lead the engineer

FIG. 9. Signal injected to the shaker.

FIG. 10. (Color online) Photography of the experimental set-up.

FIG. 11. (Color online) Pressure field

measured at (0.2 m, 0.2 m, 0.01 m)

(solid line) and reconstructed at 0.01 m

from measurements at 0.11 m (a) with-

out regularization (NR), by (b) LCV,

(c) GCV, and (d) BA methods (red dot-

ted line). The deviation between the

reconstructed signal and the reference

is shown in gray.
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to erroneous acoustical diagnosis. The Bayesian reconstruc-

tion smooths the localization lobes but does not introduce

spurious side lobes. Moreover, one can observe that the LCV

and GCV methods tend to localize sources at the microphone

positions (particularly at time instants t¼ 10 and 12.1 ms).

This behavior typically reveals under-regularization.

Figure 13 shows the reconstructed signal at (0.4, 0.2) m

computed by one global block and computed by batch

deconvolution. Similar to the numerical experiments, the

instantaneous values of the regularization parameter follows

the fluctuation of the energy of the source. However, here,

the differences between the two processes are not as signifi-

cant as in the numerical study. Only a better reconstruction

of the first samples at time instants near t¼ 9 ms is noticed

due to important gap between instantaneous regularization

and the global one.

It has been noticed that experimental results under-

perform the numerical cases. This remark points out some

limitations of RT-NAH. First, the test environment is not

perfectly anechoic and reflections or modal behavior of the

room may perturb the measurements. The direct model used

in RT-NAH is built from a free-field assumption and the pro-

posed approach of the regularization process is only efficient

to tackle Gaussian background noise and not bias errors.

Second, like NAH, RT-NAH decomposes the sound field

into a plane wave basis. The proposed experimental case

produces both plane waves and spherical waves to the array

due to the relatively small size of the plate compared to the

array. The decreasing amplitude of the spherical waves can-

not be described by the plane wave basis. This observation

could explain why the phase of the reconstructed sound field

seems relatively well-resolved while the reconstructed

amplitude under-estimates the reference.

VI. CONCLUSION

Bayesian regularization has been introduced in the case

of non-stationary source reconstruction using real-time near-

field acoustic holography. The working assumptions on the

noise and source probability density functions (complex

Gaussians) naturally lead to optimal solutions in the form of

a Tikhonov regularized solution, together with a criterion to

FIG. 12. (Color online) Spatial sound pressure field measured at 0.01 m (reference) and its reconstruction from measurements done at 0.11 m by the LCV,

GCV, and BA methods at time instants t¼ 7.6 ms, t¼ 10 ms, t¼ 12, 1 ms, and t¼ 13, 8 ms (successively from top to bottom) identified by the dotted red line

of the reference signal in the right column. The black rectangle represents the spatial limits of the steel-plate.

FIG. 13. (Color online) Exact (solid line) and reconstructed (red dotted line)

signals at (0.4, 0.2) m computed by (a) a global and (b) a batch deconvolu-

tion. (c) Regularization values averaged over the 49 pairs of wavenumbers

for the global (dotted line) and the batch deconvolution (solid line).
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identify the regularization parameter. The performance of the

latter has been compared to the LCV and the GCV methods.

For a large domain of observations and according to a numer-

ical study, Bayesian regularization is found to give more

accurate results particularly when the problem becomes ill-

posed. Moreover, it has been noted that updating the regulari-

zation parameter as a function of time is advantageous for

highly non-stationary signals; the amount of regularization

then directly follows the fluctuation of the SNR. Finally, in

complement to numerical results, an experimental validation

of the Bayesian regularization has been proposed. It reveals

that Bayesian regularization allows the best reconstruction of

the acoustic field generated by a steel plate in free field. From

an engineering perspective, both its ease of implementation

and its robustness with regard to noise disturbance in station-

ary and non-stationary conditions represent two strong advan-

tages to use the Bayesian regularisation.
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