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Near-field acoustic holography is a measuring process for locating and characterizing stationary

sound sources from measurements made by a microphone array in the near-field of the acoustic

source plane. A technique called real-time near-field acoustic holography (RT-NAH) has been

introduced to extend this method in the case of nonstationary sources. This technique is based on a

formulation which describes the propagation of time-dependent sound pressure signals on a forward

plane using a convolution product with an impulse response in the time-wavenumber domain. Thus

the backward propagation of the pressure field is obtained by deconvolution. Taking the evanescent

waves into account in RT-NAH improves the spatial resolution of the solution but makes the decon-

volution problem “ill-posed” and often yields inappropriate solutions. The purpose of this paper is

to focus on solving this deconvolution problem. Two deconvolution methods are compared: one

uses a singular value decomposition and a standard Tikhonov regularization and the other one is

based on optimum Wiener filtering. A simulation involving monopoles driven by nonstationary sig-

nals demonstrates, by means of objective indicators, the accuracy of the time-dependent recon-

structed sound field. The results highlight the advantage of using regularization and particularly in

the presence of measurement noise.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3586790]
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I. INTRODUCTION

Many industrial acoustic sources generate nonstationary

signals (engine run-ups, wind- screen wiper noise, impact

noise, etc.). Sometimes the frequency content of the acoustic

signals fluctuates in time. Though the necessity to precisely

locate and characterize the sources is often requested even

and particularly when the sources cannot be considered as sta-

tionary. Nearfield acoustic holography (NAH) is an imaging

technique very suitable for recovering the sound field of an

acoustic system when the signals emmited by the sources are

stationary.1 When the statistical components of the signals are

time-evolving, the standard method is unsuitable. However

some adjustments were made on standard NAH to take into

account nonstationary acoustic fields. The “time domain hol-

ography” method proposed by Hald aims at reconstructing the

time pressure signals directly on the source plane on a virtual

grid facing the microphone array used for the measure-

ments.2–4 The method requires several iterations of standard

NAH, one for each spectral line and is particularly suitable

for studying a short time event. La Rochefoucauld et al.5

implemented this method using discrete Fourier transforms

(DFT) and investigated both forward6 and backward propaga-

tion. The regularization parameter used to solve the inverse

problem was set by the L-curve7 approach for each spectral

line before returning to the time domain.5 To circumvent the

aliasing errors which appear when the sound pressure radiated

by an impacted plate is truncated by the use of discrete

Fourier transforms, Blais and Ross proposed an implementa-

tion based on numerical Laplace transforms (using DFT).8,9 A

similar use of the Laplace transform had been suggested by

Wu et al. and associated with a propagator described with

spherical harmonics.10 The authors assumed the presence of

spherical sources to reconstruct transient acoustic fields by

means of Helmholtz equation least squares method. Another

method dedicated to fluctuating sources provides a time-

dependent map of the spatial pressure field for a chosen

frequency.11 This moving average method can be seen as sev-

eral iterations of standard NAH, one for each time sample.

The method is based on the use of the short time Fourier

transform and so, has the advantage to provide a time-

continuous field reconstruction.

The disadvantage comes also from this time-processing

tool for which the spread of the window is not relevant for

each frequency component and has to be set up at the begin-

ning of the analysis. A recent method provides the advan-

tages of both previous methods.12,13 Real-time nearfield

acoustic holography (RT-NAH) indeed allows one to contin-

uously reconstruct the pressure field on the source plane and

provides also time-dependent pressure signals on this plane.

One specificity of the method is that it does not work in the

frequency domain. It is based on inverting, in the time-wave-

number domain, a direct formulation,14 proposed by Forbes

et al. and revisited in Ref.15 which gives the time-dependent

wavenumber spectrum in a forward plane from the time-de-

pendent wavenumber spectrum acquired in a measurement

plane in the near-field of the sources.
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The aim of the paper is to show how the inverse pro-

cess of the real-time nearfield acoustic holography method

can be enhanced using a singular value decomposition

coupled with regularization techniques which are proved to

be effective in standard NAH.16 Section II summarizes the

theoretical background of RT-NAH. Section III describes

the problem to solve in NAH in the case of nonstationary

sources, which leads to invert an impulse response. Two

methods are proposed for this purpose. The first one uses

a singular value decomposition and a Tikhonov regulariza-

tion16 whose parameter is found by general crossed valida-

tion.7 The second approach for inverting the response is

that studied in Ref.12 based on inverse Wiener filtering

of an impulse response preprocessed according to Ref. 15.

Both methods are applied to a simulation case involving

three monopoles driven by nonstationary signals. The pre-

sentation of the results obtained is reported in Sec. IV.

The two methods are compared using objective indicator

values computed from reconstructed time signals. The

influence of a measurement noise is also studied. The dis-

cussion concludes on the advantage of the use of regulari-

zation to enhance the reconstruction sound field in the

simulation test presented.

II. REAL-TIME NEARFIELD ACOUSTIC HOLOGRAPHY

A. Forward propagation

The direct problem15,17 of real-time near-field acoustic

holography consists in describing the propagation of the

time-dependent sound pressure field measured on a plane

z¼ zm to a forward calculation plane z¼ zc as shown in Fig. 1

(zm< zc). This can be done by using a convolution product

between the measured time-dependent wavenumber spec-

trum P(kx, ky, zm, t) and an impulse response h(kx, ky, Dz, t)
where Dz¼ zc � zm is the propagation distance. Thus the

propagated time-dependent wavenumber spectrum P(kx, ky,

zc, t) is obtained by

P kx; ky; zc; t
� �

¼ P kx; ky; zm; t
� �

� h kx; ky;Dz; t
� �

; (1)

where kx and ky are the wavenumbers along x axis and y axis.

The time-dependent wavenumber spectrum P(kx, ky, z, t) is

calculated by applying a two dimensional Fourier transform

along x axis and y axis to the sound pressure field p(x, y,
z, t),

P kx; ky; z; t
� �

¼
ðþ1
�1

ðþ1
�1

p x; y; z; tð Þej kxxþkyyð Þdxdy: (2)

The impulse response h(kx, ky, Dz, t) introduced in Eq. (1) is

obtained by solving the two dimensional Fourier transform

of the wave equation

@2P kx; ky; z; t
� �
@z2

� 1

c2

@2P kx; ky; z; t
� �
@t2

� k2
x þ k2

y

� �
� P kx; ky; z; t

� �
¼ 0; (3)

where c ms�1½ � is the sound speed. With the following

substitutions

s¼Dz/c for the propagation delay,

Xr ¼ ckr ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
for the transition angular fre-

quency, the expression of the impulse response yields

h Xr; s; tð Þ ¼ d t� sð Þ � sXr

J1 Xr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p C t� sð Þ;

(4)

with J1 as the Bessel function of the first kind and order 1,

d(t) as the Dirac delta function and U(t) as the Heaviside

function. An example of this impulse response is presented

in Fig. 2. Using the expression of the impulse response in

Eq. (1), it is then possible to obtain the time-dependent

wavenumber spectrum on the forward calculation plane

P (kx, ky, zc, t). The instantaneous spatial pressure in the for-

ward plane p(x, y, zc, t) is finally determined by applying the

FIG. 1. Geometry of interest. For-

ward and backward propagation in

real-time near-field acoustic holog-

raphy. The distances between the

measurement plane and the calcula-

tion plane in both configurations are

the same.

FIG. 2. Impulse response h Xr ; s; tð Þ.
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inverse two dimensional Fourier transform to P (kx, ky, zc, t),
which gives a time-evolving description of the sound pres-

sure field on the forward calculation plane.

B. Backward propagation

The goal of real-time near-field acoustic holography is to

characterize a source plane composed of nonstationary sound

sources. It is thus necessary to obtain the time-dependent pres-

sure field on the source plane from measurements made by a

microphone array in the near-field of the source plane.

According to Fig. 1, when the calculation plane z¼ zc is back-

ward (zm> zc), the time-dependent wavenumber spectrum

P(kx, ky, zm, t) from the measurement plane z¼ zm is given by

P kx; ky; zm; t
� �

¼ P kx; ky; zc; t
� �

� h kx; ky; zm � zc; t
� �

: (5)

As the propagation distance zm � zc in the backward configu-

ration (zm> zc) is the same as that denoted Dz in the forward

configuration (zm< zc) in Eq. (1), Eq. (5) can be rewritten as

P kx; ky; zm; t
� �

¼ P kx; ky; zc; t
� �

� h kx; ky;Dz; t
� �

: (6)

Thus the back-propagated sound pressure field in z¼ zc radi-

ated by nonstationary sources is described by the deconvolu-

tion problem of Eq. (6), which can be written as

P kx; ky; zc; t
� �

¼ P kx; ky; zm; t
� �

� h�1 kx; ky;Dz; t
� �

: (7)

In the case of near-field acoustic holography which describes

the radiation of stationary sound sources for a particular

angular frequency x¼ 2pf, the formulation of forward prop-

agation (zm> zc) is given by

P kx; ky; zm;x
� �

¼ P kx; ky; zc;x
� �

H Xr; s;xð Þ; (8)

where the propagator H Xr; s;xð Þ is defined as

H Xr; s;xð Þ ¼
e�js

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � X2

r

q
for x � Xr

e�s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

r � x2

q
for x < Xr

8<
: : (9)

From Eq. (9), the theoretical frequency response of the

inverse impulse response is

H�1 Xr; s;xð Þ ¼ 1

H Xr; s;xð Þ

¼
ejs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � X2

r

q
for x � Xr

es
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

r � x2

q
for x < Xr

8><
>: : (10)

As shown in Fig. 3, where Xr=2p is, for example, set to 0.4

fmax [fmax¼min(fs/2, c/2a) with fs as the sampling frequency

and a, as the step size between two microphones], the back-

propagation acts differently depending on the frequency of

the components:

(1) The components with a frequency f � Xr=2p corre-

spond to the propagating waves. The backpropagation of the

propagating waves leads to a change of phase but their

amplitudes remain unchanged.

(2) The components with a frequency f < Xr=2p corre-

spond to the evanescent waves. The backpropagation of the

evanescent waves leads to an amplification of their ampli-

tudes but their phases remain unchanged. In the presence of

measurement noise this amplification may induce erroneous

values during backpropagation. The problem is said “ill-pos-

ed” and requires specific processing in order to obtain satis-

factory solutions. It is important to note that this separation

between propagating and evanescent waves is impossible in

the case of real-time near-field acoustic holography as the

advantage of this method is to remain in the time-wavenum-

ber domain during all the process.

III. SOLVING THE BACKWARD PROPAGATION

Several methods1,18,19 based on selective filtering in the

wavenumber spectrum have been introduced to solve the

inverse problem of near-field acoustic holography, however

those methods are not suitable in the case of real-time near-

field acoustic holography mainly due to the fact that the sep-

aration between the propagating and evanescent waves is not

possible in the time-wavenumber domain.

A. The impulse response

Sampling the impulse response h Xr; s; tð Þ of Eq. (4) is a

delicate point of real-time near-field acoustic holography.

Indeed, directly sampling the impulse response, which is des-

ignated by direct method, may lead to distortion even if the

sampling rate is relatively high. This is due to the fact that the

impulse response is defined by an analytical formulation and

thus has an infinite frequency band. Oversampling the impulse

response may reduce these distortions but the impulse

response obtained is not satisfactory. Three processing meth-

ods suggested by Grulier et al.15 are applied to the theoretical

impulse response in order to improve its frequency response:

Average method. This method consists in average sam-

pling the impulse response instead of directly sampling it.

The values of h Xr; s; tð Þ at the time t¼ nDt are replaced by

the mean value h Xr; s; nDtð Þ computed on the interval Dt
centered at t¼ nDt

FIG. 3. Modulus and phase of the theoretical Fourier transform of the

inverse impulse response H�1 Xr; s; fð Þ with fmax ¼ fs=2, where fs is the sam-

pling frequency.
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h Xr; s; nDtð Þ ¼ 1

Dt

ðnDtþDt
2

nDt�Dt
2

h Xr; s; tð Þdt: (11)

Chebyshev filtering. A low-pass Chebyshev filter with

a cutoff frequency fc¼ 6400 Hz is applied to the impulse

response. It is achieved by upsampling the impulse response

by a factor D¼ 8, using the low-pass filter and then down-

sampling the resulting response by the factor 1/D.
Numerical Kaiser filtering. A low-pass Kaiser-Bessel

filter with a cutoff frequency fc¼ 6640 Hz is applied to the

impulse response. An upsampling factor of D¼ 2 is used and

the integral for the convolution is numerically computed

using the trapezoidal method.

B. Regularization method

The first deconvolution method used is based on the

standard Tikhonov regularization20 which consists in adding

a constraint on the solution, in this case the minimization of

the solution’s energy. The choice of the regularization

method is done as it does not require any assumption on the

processed signal. The starting point of this deconvolution

method is to rewrite, for each point kxi
; kyj

� �
of the wave-

number domain, the direct problem

P kxi
; kyj

; zm; t
� �

¼ P kxi
; kyj

; zc; t
� �

� h kxi
; kyj

;Dz; t
� �

; (12)

into a matrix product of a linear system

Pzm
¼ HDzPzc

; (13)

where HDz, Pzm
are known and Pzc

is to be calculated. Pzm
and

Pzc
are time-dependent column vectors composed of the wave-

number spectrum values at the positions z¼ zm and z¼ zc for

the couple kxi
; kyj

� �
: HDz is a Toeplitz matrix depending on

the propagation distance Dz whose components hi,j(n) are the

values of the impulse response h(kx, ky, Dz, t) for kx ¼ kxi
and

ky ¼ kyi
at time t¼ nDt. According to Eq. (4), the impulse

response h(kx, ky, Dz, t) is equal to zero for t< s. s¼Dz/c cor-

responds to the time needed for the waves to propagate from

the plane z¼ zc to the measurement plane z¼ zm. By consider-

ing ns the smallest sample for which s� ns�Te, where Te is

the sampling period, Eq. (13) can be formulated as

Pij nsð Þ

..

.

..

.

..

.

Pij N � 1ð Þ

2
666666664

3
777777775

zm

¼

hij nsð Þ 0 � � � � � � 0

..

. . .
. . .

. ..
.

..

. . .
. . .

. ..
.

..

. . .
.

0

hij N � 1ð Þ � � � � � � � � � hij nsð Þ

2
666666664

3
777777775

Dz

�

Pij 0ð Þ

..

.

..

.

..

.

Pij N � 1� nsð Þ

2
666666664

3
777777775

zc

: (14)

Vectors Pzm
and Pzc

have (N � ns) components. HDz is a

N � nsð Þ � N � nsð Þ square matrix. N is the number of time

samples considered for the discrete impulse response. The stand-

ard Tikhonov regularized solution Pk
zc

of Eq. (13) is given by

Pk
zc
¼ arg min

Pzc

HDzPzc
� Pzm

k k2
2þk Pzc
k k2

2

n o
; (15)

where Pzc
k2

2

�� is the L2 norm of Pzc
and k is the regulariza-

tion parameter which will influence the weight of the

regularization.

After constituting the vector Pzm
with the time-depend-

ent wavenumber spectrum of the hologram P(kx, ky, zm, t),
the standard Tikhonov regularization is applied for each pair

kxi
; kyj

� �
using the singular value decomposition (SVD) of

matrix HDz

HDz ¼ USVH; (16)

where S is the diagonal matrix of the singular values si,

i¼ 1…L, (L¼N� ns) of HDz, S and V are the singular

orthonormal matrices associated. VH is the transconjugate of

matrix V. The inverse of HDz is

H�1
Dz ¼ USVH

� ��1¼ VS�1UH; (17)

H�1
Dz ¼ V diag

1

s1

; � � � ; 1

sL

� 	
UH: (18)

The nonregularized solution of Eq. (13) can be written as

Pzc
¼
XL

i¼1

uH
i Pzm

si
vi: (19)

The regularization acts as a filter on the singular values si of

HDz, yielding the regularized solution

Pk
zc
¼
XL

i¼1

fi
uH

i Pzm

si
vi; (20)

where fi are the coefficients of the regularization filter. In the

case of standard Tikhonov regularization, the filter coeffi-

cients fi are

fi ¼
s2

i

s2
i þ k

: (21)

The generalized crossed validation7 is used to determine the

optimal regularization parameter k. This method consists in

minimizing the function G defined by

G ¼
HDzPk

zc
� Pzm

��� ���2

2

trace I�HDzH�1
Dz;k

� �h i2
; (22)

where I is the identity matrix and H�1
Dz;k is the regularized

inverse of HDz such as
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Pk
zc
¼ H�1

Dz;kPzm
: (23)

Once the regularization parameters are obtained for each

(kxi
, kyj

), the standard Tikhonov regularization [Eq. (20)] is

applied yielding the back-propagated time-dependent wave-

number spectrum. Finally, using the inverse two dimensional

Fourier transform gives the back propagated time-dependent

sound pressure field on the source plane allowing one to

characterize and localize the sound sources.

C. Inverse filtering method

The second deconvolution method is based on optimum

Wiener filtering.21 The approach is also detailed in Ref. 12.

The searched discrete inverse impulse response h�1(kx, ky,

Dz,n) has to fulfill the equation

h�1 kx; ky;Dz; n
� �

� h kx; ky;Dz; n
� �

¼ d n� Nð Þ: (24)

The delay in the right part ensures the causality of the

inverse impulse response h�1(kx, ky, Dz, n). It is linked to the

number of samples N used for h�1(kx, ky, Dz, n). The solution

h�1(kx, ky, Dz,n) is given by minimizing the mean square

error criterion defined as

J kx; ky;Dz
� �

¼
Xþ1

n¼�1
d n� Nð Þ � h kx; ky;Dz; n

� �

� h�1 kx; ky;Dz; n

� ��2
: (25)

Assuming that the solution is the impulse response of a finite

impulse response filter of N samples, Eq. (25) yields

J kx; ky;Dz
� �

¼
Xþ1

n¼�1
d n� Nð Þ �

XN�1

m¼0

h�1 kx; ky;Dz;m
� �"

� h kx; ky;Dz; n� m
� ��2

: (26)

The solution is given in a matrix formalism by

hinv ¼ U�1
h hr; (27)

where hinv is the vector of the solutions, Uh the correlation

matrix of the direct filter and hr the reverse vector of the

direct filter [h(n)¼h
r(N-1-n), n¼ 0, N - 1]. The components

of vector hinv build the inverse impulse response h-1(kx, ky,

Dz,n). The inverse filter is causal but yields a delay for the

response which depends on the number of samples of the

impulse direct response.

IV. NUMERICAL SIMULATIONS

A. Setup

The setup of the numerical simulations is shown in Fig. 1.

The source plane is composed of three monopoles chosen for

their nonstationary properties. M1 (0.3, 0.4, and 0 m), M2

(0.7, 0.7, and 0 m) generate a signal with a linear frequency

modulation, and M3 (0.3, 0.7, and 0 m) radiates a Morlet

wavelet defined by

s tð Þ ¼ cos 2pf0tð Þe�t2=2; (28)

with f0¼ 800 Hz. The simulation of the acquisition is done

using a 11� 11 microphone array with a step size in both x
and y directions a¼ 0.1 m providing an overall scan area of

1.0� 1.0 m2. Signals are simulated on 256 time samples

with a sampling frequency fs¼ 16 000 Hz. The pressure radi-

ated by the monopoles and recorded by the array at a dis-

tance R is p(t)¼ s(t � R/c)/R. Integrating the quadratic

pressure during the time duration T¼ 16 ms yields the

energy E defined as

E ¼ 4p
qc

ðT

0

s2 tð Þdt; (29)

where q is the air density. The energies driven by monopoles

M1, M2, and M3 are respectively, about 0.021, 0.023, and

0.012 J. The first step is to simulate the acquisition of the time-

dependent sound pressure field on the calculation plane p(x, y,
zc, t) with zc¼ 0.05 m, which is considered as the reference,

and on the measurement plane p(x, y, zm, t) with zm¼ 0.1575

m. The time-dependent sound pressure field on the measure-

ment plane is then back-propagated using the processed

impulse response and the two inversion methods presented

earlier in the paper. For the method based on optimum Wiener

filtering, the time-dependent reconstructed signals are time-

compensated for the comparisons. Figure 4 highlights the

time-dependent back-propagated signals in locations R2, R3,

and R4, for both inversion methods when the impulse response

is processed using Chebyshev filtering. The waveforms

obtained indicate that the reconstructed pressure signals are

close to the reference signals for the studied locations.

B. Indicators for comparison

In order to compare the relevance of the different proc-

essing methods applied to the impulse response to provide

the reconstructed pressure time signals, two time indicators

T1 and T2 are calculated for a point (xi, yj) of the source plane

facing the area scanned by the microphone array. They are

defined by

T1 xi; yj

� �
¼

< pref xi; yj; zc; t
� �

p xi; yj; zc; t
� �

>ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< p2

ref xi; yj; zc; t
� �

>< p2 xi; yj; zc; t
� �

>
q ; (30)

T2 xi; yj

� �
¼

prms
ref xi; yj; zc

� �
� prms xi; yj; zc

� � 
prms

ref xi; yj; zc

� � ; (31)

where prms
ref xi; yj; zc

� �
and prms xi; yj; zc

� �
are the root mean

square pressure values given by

prms
ref xi; yj; zc

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< p2

ref xi; yj; zc; t
� �

>
q

; (32)

prms xi; yj; zc

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< p2 xi; yj; zc; t

� �
>

q
: (33)

hi is the time averaged value. pref xi; yj; zc; t
� �

is the reference

time-dependent pressure signal and p(xi, yj, zc, t) the back-
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propagated time-dependent pressure signal. T1 is a correla-

tion coefficient which is sensitive to the similarity between

the shapes of the signals and thus between their phase differ-

ence. The best value for T1 would be 1. T2, defined as the rel-

ative difference between the root mean square values of the

two signals, is also sensitive to the magnitude differences

between the reconstructed signals and the references. The

target value to reach for T2 is 0.

C. Results

1. Time-space comparisons

The values of indicators T1 and T2 computed at the

four positions R1, R2, R3, and R4, in the case of both

inverse methods (Wiener filtering and singular value

decomposition coupled with regularization), are shown in

Tables I and II. Even if the waveforms shown in Fig. 4

FIG. 4. (Color online) Reconstructed time signals obtained by inverse filtering using singular value decomposition coupled with regularization (a)–(c), or Wie-

ner approach (d)–(f), vs reference signals (dotted line) on locations R2 [(a), (d)], R3 [(b), (e)], and R4 [(c), (f)] (see Fig. 1). The impulse response was processed

using Chebyshev low-pass filtering.

TABLE I. Indicator T1 [see Eq. (30)] computed from reference signals and

pressure signals back-propagated to the plane z¼ zc in locations R1, R2, R3,

and R4 (see Fig. 1) using the inverse impulse responses obtained by Wiener

filtering or regularization from preprocessed impulse responses by the direct

method with fe¼ 16 000 Hz, the average method, Chebyshev and Kaiser

filtering.

R1

Direct Average Chebyshev Kaiser

Wiener 0.740 0.733 0.796 0.778

Regularization 0.974 0.994 0.994 0.882

R2

Direct Average Chebyshev Kaiser

Wiener 0.752 0.664 0.831 0.818

Regularization 0.975 0.995 0.995 0.882

R3

Direct Average Chebyshev Kaiser

Wiener 0.798 0.844 0.773 0.835

Regularization 0.927 0.993 0.993 0.925

R4

Direct Average Chebyshev Kaiser

Wiener 0.945 0.653 0.983 0.978

Regularization 0.981 0.995 0.995 0.918

TABLE II. Indicator T2 [see Eq. (31)] computed from reference signals and

pressure signals back-propagated to the plane z¼ zc in locations R1, R2, R3,

and R4 (see Fig. 1) using the inverse impulse responses obtained by Wiener

filtering or regularization from pre-processed impulse responses by the

direct method with fe¼ 16 000 Hz, the average method, Chebyshev and Kai-

ser filtering.

R1

Direct Average Chebyshev Kaiser

Wiener 0.067 0.251 0.018 0.102

Regularization 0.341 0.019 0.019 0.033

R2

Direct Average Chebyshev Kaiser

Wiener 0.092 0.255 0.033 0.092

Regularization 0.332 0.020 0.020 0.013

R3

Direct Average Chebyshev Kaiser

Wiener 0.145 0.361 0.183 0.003

Regularization 0.452 0.040 0.040 0.023

R4

Direct Average Chebyshev Kaiser

Wiener 0.015 0.165 0.062 0.078

Regularization 0.282 0.024 0.023 0.025
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FIG. 5. (Color online) Spatial maps

for indicator T1 in the case of regula-

rization (a) and inverse filtering (b)

with a contour line at the value 0.95.

The locations of R1(þ), R2(þ),

R3(þ), and R4(*) are marked.

FIG. 6. Spatial maps for indicator T2

in the case of regularization (a) and

inverse filtering (b). The areas in gray

correspond to values of T2 below

0.05. The locations of R1(þ), R2(þ),

R3(þ), and R4(*) are marked.

FIG. 7. (Color online) Time-dependent

spatial errors Ex,y [see Eq. (34)] and

Er
x;y [see Eq. (35)] in the case of reg-

ularization (a), (c), and inverse filter-

ing (b), (d) for three processing

methods applied to the impulse

response (direct sampling, Kaiser

and Chebyshev filtering).
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seem satisfactory, the objective indicators T1 and T2 are

not so good when Wiener filtering is done. In this case and

for the locations facing the monopole sources, T1 shows

that processing the impulse response with Chebyshev or

Kaiser filtering improves the results. However the direct

method gives accurate results in terms of amplitudes (see

Table II).

Concerning the inversion methods, it can be noticed

according to indicators T1 and T2 that the regularization

method provides more accurate reconstructed pressure sig-

nals than Wiener filtering at the four proposed locations. In

order to extend this conclusion to the whole spatial domain it

is possible to compute the values of indicators T1 and T2 for

each location facing the microphone positions. The maps of

FIG. 8. (Color online) Comparison of the modulus in Pa of spatial sound pressure fields at time t¼ 6.2 ms: The back-propagated spatial sound pressure fields

using regularization with (b) or without measurement noise (a), Wiener inverse filtering with (d) or without measurement noise (c), the reference field (e).

Inversion is achieved from an impulse response preprocessed by Chebyshev low-pass filtering. In the case of measurement noise, the signal-to-noise ratio

(SNR) is 3 dB.
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indicator T1 with the 0.95 contour line for both inversion

methods in the case of Chebyshev filtering of the impulse

response are shown in Fig. 5. The maps of indicator T2 for

both inversion methods in the case of Chebyshev filtering of

the impulse response are shown in Fig. 6. The area in gray

delimits the spatial locations where indicator T2 is below 0.05.

It is obvious that the use of the regularization inversion

method notably improves the reconstructed time-dependent

sound pressure field obtained on the whole spatial domain.

The examination of the maps, obtained by the four methods

tested (only the maps from Chebyshev processing are shown

here in Figs. 5 and 6), demonstrated that Chebyshev filtering

and the average method, associated with regularization, pro-

vide the most accurate results. Thus it confirms the tendencies

highlighted by Tables I and II. In the case of Wiener filtering,

it seems that the Direct method provides the best results

except when the signals are reconstructed in front of the

monopole sources. This result was also mentioned in Ref. 12.

2. Spatial comparisons

Indicators T1 and T2 describe the quality of the recon-

structed temporal signals at a given position. The values of

those indicators shown in Figs. 5 and 6 are not constant on

the whole spatial domain. In order to evaluate the quality of

the reconstruction of the spatial pressure field and thus the

relevance of the source localization, two spatial error criteria

are introduced, one defined by

Ex;y tið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<
h
pref x; y; zc; tið Þ � p x; y; zc; tið Þ

i2

>

r
; (34)

which corresponds to the total error between the reference

pressure field and the back propagated pressure field at a

given time ti:hi is the spatial averaged value. The other crite-

rion is the relative error

Er
x;y tið Þ ¼

Ex;y tið Þ
< p2

ref x; y; zc; tið Þ >

 �1

2

; (35)

which is suitable to quantify the quality of the reconstruction

while the total error is more relevant for comparing the

inverting methods. The values of both spatial error criteria,

shown in Fig. 7, confirm the advantage of inverting the

impulse response using SVD coupled with regularization

and that preprocessing the impulse response does not seem

useful when using Wiener filtering. High values of the rela-

tive spatial error are obtained at the edges of the signal due

to the fact that the reference pressure field supplies the de-

nominator of Eq. (35) with very low values at these time

intervals. The use of the regularization method with appro-

priate processing of the impulse response (Chebyshev low-

pass filtering here) highly improves the reconstruction of the

spatial sound pressure field. This can be also illustrated in

Fig. 8 by considering the reconstructed spatial sound pres-

sure field at a given time t¼ 6.2 ms using regularization (a)

and inverse filtering (c) associated with Chebyshev filtering

versus the reference (e) on the calculation plane.

3. Noise influence

Measurement noise is a key factor in the case of ill-

posed problem. Indeed a small variation on the input signal

FIG. 9. (Color online) Comparison between reference signals (dotted line) and back-propagated signals using regularization method (a)–(c), and inverse Wie-

ner filtering method (d)–(f), associated with Chebyshev low-pass filtering on locations R2, R3, and R4 with a signal to measurement noise ratio SNR¼ 3 dB.
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may lead to an important variation on the output signal and

thus yields highly unstable solutions. In the presence of mea-

surement noise, the reconstructed signals at R2, R3, and R4

locations on the calculation plane for the regularization

method and the inverse filtering method versus reference are

shown in Fig. 9. It is noticeable that both inversion methods

yields rather stable back-propagated signals. However, the

inverse filtering method appears to be more sensitive to the

measurement noise as shown by the indicators T1 and T2

reported in Table III. This is also true in Fig. 8 where the

spatial pressure field is reconstructed in the presence of mea-

surement noise for both inverse methods based on regulari-

zation (b) and on Wiener filtering (d). This can be explained

by the fact that the determination of the inverse impulse

response with the inverse filtering method is only based on

the values of the impulse response h. On the other hand the

regularization method and particularly the Generalized

Crossed Validation approach takes into account the meas-

ured signal with the added measurement noise to calculate

the optimal regularization parameter k. This method thus

acts differently depending on the quality of the measured

signals. The values of the spatial errors Ex,y and Er
x;y are

shown in Fig. 10. The conclusion given at locations R2, R3,

and R4 can be extended to the whole spatial domain of the

antenna. The regularization method highly decreases the

influence of the measurement noise especially when the

sound sources are active.

V. CONCLUSION

At least two methods are suitable for effectively imple-

menting real-time near-field acoustic holography and partic-

ularly for solving the inverse problem, that is, reconstructing

the time-dependent sound field on the source plane from

measurements acquired using a microphone array in the

near-field. The aim of both methods is to invert an impulse

response. A simulation involving monopoles driven by non-

stationary signals showed that the first method based on

Wiener filtering can directly work on the discretized impulse

response which needs no pre-processing except for specific

location facing the monopole sources for which upsampling

and Chebyshev low-pass filtering improved the reconstruc-

tion. The second method performs the inversion of the direct

impulse response by using singular value decomposition

coupled with regularization. The study shows that regulari-

zation enhances the results according to objective indicators

by improving the shapes and the amplitudes of the

TABLE III. Indicators T1 and T2 [see Eqs. (30) and (31)] computed from

reference signals and pressure signals back-propagated to the plane z¼ zc in

locations R1, R2, R3, and R4 (see Fig. 1) using the inverse impulse responses

obtained by Wiener filtering or regularization in the case of measurement

noise with a signal to noise ratio SNR¼ 3 dB.

T1

R1 R2 R3 R4

Wiener 0.779 0.791 0.686 0.607

Regularization 0.990 0.991 0.984 0.954

T2

R1 R2 R3 R4

Wiener 0.038 0.096 0.080 0.815

Regularization 0.033 0.014 0.031 0.101

FIG. 10. (Color online) Noise influ-

ence on the spatial errors Ex,y and

Er
x;y in the case of regularization (a),

(c) and inverse filtering (b), (d)

when Chebyshev filtering is applied

to the impulse response. The vertical

line indicates the time chosen

(t¼ 6.2 ms) for the spatial field rep-

resentation in Fig. 8.

3786 J. Acoust. Soc. Am., Vol. 129, No. 6, June 2011 Paillasseur et al.: Regularization in real-time holography

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



reconstructed time-dependent acoustic signals on the back-

ward plane. In addition, the second method with regulariza-

tion appears to be less sensitive to measurement noise than

Wiener filtering. Thus, the inverting process based on singu-

lar value decomposition coupled with regularization is more

advantageous than Wiener filtering for accurately recon-

structing nonstationary acoustic fields, especially in the pres-

ence of noise.

These inverse processing methods make RT-NAH very

promising to monitor and diagnose the behavior of time-

evolving acoustic systems. Indeed RT-NAH has the ability

to continuously provide accurate time-dependent pressure

signal on the source plane as if the microphones were em-

bedded into the sources.
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