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On the statistical errors in the estimate of acoustical energy
density by using two microphones in a one dimensional
field
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It was recently shown that the statistical errors of the measurement in the acoustic energy density by
the two microphone method in waveguide have little variation when the losses of coherence
between microphones increase. To explain these intervals of uncertainty, the variance of the
measurement is expressed in this paper as a function of the various energy quantities of the acoustic
fields—energy densities and sound intensities. The necessary conditions to reach the lower bound
are clarified. The results obtained are illustrated by an example of a one-dimensional partially
coherent field, which allows one to specify the relationship between the coherence functions of the
pressure and particle velocity and those of the two microphone signals.
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I. INTRODUCTION

From the analysis of the statistical error of the acoustic
energy density measured by two microphones, Ghan et al.1

showed that the normalized standard deviation for a Gauss-
ian broadband signal varies weekly in function of the kind of
sound field, within an upper bound 1 /�BT and a lower
bound 1 /�2BT �where B is the bandwidth of the analysis and
T is the time length of acquisition�. The upper bound is that
of the normalized standard deviation of a potential energy
density �or quadratic pressure� measured by a single micro-
phone. The fact that in certain cases the standard deviation of
the energy density �sum of potential and kinetic energy den-
sities� can even be �2 times weaker than the upper bound is
surprising at a first look. Indeed, studies of the statistical
errors of the acoustic intensity2–7 using a probe consisting of
two microphones have shown that the normalized standard
deviation always has 1 /�BT for lower bound and can take
much more significant values being dependent on the phase
and the loss of coherence between the two microphone sig-
nals. To understand the significance of this result, in this
paper, the statistical error of the energy density is analyzed
for the case of two partially coherent waves in opposite di-
rections. It is often thought that the use of a discretization
scheme by a finite difference approximation is the cause of
the increase of statistical errors. It is shown in this paper that
the use of the finite difference approximation has a little
influence on the statistical errors of the energy density which
can entirely be expressed as a function of the quadratic quan-
tities �intensities and energy densities� of acoustic fields.
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II. EXPRESSION FOR THE STATISTICAL ERRORS OF
THE ENERGY DENSITIES

Given a one-dimensional sound field with only the
x-component of the particle velocity ux, the potential V, ki-
netic T, and total E energy densities are written by

V =
1

2�0c2Gpp���, T =
�0

2
Guxux

���, E = V + T , �1�

where �0 is the mass density of the fluid and c is the speed of
sound. Gpp��� and Guxux

��� are, respectively, the autospec-
tral power densities of pressure and x-particle velocity. The
pressure measured by two microphones with spacing of �
���� /3� allows one to give the finite-difference approxima-
tion expressions8 for the particle velocity ux��p2

− p1� / �−j�0ck�� and the pressure estimation p��p2+ p1� /2,
with the wavenumber k=� /c. Using these expressions, the
approximation of the energy densities can then be expressed
in the following form:

Da��� = ��G11��� + G22���� + ��2C21���� . �2�

The subscript a indicates an approximate quantity. Da corre-
sponds to Va, Ta, or Ea according to the values of the coef-
ficients � and � in Table I. The one-sided autospectral
G11���, G22��� and cross-spectral G12��� densities are given
by

Gij��� = lim
TW→�

2

TW
E�pj��,TW�p

i
*��,TW�� �i, j = 1,2� ,

�3�

2C21��� is the shortened notation for Re�G21����
+ j Im�G21����. In Eq. �3�, p1�� ,TW� and p2�� ,TW�

are the finite Fourier transforms of length TW.
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E�p1�� ,TW�p
2
*�� ,TW�� denotes the expected value of

p1�� ,TW�p
2
*�� ,TW�.

By evaluating the cross-spectral power densities,

Ĝ21��� = �2/n�	
i=1

n

�p1��,TW�p2
*��,TW��/TW, �4�

with a time window of length TW and an average of n
records, the statistical errors in the estimator appear if the
pressures are represented by random signals. For bivariate
random processes, the variance of the energy densities can be
written in terms of the covariance of power densities by

var�D̂a�	1,	2, . . . �� � 	
i,j

�D̂a

�	i

�D̂a

�	 j
cov�	i,	 j�

with 	i,	 j � �Ĝ11���,Ĝ22���,Ĉ21���� . �5�

Analytical expressions of covariances were given by Jenkins
and Watts9 for Gaussian processes as a function of the factor
BT �B is the width of an elementary filter corresponding to a
frequency bin of the fast Fourier transform FFT analysis,
which leads to BTW=1, T=nTW, and BT=n�

cov�Ĝii,Ĝjj� = 
Gij
2/n ,

cov�Ĝii,Ĉij� = GiiCij/n with i, j = �1,2� , �6�

and

cov�Ĝii,Ĝii� = var�Ĝii� = Gii
2/n , �7�

cov�Ĉ21,Ĉ21� = var�Ĉ21� = �G11G22 + C21
2 − Q21

2 �/�2n� .

�8�

When considering the coherence function 
21
2 ��� between

the two microphone signals and by using the relation C21
2

+Q21
2 = 
G21
2=
21

2 G11G22, the expression for the variance of
the energy densities is written in the following form:

var�D̂a���� �
1

n
�Da

2��� − 2��2 − �2��G11���G22���

− 
G21���
2��

�
1

n
�Da

2��� − 2��2 − �2�G11���

�G22����1 − 
21
2 ����� . �9�

To simplify the notations, we will consider, in the rest of this

paper, the variance var�D̂a���� rather than the normalized
ˆ ˆ

TABLE I. Coefficients � and � used in the expressions of the energy den-
sities by the finite-difference approximations �Eqs. �2� and �9��.

Energy quantity � �

potential energy Va 1 / �8�0c2� 1 / �8�0c2�
kinetic energy Ta 1 / �2�0c2k2�2� −1 / �2�0c2k2�2�
total energy Ea 1 / �8�0c2�+1 / �2�0c2k2�2� 1 / �8�0c2�−1 / �2�0c2k2�2�
standard deviation ��Da���� by knowing that ��Da����
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= �var�D̂a�����1/2 / D̂a���. By considering the potential and
kinetic energy densities for which �2=�2 �Table I�, the fol-
lowing equation can be obtained as

var�V̂a���� �
Va

2���
n

and var�T̂a���� �
Ta

2���
n

. �10�

The variance of the statistical errors for a probe with two
microphones is the same as that obtained from Eq. �1� for a

single pressure sensor V̂���= Ĝpp��� / �2�0c2� and for a single

particle velocity sensor T̂���=�0Ĝuu��� /2, because the vari-
ance of an autospectrum9 is always equal to Gii

2��� /n. This
result had already been obtained by Elko.5 The loss of coher-
ence between the two microphones has no influence, whether
it is caused by the nature of the sound fields or by the inde-
pendent electronic noise of each channel. However, it is not
the same for the total energy density since

�2 − �2 = 1/�2�0c2k��2, �11�

and the second term on the right-hand side of Eq. �9� de-
pending on the coherence function is not equal to zero. This
term is always positive and will always result in subtraction
from Ea

2. Since the probes are used in the range k��1, this
term may have significant values at low frequencies, in par-
ticular, when the coherence 
21

2 ��� is appreciably lower than
1. Ghan et al.1 studied this expression of the variance of the
total energy density and defined its intervals of variation as
follows:

Ea
2���
2n


 var�Êa���� 

Ea

2���
n

. �12�

The lower bound can seem paradoxical inasmuch as the vari-
ance could be smaller than �i� that of the measurement by
using only one sensor or �ii� that of a measurement made in
a sound field having a full spatial coherence 
21

2 =1 �which
corresponds to the upper bound�.

A different factorization from Eq. �9� allows the vari-
ance of the total energy density to be written in the following
form:

var�Êa���� �
1

n
�Va

2��� + Ta
2���

+
4Q21

2 ��� + �G11��� − G22����2

2�2�0c2k��2 � , �13�

in which one can recognize the approximate expressions, re-
spectively, for the active acoustic intensity Ia���
=Q21��� / ��0ck�� and the reactive acoustic intensity Ja���
= �G11���−G22���� / �2�0ck�� for a probe with two
microphones.3,10 Thus Eq. �13� takes the following remark-
able form:

var�Êa���� �
1�Va

2��� + Ta
2��� +

Ia
2���

2 +
Ja

2���
2 � . �14�
n 2c 2c

Pascal et al.: Statistical errors in estimating energy density

e or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



Downloaded
III. INTERPRETATION

Without considering the finite difference approxima-
tions, the variance of the total energy density can be calcu-
lated by applying Eq. �5� to Eq. �1�:

var�Ê���� � 
 1

2�0c2�2

var�Gpp���� + 
�0

2
�2

var�Guu����

+
1

2c2cov�Gpp���,Guu���� . �15�

The coherence function between the pressure and the particle
velocity in the sound field was defined as11


up
2 ��� =


Gup���
2

Gpp���Guu���
, �16�

and by using Eq. �6�, the covariance term becomes
cov�Gpp��� ,Guu������1 /n�
up

2 ���Gpp���Guu���. Using Eq.
�7�, the variance of the total energy density is finally ex-
pressed in the following two forms:

var�Ê���� �
1

n
�V2��� + T2��� + 2
up

2 ���V���T����

�17a�

or

var�Ê���� �
1

n
�E2��� − 2�1 − 
up

2 ����V���T���� . �17b�

Equation �17b� allows one to obtain the bounds of the vari-
ance according to whether the coherence function between
pressure and particle velocity takes a value 0 or 1:

V2���
n

+
T2���

n

 var�Ê���� 


E2���
n

. �18�

The lower bound is thus reached when the covariance term is
zero. It is noted that this lower bound is two times smaller
than the upper bound, when the potential energy density is
equal to the kinetic energy density. One can also note that a
zero value of the potential or kinetic energy density will
cancel the cross term and will result in reaching the upper
bound.

Now by considering the third term on right-hand side of
Eq. �15� which can be written in the form
cov�Gpp��� ,Guu������1 /n�
Gup���
2 and by expressing the
complex intensity3,10 as Gup���= I���+ jJ���, the variance
takes the same form as that in the expression �14� without,
however, using the approximation values:

var�Ê���� �
1

n
�V2��� + T2��� +

I2���
2c2 +

J2���
2c2 � . �19�

Equation �19� shows clearly that the lower bound E2��� /2n
is reached in a sound field where the active and reactive
intensities are equal to zero, and where the energy densities
are equal to V���=T���=E��� /2. It now remains to specify
this type of sound field.

The probe consisting of two microphones for measure-
ment of the energy densities can be used only in one-

dimensional fields because only one component of the par-
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ticle velocity is measured for computing the kinetic energy
density. A general model of a one-dimensional partially co-
herent field can be represented by two random plane waves
traveling in opposite directions:

p�x,t� = a
t −
x

c
� + b
t +

x

c
� , �20�

where a and b are, respectively, the random amplitudes of
two plane waves traveling in opposite directions. The energy
quantities can thus be expressed as a function of the auto-
and the cross-spectra between the amplitudes of the waves:

V��� =
GAA��� + GBB��� + 2GAB���cos 2kx

2�0c2 ,

T��� =
GAA��� + GBB��� − 2GAB���cos 2kx

2�0c2 , �21�

I��� =
GAA��� − GBB���

�0c
, J��� = 2

GAB���
�0c

sin 2kx ,

where GAB���=
AB����GAA���GBB���ej�AB �the phase �AB

is set to 0 in what follows in order to simplify the expres-
sions without loss of generality�. The coherence 
AB

2 ��� be-
tween the two components can vary from 0 �two independent
progressive plane waves� to 1 �quasistanding wave�. The ap-
proximate expression for the energy densities of Eq. �4� is
obtained from the computations of the pressure at the two
microphone positions x1=x−� /2 and x2=x+� /2 by the use
of Eq. �20�:

Da��� = ��2�GAA��� + GBB����

+ 4GAB���cos 2kx cos k�� + ��2�GAA���

+ GBB����cos k� + 4GAB���cos 2kx� . �22�

From Eqs. �21� and �22�, one can derive the expressions for
the potential and kinetic energy densities:

Va��� = V���cos2 k�/2, Ta��� = T���
 sin k�/2
k�/2 �2

,

�23�

and the expressions for the active and reactive acoustic
intensities:10

Ia��� = I���
sin k�

k�
, Ja��� = J���

sin k�

k�
. �24�

IV. DISCUSSION

According to Eq. �19�, the lower bound of the variance
E2��� /2n is reached when the acoustic intensities are equal
to zero and when the potential and kinetic energies are equal.
Equation �21� shows that the active intensity is canceled
when the two opposite waves have identical amplitudes. To
obtain, at the same time, a cancellation of the reactive inten-
sity and an equality of the potential and kinetic energy den-
sities, it is necessary that the fluctuations due to the interfer-
ences disappear, i.e., that the two waves are completely

incoherent. The same reasoning is transposable with the
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measurement by a probe consisting of two microphones by
considering Eq. �14�. Because of the systematic errors due to
the finite-difference-approximation method used for evalua-
tion of the potential and kinetic energy densities, the value of

the variance of Ê��� is always slightly higher than the theo-
retical value of the lower bound when k� increases.

According to the above results, the coherence function
between the pressure and the particle velocity that appeared
in Eqs. �17a� and �17b� and is given by Eq. �16� can also be
written as follows:


up
2 ��� =

I2��� + J2���
4c2V���T���

. �25�

Uncorrelated two opposite waves �
AB
2 =0� results in cancel-

ing the reactive intensity J���, but it is also necessary that
these waves have identical amplitudes, so that the active in-
tensity is canceled. Equation �25� shows that these two con-
ditions lead to 
up

2 ���=0. The null coherence between pres-
sure and velocity is thus a sufficient condition to reach the
lower bound of the variance, as it is predicted by Eqs. �17a�
and �17b�. The function of the coherence between pressure
and velocity 
up

2 can be expressed in terms of the coherence

AB

2 between the two opposite waves, the A /B ratio r2���
=GBB��� /GAA���, and the position in the quasistanding
wave


up
2 ��� =

�1 − r2����2 + 4
AB
2 ���r2���sin2 2kx

�1 + r2����2 − 4
AB
2 ���r2���cos2 2kx

. �26�

Figure 1 shows the evolution of the coherence between the
pressure and velocity 
up

2 versus 
AB
2 and kx for two ampli-

tude ratios r2. When two opposite waves have the same am-
plitudes �r2=0 dB�, the coherent part of the field creates qua-
sistationary waves and 
up

2 depends also on the position of
nodes �kx=n� /2, n is an integer number�. When two oppo-
site waves are incoherent, the coherence between pressure
and velocity 
up

2 vanishes �neither active nor reactive inten-
sity exists�. When the amplitude of one wave is much greater
than the others �r2 is around 6 dB�, the phenomenon is less
evident and 
up

2 is never zero.
The variance of the energy density is often calculated

from Eq. �9� in which the coherence between microphones
appears. It is related to the pressure-velocity coherence func-
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FIG. 1. Pressure-velocity coherence function 
up
2 of two waves, respectively,

with amplitudes A and B traveling in opposite directions vs the coherence

AB

2 of the two waves and 2kx for two A /B ratios indicated.
tion but evolves differently. For the two microphones posi-
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tioned, respectively, at x1=x−� /2 and x2=x+� /2, using Eq.
�20�, the coherence between the two microphones can be
obtained:


21
2 ��� =


G21���
2

G11���G22���

=
f�r���,
AB���,kx,k�� − 4r2���sin2 k�

f�r���,
AB���,kx,k�� − 4
AB
2 ���r2���sin2 k�

,

�27�

where

f�r���,
AB���,kx,k�� = �1 + r2����2 + 4
AB���r���

��1 + r2����cos 2kx cos k�

+ 4
AB
2 ���r2���cos2 2kx .


21
2 is equal to 1 when the two opposite waves are totally

coherent. If this condition is not satisfied, it tends toward 1
when the microphone spacing becomes small in comparison
to the wavelength �in the low frequency range, when k�
�1�. Figure 2 shows the coherence between the two micro-
phones under the same conditions as in Fig. 1 for the values
k�=0.25 and k�=1 �upper bound of the frequency range�.
The coherence between the two microphones 
21

2 is very dif-
ferent from that between the pressure and velocity 
up

2 . 
21
2 is

never zero and is dependent on the microphone spacing k�,
where k�=2�� /�, � is the wavelength. Any loss of coher-
ence between the signals of the two microphones will tend to
approach the lower bound of the statistical error, just like the
addition of independent noise to each of the two microphone
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FIG. 2. Coherence function between two microphone signals 
12
2 vs the

coherence of two waves traveling in opposite directions 
AB
2 and 2kx for two

A /B ratios indicated and when k�=0.25 �top�, k�=1 �bottom�.
channels.

Pascal et al.: Statistical errors in estimating energy density

e or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



Downloaded
V. CONCLUSION

The normalized variance of the total energy density has
an upper bound equal to E2 /n �n=BT�, like any quadratic
value of a physical quantity. It is shown that this variance can
be expressed as a function of the various energy quantities of
sound fields, such as potential and kinetic energy densities,
and active and reactive acoustic intensities. It is the nature of
the sound field that determines the statistical errors not the
use of the discretization by finite difference. It appears that
the value of the variance becomes two times lower when the
active and the reactive acoustic intensities vanish simulta-
neously. However, this condition is not sufficient. It is also
necessary that the potential and kinetic energy densities are
equal at all points of the acoustic field. This can be obtained
only when the coherence between the pressure and acoustic
particle velocity is equal to zero. In a one-dimensional sound
field, this condition is obtained when the two waves traveling
in opposite directions are independent and of equal ampli-
tudes. The relationships between the pressure-velocity coher-
ence function and the coherence measured between the two
microphone signals, by which the energy quantities can be

experimentally determined, were specified.
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