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The patch holography method allows one to make measurements on an extended structure using a
small microphone array. Increased attention has been paid to the two techniques, which are quite
different at first glance. One is to extrapolate the pressure field measured on the hologram plane
while the other is to use statistically optimized processing. A singular value decomposition
formulation of the latter is proposed in this paper. The similarity of the two techniques is shown
here. Both use a convolution of the measured pressure patch to obtain a better estimate of the
wavenumber spectrum backward propagated on the structure. By using the Morozov discrepancy
principle to compute the regularization parameter, the two methods lead to very close results.
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I. INTRODUCTION

A fundamental assumption of planar near-field acoustic
holography �NAH� is that the measurement plane in the near-
field of sources is infinite. In practice it is enough that the
measurement plane is significantly larger than the radiating
surface so that the field reconstruction can be done under
good conditions. As soon as the dimensions of the hologram
decrease, the truncation effect of the measured field creates
distortions mainly due to the use of the discrete spatial Fou-
rier transform �DSFT�. These distortions can be reduced by
using a Tukey window1 but with the impossibility to use the
whole reconstructed field, by selectively filtering the edge
effects using wavelets,2 or by regularizing an inversion tech-
nique of the transfer matrix representing the propagation,3,4

eventually associated with a condensation method.5,6 The
analysis of an extended emitting area with a small micro-
phone array is often found in applications of acoustic holog-
raphy, and the fundamental assumption is rarely satisfied. To
overcome this important limitation, methods known as
“patch holography” have been proposed.7–11 When the array
�patch� is smaller than the radiating area, for example, in
case of a large vibrating structure, these techniques allow one
to reconstruct the field on the projected area from the holo-
gram with a minimum of distortion caused by the edge ef-
fects and the sound field emitted by the surfaces not covered
by the array.

Essentially two methods are used to solve this problem:
�i� a method by which the field on the hologram is extrapo-
lated over a larger area by using an iterative process,7–9,12–14
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and �ii� a method that uses statistical optimization for esti-
mating the wavenumber spectrum from an acquisition on a
small aperture hologram.10,11,15–17

The first method was introduced by Saijyou and
Yoshikawa.7 They showed that a sound field measured over
the patch can be extended into the exterior region by using
an iterative data restoration algorithm that increases the
aperture size by limiting the bandwidth of the wavenumber
spectrum. This method has been further optimized by
Williams et al.8,9 by using a modified Tikhonov filter with a
regularization technique, and the discrete Fourier transform
formulation has also been extended in terms of singular
value decomposition �SVD�. Since this technique was imple-
mented for cylindrical geometries12 and applied to recovery a
source distribution from hologram pressures was measured
over multiple unconnected patches.14 Variants for performing
patch NAH were also proposed: a one-step procedure using
Tikhonov regularization with generalized cross validation13

and methods using a sound field model in terms of spherical
harmonics18 or equivalent sources.5,6

The second technique introduced by Steiner and Hald10

optimizes the NAH process by realizing a spatial convolu-
tion to have a wavenumber spectrum produced by only the
source region covered by the patch. The spatial convolution
is obtained by imposing constraints on the wavenumber
spectrum. This method has been adapted to different experi-
mental configurations11,16,17 and cylindrical geometries.15

The scope of this paper is to compare the two methods.
So the processing algorithms are formulated with the same
notations, then the performances of the two methods are il-
lustrated by a simple example.

II. SOME NAH PROBLEMS

Consider a planar surface �s corresponding to the source

area on which the pressure and normal velocity fields are,
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respectively, p�y� and uz�y�. Another surface � is located at
a small distance d in the near-field, on which the acoustic
pressure p�x� is measured. The discrete space Fourier trans-
form of the Helmholtz equation allows one to write as

p�x� = WP�k� = � WGNW+u�y�
WGDW+p�y� ,

� �1�

where p�x� is the column vector of M elements of the mea-
sured pressure on the mesh of a finite surface �, and u�y�
and p�y� are, respectively, the vectors of velocity and pres-
sure on �s. W is the matrix of the backward Fourier trans-
form that allows one to obtain the vector of pressure p�x�
from its discrete wavenumber spectrum denoted by the vec-
tor P�k�. The elements of the matrix W are written by Wmn

=exp�−jkn ·xm� /�M. The forward Fourier transform is de-
fined here as the generalized inverse W+ of the backward
Fourier transform, such that WW+=I. This definition allows
one to obtain an estimate of wavenumber spectrum from an
irregular sampling of the hologram,19 as it is done for the
statistically optimal near-field acoustic holography
�SONAH� method.11 In this case, the matrix of the backward
transform used for the inverse of matrix corresponds to an
overdetermined system, which leads to the estimate of the
wavenumber spectrum in the least square sense. In the par-
ticular case of a regular grid and a square matrix �as used in
the examples of Sec. IV�, the authors have the equivalent
equation W+�WH. In practice, the matrix W used to re-
cover the field from the wavenumber spectrum is often dif-
ferent from that which is used to calculate the forward Fou-
rier transform. In fact, independently of the measurement
mesh, the field is presented on a regular grid of which the
number of points is strongly increased to visually get a better
resolution. W is a rectangular matrix with the number of
rows �points of the field� being much more significant than
the number of columns �points of the wavenumber spec-
trum�. This operation corresponds to a Shannon interpolation
and no more information is added. This method gets the
same results as the iterative procedure proposed in Ref. 14,
while being much faster.

The diagonal matrices GN and GD are the propagators,
the elements of which are expressed as GN,n=−�cke−jkzd /kz

and GD,n=e−jkzd, respectively, with kz=�k2−kn
2 �k=� /c and

�−1=−j�. The inversion of Eq. �1� allows one to reconstruct
with a good accuracy, the pressure p�y� and the velocity u�y�
from the measured pressure p�x� provided that the hologram
is larger than the source region and that the evanescent
waves amplified by the inverse propagator are filtered by a
low-pass filter represented by the diagonal matrix F�

=diag�F�� as follows:20,21

ũ�y� = WGN
−1F�W+p�x� , �2�

p̃�y� = WGD
−1F�W+p�x� . �3�

The reconstruction of ũ�y� and p̃�y� is thus smoothed by
the removal of the components whose spatial oscillations
have short wavelengths. Williams et al.1,9 described in detail
the consequences of the discretization in the spatial and

wavenumber domains and the role of the spatial periodicity
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of the pressure p�x� on adjacent regions to � �aperture rep-
lication problem�. The operation of reconstruction of the ve-
locity on �s is a convolution of this periodic pressure field,
which causes an expansion and a recovering of the border
areas on adjacent regions. The authors now consider that the
measurement surface � is reduced to a patch �p. This patch
is smaller than the source area �s �see Fig. 1�. �p is the
normal projection of the patch on the source plane where the
pressure and velocity fields are to be reconstructed. The re-
duction in the hologram size makes the problem of spatial
periodicity more critical. The technique of zero-padding has
long been used as a solution1 for the effect of convolution
mentioned above. It does not, however, allow one to reduce
the influence of the part of �s outside �p or the edge discon-
tinuity effects.

III. PATCH NAH METHODS

The objective is, in the case of an extended source re-
gion �s, to reconstruct as accurately as possible the field on
�p from the pressure measurements on �p �see Fig. 1�.

A. Iterative method for extension of the hologram

The iteration method for extension of the hologram was
proposed by Saijyou and Yoshikawa7 and then improved by
Williams et al.8,9 who also showed that DSFT and SVD ap-
proaches provide comparable results. It is the DSFT ap-
proach that is used here. The method is to extrapolate the
pressure p�x��p� over the domain �c. Initially the band �c

is filled with zeros. The zero-padding technique is imple-
mented using a M1�M rectangular matrix R with elements
equal to 1 or 0 �where M1�M�, such as

p0�x� = Rp�x� = �p�x � �p� �measurements�
0�x � �c� �zero-padding� .

� �4�

The transpose of the matrix R allows one to extract the pres-
sure on the surface of the patch �p: p�x�=RTp0�x�. After
zero-padding and filtering, the smoothed pressure

p̃0�x� = WFN,�W+p0�x� = WFN,�W+Rp�x� �5�

is extended on the whole field �p��c by the effect of a
low-pass filter in the wavenumber domain represented by the
diagonal matrix FN,�. To refine the process of extrapolation,

Ωp,Γp

Ωc,Γc
Γs

FIG. 1. �p, pressure measurement surface �patch�; �c, band around the
patch; �p and �c, corresponding to normal projection area on source surface;
and �s, whole radiating surface.
several iterations are used as follows:
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p̃i+1�x� = WFN,�i
W+��I − RRT�p̃i�x� + Rp�x�� , �6�

where I−RRT is a diagonal matrix that selects the points on
the band �c. The iteration procedure starts with i=0 and
p0�x� given by Eq. �5�. The process is stopped at i= I when
the desired convergence 	p̃i+1− p̃i	�	 is reached. For each
new iteration, the measured pressure field on the patch p�x
��p� replaces the corresponding part of the smoothed field
pi�x�, without changing the estimate in �c. A fundamental
point of the method8,9 is the use of the modified Tikhonov
regularization filter21

FN,�i
�kn� = 
n

2�
n
2 + �i��i/��i + 
n

2��2�−1, �7�

where 
n
2= 
GN�kn�
2 for FN,�. This filter contains the infor-

mation about the propagation process and depends on the
distance d separating the �p and �p planes. The parameter �i

is updated at each iteration according to the standard devia-
tion �i of the noise, which is estimated in the wavenumber
domain with the assumption that beyond a cut-off value k2

�kc
2, the spectrum only holds noise

�i � 	DPi�k�	F/	D	F, �8�

where 	 · 	F is the Frobenius norm, D=diag�Dn�, with Dn�k�
=1 when k2�kc

2 and Dn�k�=0 otherwise. kc corresponds to
the maximum wavenumber in agreement with the sampling
criterion.21 According to Eq. �6�, the non-smoothed pressure
is pi�x�= �I−RRT�p̃i−1�x�+Rp�x�. Once the standard devia-
tion is computed, an automatic selection of the regularization
parameter �i is obtained by verifying the following relation
called the Morozov discrepancy principle:

	p̃i�x� − pi�x�	F/�M1 = 	�FN,�i
− I�Pi�k�	F/�M1 � �i.

�9�

The regularization parameter depending on the bounds of the
exact solution is not known in advance. A classical strategy
due to Morozov determines this regularization parameter by
solving a non-linear scalar equation,22 in this case by an
iterative computation. Morozov’s principle is established
when the discrepancy of the corresponding regularized solu-
tion is just equal to the measurement error. Williams21 de-
scribed the use of this principle to determine the regulariza-
tion parameter from the estimated noise by considering the
wavenumber spectrum outside the circle of radius kc. In this
procedure noise is considered in a general sense; it also in-
cludes the distortions due to the truncation of the field and
the errors of spatial undersampling �Shannon’s criterion is
never ensured in NAH�. Finally the reconstructed velocity on
�p can be written by

ũ�y� = RTWGN
−1W+p̃I�x� . �10�

The filter of Eq. �7� uses the propagator GN that sup-
poses that the extrapolated field is optimized for reconstruct-
ing the velocity by using Eq. �2�. To reconstruct the pressure
using Eq. �3�, it will be necessary to substitute GD for GN and

FD,� for FN,� in the iteration procedure of Eq. �6�.
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B. Method of the statistically optimized
backpropagation

The method of the statistically optimized backpropaga-
tion was proposed by Hald and co-worker10,11 for the plane
geometry under the name of SONAH then adapted to cylin-
drical geometries15 and to the reconstruction of other
quantities.16,17 In this method, the transfer matrix HD used to
compute the pressure on the source plane from a small ho-
logram aperture

p�y� = HDp�x� �11�

is obtained using the approach completely different from that
given by Eq. �3�. An optimized solution is searched to cor-
rect, as well as possible, all the distortions of the reconstruc-
tion process such as small size of the patch, discontinuity at
the edges, and influence of noise in the restoration of eva-
nescent waves. For this purpose, a set of elementary solu-
tions for which one knows the correspondence on the �p and
�p planes is employed. In fact, these elementary solutions are
projections of plane waves whose angle of incidence is as-
sociated with each point kn of the wavenumber spectrum.
For example, HD should satisfy the following expression:

pn�y� = HDpn�x� , �12�

where pn�y�= �e−jkn·y�=RTW�M diag�
�n� and pn�x�
= �e−jkzde−jkn·x�=RTWGD

�M diag�
�n�, with kz=�k2−kn
2.

diag�
�n� is a diagonal matrix having only one element equal
to 1 �when �=n, 
�n=1� corresponding to the plane wave
with wavenumber vector kn. All other points of the wave-
number spectrum must also satisfy Eq. �12�. All these con-
straints are synthesized in a matrix form by the following
equation:

�p1�y� ¯ pn�y� ¯ pN�y�� = HD�p1�x� ¯ pn�x� ¯ pN�x�� ,

RTW = HDRTWGD. �13�

It is the transposed form of Eq. �13� that was used in Ref. 11.
By introducing a M �N rectangular matrix WR=RTW
�where N�M�, Eq. �13� can be written as WR=HDA, where
A=WRGD. The authors can see that the number of points of
the wavenumber spectrum is larger than that on the patch.
This important issue discussed below leads to a system to
which the solution HD,� is obtained by computing the �regu-
larized� Moore–Penrose generalized right inverse23 of matrix
A,

HD,� = WRAH�AAH + �I�−1. �14�

Substituting Eq. �14� and the expression for A into Eq. �11�
yields

p̃�y� = WRGD
HWR

H�WRGDGD
HWR

H + �I�−1p�x� . �15�

Each element of the matrix AAH=WRGDGD
HWR

H repre-
sents the sum of the whole wavenumber spectrum. If WR is a
square matrix, the operation is an ordinary DSFT on the
patch, without optimization. It is the number of points of the
K-spectrum higher than the number of points of the holo-
gram �N�M�, which allows an optimization for the small

size of the patch by increasing the number of constraints
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imposed on the wavenumber spectrum. By considering that
N→�, Hald11 gave analytical expressions for the elements
of the matrix AAH. The regularization factor can be obtained
in the same way as for the iterative method, by estimating
the standard deviation of the noise using Eq. �8� and by
evaluating � by means of the Morozov discrepancy prin-
ciple.

An alternative formulation of the SONAH method can
be obtained by carrying out the SVD of matrix A, such as
A=U diag�
n�VH. Substituting this expression into Eq. �14�
results in an expression equivalent to Eq. �15� as follows:

p̃�y� = WRVF� diag�
n
−1�UHp�x� , �16�

where F� is the diagonal matrix of a filter whose elements
are given by F�=
n

2 / ��+
n
2�, where 
n

2 are the eigenvalues
of the decomposition of the matrix A. It should be noted that
unlike the use of the SVD to compute the inverse of the
projection matrix between the hologram and the source
plane,3,13,21 here the inverse is applied only to the model of
the transfer matrix between the points of the patch and those
of the wavenumber spectrum backpropagated to the �s plane.
A statistically optimized solution for the reconstruction of
the velocity can be obtained in the same way by substituting
GN for GD, but because of the bad conditioning introduced
by the use of propagator GN, the choice of the direct calcu-
lation of the derivative of Eq. �15� was often made, as was
done in Ref. 16.

IV. RESULTS AND DISCUSSION

A. Common expressions for the two techniques

It is noteworthy that from the previous results �Eqs. �10�,
�15�, and �16��, the two methods can be presented in one
formulation as follows:

s̃�y� = RTWS̃�k� with S̃�k� = C�,�p�x� , �17�

where s̃�y� can be the pressure p̃�y� or the velocity ũ�y� on
the area �p. In all cases, the matrix C�,� represents a convo-
lution of the pressure p�x� on the patch �p followed by a
transformation that allows one to estimate the regularized

wavenumber spectrum S̃�k� of the velocity or the pressure on
�p �� could be D or N according to the propagator�. For the
method of extension of the patch, the convolution matrix is
implicitly defined in recursive form by Eq. �6�,

C�,�p�x� = G�
−1W+p̃I�x� . �18�

In the case of the SONAH method, the convolution matrix is
defined from Eqs. �15� and �16� as

C�,� = G�
HWHR�RTWG�G�

HWHR + �I�−1

= VF� diag�
n
−1�UH, �19�

where � is the propagator of the pressure or the velocity
adapting to the reconstruction process.

Both methods are clearly the techniques of optimization
of the wavenumber spectrum reconstructed on the plane �p,

and the following example gives an illustration.
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B. Illustration by a simple example

Consider a point source �f =1000 Hz� at �x0 ,y0�
= �5 cm, 9 cm� with respect to the origin at the center of
the hologram. The hologram plane is at 5 cm from the
source. The field is backpropagated 3 cm toward the source
�the plane �s is therefore at z0=2 cm from the source center�.
A white noise with a signal-to-noise ratio �SNR� of 40 dB is
added. Two cross-section slices of the wavenumber spectra
on the plane �s, versus kx for ky =0 �solid lines� and ky

=1.5 k �dashed lines� within the region of evanescent waves,
are shown in Figs. 2�a�–2�d�. The computed values are
shown by thick lines. The theoretical wavenumber spectrum
for the unit point source24 obtained by

S�k� =
− �cke−j�kxx0+kyy0+kzz0�

kz
�20�

is shown in Fig. 2 by thin lines. The reference K-spectrum
shown in Fig. 2�a� is computed from 60�60 grid points with
a spatial step size of 3 cm. A Tukey window at 50% is ap-
plied before Fourier transformation �DSFT�, filtering, and
backpropagation, according to Eq. �3�. Figures 2�b�–2�d�
show the results reconstructed from measurements on a patch
of 12�12 grid points by the use of different processing that
allows a K-spectrum on a 60�60 mesh to be obtained. The
results shown in Fig. 2�b� is obtained by simply applying
DSFT after zero-padding and filtering: GD

−1F�W+Rp�x�. For
results shown in Fig. 2�c�, the method of extension of the
patch is employed �Eq. �18�� with 800 iterations of Eq. �6�.
To obtain the results shown in Figs. 2�a�–2�c�, a modified
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FIG. 2. Computed values �thick lines� and theoretic values obtained by Eq.
�20� �thin lines� of cross-section slices of wavenumber spectra backpropa-
gated from d=3 cm to the plane �s for a point source located 5 cm from the
hologram �1000 Hz, SNR: 40 dB� for ky =0 �solid lines� and ky =1.5 k
�dashed lines�. �a� Hologram of 60�60 grid points, Tukey window at 50%,
modified Tikhonov filter and DSFT; �b� patch of 12�12 and zero-padding
of 60�60 grid points, modified Tikhonov filter and DSFT; �c� patch of
12�12 and expansion on a 60�60 mesh with modified Tikhonov filter and
800 iterations; and �d� patch of 12�12, SONAH with regularization.
Tikhonov filter �Eq. �7�� is used with a coefficient of regu-
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larization � determined by using Eqs. �8� and �9�. Figure
2�d� corresponds to the SONAH method using the SVD for-
mulation, but the two formulas of this method strictly check
the equality of Eq. �19�. The same number of points �60
�60� is used for the wavenumber spectrum in the four con-
figurations. Thus, in all the cases, the matrix R in Eqs. �6�,
�17�, and �19� is of size 602�122. Finally, Fig. 3 shows the
pressure on the normal projection �p of the patch, by per-
forming the backward Fourier transform of the K-spectra
shown in Fig. 2. The important distortions of K-spectrum in
Fig. 2�b� are caused by severe aliasing effects on the pro-
jected field �see Fig. 3�b��. Although the cross-section slice
of wavenumber spectra shown in Figs. 2�c� and 2�d� still
deviates from the theoretical values or from the curves in
Fig. 2�a�, the projected fields shown in Figs. 3�c� and 3�d�
allow one to obtain the pressure fields without too many
distortions.

V. CONCLUSIONS

The same notation is used to express two methods of
patch holography: the regularized extension method by itera-
tion process and the statistically optimized method. A funda-
mental aspect is associated with the rectangular matrix R,
which describes the extension of the initial field by zero-
padding for the iterative method and of the additional con-
straints imposed on the wavenumber spectrum by increasing
the density of points. For the latter technique, an alternative
formulation using the SVD is established. By determining
the regularization parameter using the Morozov discrepancy
principle, the methods of iterative expansion and SONAH
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FIG. 3. Reconstruction on �p area �normal projection of the patch� for the
four processing methods shown in Fig. 2. Contours of pressure amplitude in
decibels.
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provide similar results with pressure to pressure propagator.
The iterative method is more expensive in computing times
but seems to be more robust when the SNR decreases. Both
make significant improvements to the standard NAH.
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