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a b s t r a c t

A new method to measure the total energy density of waves traveling in opposite

directions in ducts is suggested in order to completely eliminate phase errors that lead

to bias errors and are difficult to control in industrial tests. Only the auto-power

spectral densities are measured by the three microphones. The inversion of a linear

coherent, makes it possible to obtain the energy density. The sensitivity of this method

to errors in the speed of sound, errors of microphone calibration and errors of

microphone positions in the duct is analyzed. To complete the study on the robustness

of the method, an evaluation of the statistical errors is carried out. The total uncertainty

is used to make recommendations on the choice of the experimental parameters. The

selection of the frequency limits permits to maintain the measurement uncertainty

within a given confidence interval.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The measurement of the total energy density in industrial ducts is often convenient, because the measured value is
independent of the position in the acoustic field having incident and reflected components that produce not only
interferences (quasi-stationary wave) but also reduction of coherence between the two waves traveling in opposite
directions. In a one-dimensional sound field, it is possible to measure the total energy density by the two-microphone
method using the finite-difference approximations [1,2]. Although the statistical errors remain limited [3], as well as for
the case where the two opposite waves are uncorrelated [4], the measurement is particularly sensitive to phase errors
between sensors [2,5], as in the technique to measure the sound intensity [6]. Inverse methods have been employed to
obtain the amplitude of waves constituting of the quasi-stationary fields [7], but they are also quite sensitive to the phase
errors, unless the number of microphones is largely increased to benefit from the advantage of the over-determined
systems. Working with sensors and measurement channels matched in phase is still an important constraint in industrial
environments because control and calibration should frequently be carried out to ensure good accuracy. In fact, the
sensitivity to the phase errors is much higher than that to the amplitude calibration error, and does not allow
the correction of this bias without a significant residual error. Moreover, another method was developed to determine
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the quadratic particle velocity from measurements of quadratic pressure and active and reactive sound intensities [5],
but it requires the assumption of a perfectly coherent noise field.

A three-microphone method is developed in this paper to determine the total energy density in a duct. Based on an
inverse method it uses the measurements of the auto-spectral density of pressure by three microphones and the inversion
of a model of partially coherent quasi-stationary waves. This method is well suited for industrial applications, such as the
duct elements between an engine and the analyzed system, because it makes the measurement insensitive to the
microphone positions. Section 2 describes the principle of measurements. Then in Section 3, the sensitivity of the method
to different causes of errors is analyzed. In Section 4 a method is suggested to select the experimental parameters in order
to maintain a priori the uncertainty of the estimate of the energy density below a pre-defined threshold. The discussion is
given in Section 5, which is followed by the conclusion.

2. Principle of the measurements

A general model of one-dimensional partially coherent field can be described by two plane waves traveling in opposite
directions

pðx,oÞ ¼ AðoÞe�jkxþBðoÞejkx, (1)

for which the coherence g2
ABðoÞ between the two wave components can vary from 0 (two independent progressive plane

waves) to 1 (stationary wave). k¼o/c is the wavenumber, with o the angular frequency and c the speed of sound. The
assumption of a plane wave model restricts the validity of the method in the frequency range where all non-planar modes
are evanescent (i.e., their amplitudes decay exponentially with distance from the source), resulting in the high frequency
limits fc � 0:59c=D and fc ¼ 0:5c=L, respectively, for a circular section of diameter D and a rectangular cross-section L�H

when L4H. The potential V(o) and kinetic T(o) energy densities are expressed in the frequency domain from the power
spectral densities (PSD) of the pressure Gpp(o) and particle velocity Guu(o), respectively [1–4]. They can thus be expressed
as a function of the auto- and cross-power spectral densities of the amplitudes of the two waves denoted by GAA(o), GBB(o)
and GAB(o)

VðoÞ ¼ GppðoÞ
2r0c2

¼
GAAðoÞþGBBðoÞþ2RefGABðoÞej2kxg

2r0c2
, (2)

TðoÞ ¼ r0

2
GuuðoÞ ¼

GAAðoÞþGBBðoÞ�2RefGABðoÞej2kxg

2r0c2
, (3)

where GABðoÞ ¼ gABðoÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GAAðoÞGBBðoÞ

p
ejjðoÞ and r0 is the mass density of the fluid. The total energy density is thus

written as

EðoÞ ¼ VðoÞþTðoÞ ¼ GAAðoÞþGBBðoÞ
r0c2

: (4)

Eq. (4) shows that the total energy density is independent of the axial location x. The spectral density E(o), obtained from
the PSD of pressure and particle velocity (see Eqs. (2) and (3)), is expressed in Joules per cubic meter per Hertz (J/m3/Hz)
and its integration over a frequency band will lead to values in J/m3. These definitions of the energy densities correspond
to a non-dissipative fluid at rest. The proposed three-microphone method gives a local estimate of the energy density at
the middle microphone (microphone 2 in Fig. 1). In the case of a weakly dissipative fluid as one encountered in engineering
applications, it is usual to consider a non-dissipative fluid model because an error, which is not taken into account in the
analysis, will remain low for small microphone spacing. For each microphone positioned at a point xi on the x-axis
(i¼{1,2,3}), the power spectral density (PSD) of the pressure can be written as

GiiðoÞ ¼ GAAðoÞþGBBðoÞþ29GABðoÞ9cosð2kxiþjðoÞÞ, (5a)

by considering Eq. (4), Eq. (5a) can be expressed as

GiiðoÞ ¼ r0c2EðoÞþ29GABðoÞ9cosjðoÞcos2kxi�29GABðoÞ9sinjðoÞsin2kxi ¼ aðoÞþbðoÞcos2kxi�cðoÞsin2kxi: (5b)
M1

x1

M2

x2

M3

x3 x

Δ a Δ b

Fig. 1. Positions of three microphones mounted on the duct.
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Using at least 3-microphone positions at x1, x2 and x3 (see Fig. 1), the PSD measured can be written in the form of a linear
system

G11ðoÞ
G22ðoÞ
G33ðoÞ

2
64

3
75¼

1 cos2kx1 �sin2kx1

1 cos2kx2 �sin2kx2

1 cos2kx3 �sin2kx3

2
64

3
75

aðoÞ
bðoÞ
cðoÞ

2
64

3
75¼M

aðoÞ
bðoÞ
cðoÞ

2
64

3
75: (6)

The vector of the coefficients on the right-hand side of Eq. (6) [a(o) b(o) c(o)]T is obtained by inverting the matrix M.
For example, the first element of coefficient vector is expressed in the following form:

aðoÞ ¼ G11ðoÞsin2kðx2�x3Þ�G22ðoÞsin2kðx1�x3ÞþG33ðoÞsin2kðx1�x2Þ

sin2kðx2�x3Þ�sin2kðx1�x3Þþsin2kðx1�x2Þ
: (7a)

Using the notations of the microphone spacings Da¼x2�x1 and Db¼x3�x2, the total energy density proportional to a(o)
can be written as

EðoÞ ¼ aðoÞ
r0c2

¼
G22ðoÞsin2kðDaþDbÞ�G33ðoÞsin2kDa�G11ðoÞsin2kDb

r0c2ðsin2kðDaþDbÞ�sin2kDa�sin2kDbÞ
: (7b)

By expressing the position of the middle microphone as a¼Da=ðDaþDbÞ, it is possible to examine how the denominator in
Eq. (7b) changes with the non-dimensional variable k(DaþDb) and the position of microphone 2 shown in Fig. 1. In Fig. 2 is
shown the denominator in Eq. (7b) as a function of k(DaþDb) and a. It is observed that when microphone 2 is positioned at
the midpoint between microphones 1 and 3, i.e., Da¼Db and a¼0.5, the denominator of Eq. (7b) has fewer poles that
correspond to frequencies at which the energy density cannot be estimated. Thus in the following study, the case a¼0.5 is
considered. Substituting D¼Da¼Db in Eq. (7b) yields,

EðoÞ ¼ aðoÞ
r0c2

¼
G11ðoÞ�2G22ðoÞcos2kDþG33ðoÞ

4r0c2 sin2kD
: (8)

Eq. (8) gives an estimate of the total energy density in a duct from measuring the sound pressure spectra of three equally
spaced microphones. It is noted that in contrary to the finite-difference approximation method, Eq. (8) contains only the
auto-spectral densities, thus no phase error occurs. When an inverse method is used, special attention should be paid to
the propagation of measurement errors that can be amplified. A powerful technique for determining the uncertainty in the
measured energy density is to calculate the variance of the estimation based on the uncertainty estimation of the different
quantities and model parameters. The main systematic errors (amplitude calibration errors, sensor position errors and
errors in the coefficients) as well as the statistical errors in the estimation of measured pressure spectra should be
examined to verify that errors in some parameters do not amplify the errors in the final result. One of the objectives of this
article is to show how it is possible to know a priori whether the precision of the method is acceptable for applications and
what measurement parameters are to be chosen in order that the uncertainty of the estimate remains within fixed limits.
The evaluation of uncertainties is made here in accordance with the recommendations of the GUM (Guide to the
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Fig. 2. Denominator of Eq. (7b) as a function of k(DaþDb) and a¼Da=ðDaþDbÞ, where Da and Db are shown in Fig. 1: (a) 3D view and (b) cross-section

plots: thin dashed line a¼0.2, thin solid line a¼0.3, thick dashed line a¼0.4 and thick solid line a¼0.5.
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expression of Uncertainty in Measurement [8,9]). A similar analysis was recently made for the determination of the
uncertainty in the reflection coefficient by the two-microphone method [10].

The causes of measurement errors in the ducts can be numerous [11]. In this article, we distinguish two kinds of errors:
one is the errors in auto-spectral density measurements including the errors in amplitude calibration and the statistical
errors, the other is the parametric errors of the model related to the uncertainties that affect the vector of coefficients in
Eq. (6) obtained by computing the inverse of the matrix M. It is supposed that the hypotheses of propagation model are
satisfied. This physical model considers the propagation of plane waves in a non-dissipative fluid at rest inside a rigid wall
duct of uniform cross-section. Thus discrepancies from the physical model are not considered in this analysis as sources
of error.

3. Sensitivity to measurement errors

In this section two kinds of measurement errors are considered. One is the systematic errors due to calibration of the
microphones; the other is the statistical errors of estimates for a random process.

3.1. Amplitude calibration errors

The errors in the microphone calibration have an influence on the estimate of the energy density by the three-
microphone method. By introducing a coefficient si the measured auto-spectrum of each microphone can be expressed as
Gii ¼ si Gii. The unknown coefficients si can be considered as Gaussian random variables of unit mean and normalized
standard deviation ea. The random variables related to each microphone are independent of each other, so that the
sensitivity of the estimate to errors of calibration can be presented by the following variance:

var Eðs1, s2, s3Þ
� �

�
X3

i ¼ 1

@EðoÞ
@si

� �2

var sif g: (9)

Using the expression of Eq. (8) for E and considering that varfsig ¼ e2
a , Eq. (9) becomes

var EðoÞ
� �

� e2
a

G2
11ðoÞþ4G2

22ðoÞcos22kDþG2
33ðoÞ

16ðr0c2Þ
2sin4kD

: (10)

The factor of sensitivity Sa to errors of calibration is defined as the ratio Sa ¼ efEg=ea of the normalized standard deviation

efEðoÞg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varfEðoÞg

q
=EðoÞ to the normalized standard deviation of the calibration uncertainty ea. To evaluate the

significance of Sa, the power spectral densities in Eq. (10) are replaced by their expressions (5a) and the total energy
density Eq. (8) is used. In Fig. 3 is shown the factor of sensitivity Sa as a function of a non-dimensional position 2kxþj in
the partial standing wave. j is an unknown phase shift that depends on several factors including the phase between the

two opposite waves. The curves shown in Fig. 3 correspond to three values of the ratio r2 ¼ GBB=GAA of the PSD of the two

opposite waves (r2
¼1, 0.25 and 0), for four sets of values of kD (1 and 2.5) and g2

AB (1 and 0.5). It is noted that the factor of

sensitivity varies as the function of the position in the quasi-stationary wave. As this position cannot be known, the
maximum factor of sensitivity Sa max is introduced, which is the ratio of the maximum normalized standard deviation on a

variation of 2kx over 2p to the normalized standard deviation of the calibration errors ea, i.e., Sa max ¼ emaxfEg=ea. Fig. 4

shows Sa max as a function of kD for three values of the ratio r2 ¼ GBB=GAA and by varying the coherence between the two
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Fig. 3. Factor of sensitivity to the errors of calibration Sa ¼ efEg=ea as a function of 2kxþj for r2
¼1 (thick solid line), r2
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opposite waves g2
AB. The maximum value of the normalized standard deviation is neither very sensitive to the coherence

between the two opposite waves g2
AB nor to their amplitude ratio r2. The large values are found around the zeroes of the

function sinkD (denominator of Eq. (8)). Similar problems occur in the measurement of sound intensity in duct with two
microphones [12]. Thus the error representations are associated with a p periodicity. Consider the following example for
determining the maximum factor of sensitivity. If the normalized standard deviation of the uncertainty of calibration ea is
of the order of magnitude 5% (that is, approximately 70.22 dB) and if one wants the normalized standard deviation of the
energy density lower than 20% [�0.97 dB, þ0.79 dB], then the usable frequency range will be those corresponding to the

values of the maximum factor of sensitivity Sa max ¼ emaxfEg=eao0:20=0:05¼ 4, i.e., in a frequency range where kD is
between np70.48 (n¼0, 1, 2y). The calibration is generally made using a pistonphone calibrator and the quantity
GiiðoÞ=ðr0cÞ is concerned; thus, it is not necessary to consider uncertainties in r0c on errors related to the speed of sound.

3.2. Statistical errors

In the case of the measurement of random signals, the finite duration of analysis leads to errors in estimation of the
spectral densities. The variance of these statistical errors can be given by

var ÊðG11,G22,G33Þ

n o
�
X3

i

X3

j

@E

@Gii

@E

@Gjj
cov Ĝii,Ĝjj

n o
, (11)

where the covariance of the auto-spectral density for Gaussian processes is

cov ĜiiðoÞ,ĜjjðoÞ
n o

�
9GijðoÞ9

2

n
¼
g2

ijðoÞGiiðoÞGjjðoÞ
n

, (12a)

and

cov ĜiiðoÞ,ĜiiðoÞ
n o

¼ var ĜiiðoÞ
n o

�
G2

iiðoÞ
n

, (12b)

where n is the number of the Fourier transform of segments of digital signals (periodograms) averaged to estimate the PSD.
These expressions for the variance of the spectral density are due to Jenkins and Watt [13] and are likely to provide good
estimates using the measured spectral densities in Eq. (12) (see, for example, Refs. [3,14–16]). They can be used for random
signals like white or colored noises. These variance expressions assume that the periodograms are independent, which
means that a rectangular window is used without overlap (Bartlett’s procedure). The variance of the PSD estimated using a
window is approximately the same as that for the Bartlett’s procedure: the decrease of the effective duration of each
segment is compensated by the increase of the effective width of each spectral bin. Welch [17] has introduced a
modification of the Bartlett’s procedure using window and overlap. When the segments overlap each other, the modified
periodograms are not independent. A multiplying factor [17,18] using the normalized correlation function C(t) of the
window approximates the variance of the modified periodogram for an overlap period. For an overlap of 50%, the multi-
plying factor is 1þ2C2ðLDt=2Þ, where LDt is the length of the window (Dt is the sampling interval). With the Hanning
window, the value of the normalized correlation function is CðLDt=2Þffi0:167, the multiplying factor is 1.056, but the
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average number n is doubled for the same length of signal. This leads to a reduction in the variance by 1.056/2, thus
Eqs. (12a)–(12b) can always be used with the appropriate average number.

Using the expression for the energy density (Eq. (8)) and making some manipulations, one obtains

var ÊðoÞ
n o

�
1

n

G2
11ðoÞþ4G2

22ðoÞcos22kDþG2
33ðoÞ

16ðr0c2Þ
2 sin4kD

þ
1

n

9G31ðoÞ9
2
�29G21ðoÞ9

2
cos2kD�29G32ðoÞ9

2
cos2kD

8ðr0c2Þ
2 sin4kD

: (13)

The first part on the right-hand side of Eq. (13) corresponds to independent measurements that ignore the covariance
terms. The second part, which comes from the covariance terms of Eq. (11) for dependent measurements, includes cross-
spectra and depends on the coherence functions between the microphone signals. Even though the cross-power spectral
densities between sensors are not measured, the coherence functions have influence on the precision of the results when
the signals from the sensors are acquired simultaneously. The coherence functions are practically never equal to zero [4],
even if the two waves traveling in opposite directions are uncorrelated (g2

AB ¼ 0). The only configuration where the second
part on the right-hand side of Eq. (13) does not exist is when measurements of pressure are carried out successively (thus
independently), which results in null covariance. On the contrary, the second term will be taken into account when
measurements are carried out simultaneously. To evaluate the variance of energy density due to statistical errors, similarly
to Eq. (5a) the cross-spectral densities in Eq. (13) are represented by

GijðoÞ ¼ GAAðoÞejkðxi�xjÞ þGBBðoÞe�jkðxi�xjÞ þ29GABðoÞ9cosðkðxiþxjÞþjðoÞÞ: (14)

The square of the absolute value of Gij(o) is given by

GijðoÞ
�� ��2 ¼ ½ðGAAðoÞþGBBðoÞÞcoskðxi�xjÞþ29GABðoÞ9cosðkðxiþxjÞþjðoÞÞ�2þ½ðGAAðoÞ�GBBðoÞÞsinkðxi�xjÞ�

2, (15a)

and

9GijðoÞ9
2
¼ ½aðoÞcoskðxi�xjÞþbðoÞcoskðxiþxjÞ�cðoÞsinkðxiþxjÞ�

2þ½dðoÞsinkðxi�xjÞ�
2 (15b)

where a(o), b(o) and c(o) have the same definitions as those in Eq. (5b) and d(o)¼GAA(o)�GBB(o) is proportional to the
active sound intensity in the duct [4].

Using Eqs. (13), (15a), (4) and introducing the ratio r2 ¼ GBB=GAA of the opposite waves, the normalized standard

deviation of the statistical errors Sr ¼ efÊðoÞg
ffiffiffi
n
p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nvarfÊðoÞg

q
=EðoÞ is written as

Sr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nvarfÊðoÞg

q
EðoÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þr4ðoÞþ2g2

ABðoÞr2ðoÞ
q

1þr2ðoÞ
: (16)

These errors have the particularity of being independent of the microphone positions with respect to the standing wave
(consequently Sr max ¼maxfSrg ¼ Sr). They are also independent of the microphone spacing, thus independent of the
dimensionless variable kD. The highest value Sr¼1 corresponds to two coherent opposite waves (g2

AB ¼ 1), in accordance
with the results in Ref. [4]. Fig. 5 shows the normalized standard deviation of the statistical errors Sr ¼ efÊðoÞg

ffiffiffi
n
p

versus
the coherence function g2

AB for four values of the square amplitude ratio r2.
In Eqs. (13) and (16), it is considered that the signals are acquired simultaneously (multi-channel acquisition). If one-

channel analyzer is used, the auto-power spectral densities are obtained successively, therefore independently, so that the
terms of covariance (i.e., the second part on the right-hand side of Eq. (13)) do not appear in the variance of the statistical
error in E. In this case, instead of using the two parts on the right-hand side of Eq. (13), the statistical error presents the
variations when the quasi-stationary wave moves with respect to the microphone positions, similarly to that shown in
Fig. 3. The statistical errors in the two situations are shown in Fig. 6 by the maximum factor of sensitivity Sr max for four
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configurations of field: for both coherent opposite waves (g2
AB ¼ 1) and incoherent waves (g2

AB ¼ 0) at the two amplitude
ratios r¼1 and 0.

4. Sensitivity to the parametric errors of model

4.1. Errors due to uncertainty in the position of the sensors

In general, the microphones are accurately mounted in the duct with flush diaphragm. Positioning the microphones is
not easy when air flow exists, which requires that nose cones are added to the microphones. To take the error due to
position of the sensors into account, we consider the microphone positions xi as Gaussian random variables centered on
the nominal values. These random variables are independent for the three positions but their standard deviation is
identical and is noted by sx. The variance of these errors can thus be expressed, without the use of cross terms, by

var ~Eðx1,x2,x3Þ

n o
� s2

x

X3

i ¼ 1

@EðoÞ
@xi

� �2

: (17)

By the use of Eq. (8), the derivatives of the total energy with respect to the microphone positions xi are given by

@EðoÞ
@x1

¼�k
2G22ðoÞðcos2kDþ1Þ�G11ðoÞð2cos2kDþ1Þ�G33ðoÞ

4r0c2 sin2kDsin2kD
, (18a)

@EðoÞ
@x2

¼ k
2ðG33ðoÞ�G11ðoÞÞcos2kD

4r0c2 sin2kDsin2kD
, (18b)

@EðoÞ
@x3

¼ k
2G22ðoÞðcos2kDþ1Þ�G33ðoÞð2cos2kDþ1Þ�G11ðoÞ

4r0c2 sin2kDsin2kD
: (18c)

It is shown that it is interesting to use the normalized standard deviation of the position sx=D for factorizing kD and to
express the uncertainty as a function of the non-dimensional frequency, as for the calibration errors. Fig. 7 shows the

factor of sensitivity Sx ¼ ef ~EðoÞg=ðsx=DÞ, the ratio of the normalized standard deviation of the energy density defined by

ef ~EðoÞg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varf ~EðoÞg

q
=EðoÞ to the normalized standard deviation sx=D as a function of 2kxþj. The curves in Fig. 7 show

the fluctuations of the factor of sensitivity as a function of the microphone positions with respect to the standing wave. The
standard deviation takes naturally smaller values when the ratio of the amplitudes of the two opposite waves decreases,
until it vanishes for a single wave (r2

¼0). It is also noticed that the reduction of the coherence between the opposite waves
results in the decrease of the amplitude of the stationary field. Like the errors due to calibration, we consider the
maximum uncertainty over a half-wavelength. Fig. 8 shows the factor of maximum sensitivity to the errors of microphone

positions Sx max defined as the maximum normalized standard deviation emaxf
~Eg normalized with respect to sx/D.

A significant increase in the uncertainties was found when the non-dimensional frequencies are around kD¼mp
(m¼ 0,1,2,. . .), but also a linear increase with kD, i.e., when the wavelength decreases. Whereas the uncertainty of
measurement does not provide any frequency limit (except the frequencies close to the poles), the uncertainty related to
the microphone positions will result in giving a maximum value for kD. Thus, if the uncertainty in the most unfavorable
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case (g2
AB ¼ 1, r2

¼1) should not be higher than that of the calibration, it is necessary to limit the frequency band to kDop,

for a normalized standard deviation sx=D typically ranging between 1% and 5%. In practice, this upper frequency limit will
be chosen less than or equal to the frequency limit imposed by the plane wave model and specified in Section 2.

4.2. Errors due to uncertainty related to the speed of sound

The discrete spectral components corresponding to the estimate of the PSD are well located on the frequency axis by the FFT
analysis. On the other hand, the model does not depend directly on the frequency but on the wavenumber k¼ 2pf=c, which is
related to the frequency by the speed of sound. It is thus advisable to examine the sensitivity introduced by uncertain
knowledge of the speed of sound (with a normalized standard deviation ec). The related variance is given by

var �EðcÞ
n o

� c2e2
c

@EðoÞ
@c

� �2

, (19)

and the normalized standard deviation of the energy density is

e �EðoÞ
n o

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varf �EðcÞg

q
EðoÞ

� ec 2kD
coskD G11ðoÞ�2G22ðoÞþG33ðoÞð Þ

sinkD G11ðoÞ�2G22ðoÞcos2kDþG33ðoÞð Þ
�1

����
����: (20)

According to the analysis of calibration errors (Section 3.1) that concern the quantities Gii=r0c, the normalized standard
deviation of Eq. (20) corresponds to ef �EðcÞg � e r0cEðcÞ

� �
. Using Eq. (20) and the model of field given by Eq. (5a), the factor of
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sensitivity Sc ¼ ef �EðoÞg=ec is calculated and shown in Fig. 9 as a function of 2kxþj. Similar to the expression for Sx max, the
maximum values in a range of a half-wavelength allow one to express the maximum factor of sensitivity to uncertainty in the
speed of sound as Sc max ¼ emaxf

�Eg=ec . The results are shown in Fig. 10. From these results it is demonstrated that an increase
occurs around kD¼mp (m¼ 1,2,. . .). However the uncertainty in the speed of sound often depends on uncertainty in the
temperature. Since the speed of sound in a gas can be expressed as a function of the absolute temperature TK by c¼

ffiffiffiffiffiffiffiffiffiffiffi
gRTK

p
(g is

the ratio of specific heats and R¼R*/M, where R*E8.3145 in J mol�1 K�1 is the molar gas constant and M the mean molar mass
in kilogram per mole) the normalized standard deviation of the speed of sound is thus given by

ec �
1

c

@c

@TK
sT ¼

sT

2TK
, (21)

where sT is the standard deviation of the absolute temperature. Thus if the temperature in the fluid is 30 1C (TKffi303 K) and
the uncertainty during the test is 3 1C (sT¼3 K), sT=TK is approximately 1% and the normalized standard deviation of the speed
of sound is approximately 0.5%.

5. Discussion

The principal causes of uncertainty due to unknown errors in the various measurement parameters have been treated
like uncertainties. These uncertainties in the calibration of the microphones, the position of the sensors, the knowledge of
the speed of sound and the estimate of the PSD of acoustic pressures are shown by the factors of sensitivity denoted,
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respectively, by Sa max, Sx max, Sc max and Sr max, obtained from the maximum values of the standard deviations in a range of
a half-wavelength. These factors of sensitivity have been shown as a function of non-dimensional frequency kD in Figs. 4,
6, 8 and 10. The parameters of the general model of plane wave in a duct such as the coherence between the opposite
waves g2

AB and the ratio of amplitudes r have influence on these factors. In Fig. 11 is shown the four factors of sensitivity for
the case where g2

AB ¼ 1 and r2
¼1, which is the hardest configuration for the acoustic fields.

Total uncertainty in the estimate of the energy density E is obtained by summing the variances of all independent
sources of uncertainties, so that the standard deviation of E is expressed as

e EðoÞ
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

aS2
aþ

1

n
S2

r þ
s2

x

D2
S2

xþe2
c S2

c

s
: (22)

The variables in Eq. (22) are the same as those we defined previously. Like all of the factors of sensitivity that fluctuate in
terms of the unknown microphone positions with respect to the quasi-stationary wave, emax EðoÞ

� �
is defined as the

maximum value of e{E(o)} in the interval 0r2kxþjrp and is written as

emax EðoÞ
� �

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

aS2
a maxþ

1

n
S2

r maxþ
s2

x

D2
S2

x maxþe2
c S2

c max

s
: (23)

It is evident that emax EðoÞ
� �

is even raised by considering the maximum factors of sensitivity to the various sources
of error.

To adjust the measurement parameters, a strategy can consist of using Eq. (23) and selecting the parameters in order to
keep (i) the term related to the error of calibration, (ii) the term corresponding to the statistical errors and (iii) the sum of
the two terms of the errors of model (microphone positions and speed of sound) to be the same order of magnitude. For
instance, for emaxfEg ¼ 26%, which corresponds to 10log10ð17efEgÞ ¼ ½�1:3 dB,þ1 dB�, the minimum and maximum values
of the non-dimensional frequency kD are required so that the factor of sensitivity Sa max is lower than 0:26=0:05=

ffiffiffi
3
p
¼ 3

(5% being the normalized standard deviation of uncertainty in the calibration of the microphones, i.e., 70.2 dB). This
useful frequency band (expressed in terms of the non-dimensional frequency) has two bounds of values kminD� 0:519 and
kmaxD� 2:623, as indicated in Fig. 11. The minimal number of acquisitions used to obtain the average auto-spectrum is
calculated by n¼ S2

r max=e2fÊg ¼ S2
r max=ð0:26=

ffiffiffi
3
p
Þ
2. The value of the factor of sensitivity is Sr max ¼ 1 over all the frequency

range for simultaneous measurements, which corresponds to approximately 45 acquisitions (and nearly 400 for successive
measurements with Sr max ¼ 3 at the bounds of the range). At the bounds of the frequency band, the maximum factor of
sensitivity to the position errors of the microphones Sx max has the values 1.31 and 6.65. It is thus necessary that the
normalized error sx=D be lower than 0:26=

ffiffiffi
6
p

=6:65� 0:016 (1.6%). This condition can generally be satisfied. If, for some
practical reasons, the microphones cannot be positioned with a sufficient precision, the measurement of microphone
spacing, however, will be more precise. It is then enough to substitute Eq. (7b) for Eq. (8) and take the standard deviation
of the measurement of position to evaluate sx=D. For the maximum factor of sensitivity to the errors in the speed of sound,
the limits of the frequency band (Fig. 11) are 2.82 and 10.19, which leads to imposing ec on a value lower than
0:26=

ffiffiffi
6
p

=10:19� 0:010 (1%). Thus, a measuring range of log2ðkmaxD=kminDÞ � 2:3 octaves makes it possible to guarantee a
standard deviation of uncertainties within the interval [�1.3þ1] dB by carrying out 50 independent acquisitions, with a
calibration accuracy of 70.2 dB, a relative uncertainty of 1.6% for the microphone spacing D and 1% for the speed of sound.
If the maximal frequency has to be 2000 Hz, the microphone spacing is thus D¼ ðkmaxDÞc=ð2pfmaxÞ � 0:072 m and the
minimum frequency is fmin ¼ ðkminDÞc=ð2pDÞ � 395 Hz. Simultaneous measurements using three channel acquisitions lead
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to statistical errors independent of both the position in the quasi-stationary wave and the normalized frequency kD.
However, the uncertainty analysis also shows that successive measurements with a one-channel analyzer can be achieved
without significant loss of accuracy if the source remains perfectly stationary during the measurement and the number of
independent acquisitions is increased to 400.

This example shows how to choose the parameters of measurement to maintain a priori the uncertainties below a fixed
limit, by considering the most unfavorable case (maximum value over 2kxþj when g2

AB ¼ 1 and r2
¼1). With the same

estimates of uncertainties in the measured quantities and the model parameters, the estimate of uncertainty in the energy
density is calculated using Eq. (22). In Fig. 12 is shown the confidence intervals in dB obtained by 10logð17efEgÞ.

Fig. 12a shows the comparison between emaxfEðoÞg (the most unfavorable case where g2
AB ¼ 1 and r2

¼1) and e{E(o)}
calculated for various values of 2kxþj corresponding to the positions of the standing wave with respect to the
microphone positions. It is possible to verify that the uncertainty intervals are bounded by those that use emaxfEg.
In Fig. 12b is shown emaxfEðoÞg calculated from Eq. (22) for several characteristics of the sound field in the duct, i.e., for
different sets of the values of g2

AB and r2. The upper bound given by Eq. (23) can limit the measurement uncertainty and
ensure the operating range of the proposed method, despite no knowledge of microphone positions in the quasi-stationary
pressure field, the coherence and amplitude ratio of the opposite waves.

In this analysis, uncertainties in the various parameters were modeled as Gaussian random variables. It can be fully
justified for the uncertainty in the microphone positions around their nominal value. It is a valid approximation for the
statistical errors of the auto-spectrum insofar as the number of averages is sufficiently large so that the normalized
standard deviation is much lower than 1. If the dissipation or a weak flow was suspected, the wavenumbers of the two
waves traveling in opposite directions described by Eq. (1) are different and given by k7¼(2pf/c)(1� jd)/(17M) [12] and
the uncertainties in terms of dissipation d and Mach number M must be taken into account. As the existence and
magnitude of these effects are difficult to know in practice, these parameters can be modeled as random variables with a
positive mathematical expectation (0, þN). The probability density of the random variables is obtained using the principle
of maximum entropy as suggested in Ref. [19]. In the case where the flow is stronger, the model of propagation should be
revised. As a result the expressions for the energy densities must be reformulated [20].
6. Conclusion

The total energy density is a useful quantity to describe the sound field in the region between two discontinuities in a
duct because it is independent of the microphone position. This study has shown that a three-microphone method, which
is based on the inversion of a general model of partially coherent plane waves traveling in opposite directions, allows the
energy density to be obtained without taking the phase between microphones into account. The robustness of this method
has been verified by calculating the sensitivity to the four principal sources of statistical errors (position of the
microphones and speed of sound, calibration and fluctuation of the random signal). The total uncertainty expressed by
the normalized standard deviation is used to select the measurement parameters and to define a range of frequency
guaranteed by a given confidence interval. This approach makes it possible to provide the uncertainty intervals of the
measurement.
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