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Near-field acoustic holography (NAH) is an effective tool for visualizing acoustic sources from

pressure measurements made in the near-field of sources using a microphone array. The method

involving the Fourier transform and some processing in the frequency-wavenumber domain is suit-

able for the study of stationary acoustic sources, providing an image of the spatial acoustic field for

one frequency. When the behavior of acoustic sources fluctuates in time, NAH may not be used.

Unlike time domain holography or transient method, the method proposed in the paper needs no

transformation in the frequency domain or any assumption about local stationary properties. It is

based on a time formulation of forward sound prediction or backward sound radiation in the time-

wavenumber domain. The propagation is described by an analytic impulse response used to define

a digital filter. The implementation of one filter in forward propagation and its inverse to recover

the acoustic field on the source plane implies by simulations that real-time NAH is viable. Since a

numerical filter is used rather than a Fourier transform of the time-signal, the emission on a point of

the source may be rebuilt continuously and used for other post-processing applications.
VC 2010 Acoustical Society of America. [DOI: 10.1121/1.3504656]
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I. INTRODUCTION

Near-field acoustic holography (NAH) is a well-known

technique for recovering the sound field of an acoustic system

when the signals emitted by the sources are stationary. It

makes it possible to visualize the spatial pressure field radi-

ated by the system for any frequency of interest. The princi-

ple of the method in the case of planar NAH entails first

acquiring the pressure field from a square area in the near-

field of the system studied using a microphone array. Then a

specialized processing technique in the wavenumber domain

is used to back-propagate the pressure field from zA to zs as

shown in Fig. 1. This technique, described in depth in Ref. 1,

involves amplifying the evanescent waves measured in the

near-field. But this may cause erroneous values in the recon-

structed pressure field, particularly because of the presence of

measurement noise. Fortunately the ill-posed back-propaga-

tion inverse problem may be solved by several methods such

as exponential,1 Wiener,2,3 or adaptative4 filtering in the

wavenumber domain or Tikhonov regularization.5 It is also

possible and easier, from the knowledge of the measurement

pressure field in zA, to predict the forward pressure field in zF

(see Fig. 1). This problem is referred to as direct problem.

However, monitoring a system in order to detect any

defects or predict the presence of inappropriate conditions

requires inspection of the time evolution of some features

designed to highlight the behavior of the system. It is parti-

cularly true for acoustic systems which radiate nonstationary

sounds. When the statistical properties of the emitted acoustic

signals fluctuate in time, standard NAH is unsuitable because

the spatial pressure field obtained by the method fluctuates in

time. Several authors have presented some developments to

standard NAH to take into account the nonstationary properties

of the studied acoustic signals.6–9 The differences between the

methods presented in these works and the technique proposed

in the paper will be discussed further. We can simply say now

that they use standard NAH to process one, several, or all fre-

quencies before coming back to the time domain. Another

study concerns the reconstruction of transient acoustic quanti-

ties by means of the Helmholtz equation least squares

method.10 Even if the approach is based on a convolution over

time kernels, its principle differs largely from the other derived

NAH methods referred to insofar as a spherical source assump-

tion is made. An approach for source reconstruction in the time

domain has also been proposed,11 based on the inversion

method of transfer functions, studied by Nelson and Yoon,12

between the mesh on the source plane and the microphone

array. Bai and Lin use the regularized solutions of the inverse

problem for each frequency to construct a digital filter bank.11

As our objective is also to deal with time-evolving acous-

tic fields, we propose to start with the formulation which pro-

vides, in the time-wavenumber domain, a time-evolving

acoustic field in a forward plane by applying a convolution

between the instantaneous wavenumber spectrum and an

impulse response.13,14 The issue is then to invert the impulse

response in order to apply a similar formulation that involves

in the same domain, a convolution between the measured
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instantaneous wavenumber spectrum and the inverse impulse

response. Thus this processing allows one to continuously

reconstruct the acoustic field on the source plane as if there

were a microphone array directly integrated into the sources.

The aim of this paper is to present the so-called real-time

near-field acoustic holography (RT-NAH) method, to com-

pare it with other methods dealing with the visualization of

time-evolving acoustic fields and to highlight its characteris-

tics. First, the term “real-time” is not chosen to describe a

hardware configuration with multiprocessing but to underline

the fact that the acoustic field reconstruction is continuously

done in time. Even if many papers deal with standard NAH,

Sec. II describes NAH in order to make the reader better

understand the similarities and the differences between the

methods discussed in the paper. Section III is dedicated to

other methods in the literature, which are interested in visual-

izing transient acoustic signals. These methods are catego-

rized according to the information provided. Then RT-NAH

method is presented in Sec. IV. After a description of the

theory, an interpretation is given in the frequency domain.

It is particularly shown how the method takes into account

both propagating and evanescent waves even though the

two types of wave cannot be separated in the wavenumber

domain as for standard NAH. Section IV ends with the

inversion of the impulse response in the time-wavenumber

domain, which is the heart of the problem. Several pre-

processed impulse responses in accordance with Ref. 14 are

inverted using optimum filtering. The feasibility of the

method is tested in simulation with three monopole sources

driven by nonstationary signals without noise or regulariza-

tion processing. Results are discussed in Sec. V from objec-

tive indicator values, reconstructed time-signals, and spatial

acoustic field maps.

II. NAH FOR STATIONARY ACOUSTIC SOURCES

NAH is implemented using both one and two dimen-

sional discrete Fourier transforms (see Fig. 2). The acquisi-

tion of acoustic signals from the measurement surface gives a

time-space representation of the pressure noted p(x, y, zA, t).
Because of the stationary characteristic of the sources, the

pressure field is acquired at different moments, from the

displacement of a single microphone or a small microphone

array using a two-axis robot. Then, the phase relationships

between the pressure measurements are recovered from a

pressure signal acquired from a fixed-location reference

microphone. The cross-spectrum SRP(x) between each spa-

tial pressure measurement p(x, y, zA, t) and the reference sig-

nal, and the autospectrum SR(x) of the reference, combined

as shown in Eq. (1), yield the frequency-dependent spatial

pressure field p(x, y, zA, x),

Pðx; y; zA;xÞ ¼
SRPðxÞffiffiffiffiffiffiffiffiffiffiffiffi

SRðxÞ
p : (1)

FIG. 1. Geometry: For the inverse problem,

the sound field in the source plane z ¼ zS has

to be back-propagated from the sound field

acquired in z ¼ zA. For the direct problem,

the sound field in the forward plane z ¼ zF

has to be predicted from the sound field

acquired in z ¼ zA. The numerical study

involves three nonstationary monopole sour-

ces M1, M2, and M3. The aim is to recon-

struct the sound field in the plane z ¼ zR.

FIG. 2. Synopsis of NAH process-

ing for stationary sources. According

to Eq. (1), the phase computation

involves Fourier transforms of time-

signals (F t operator). F x;y and F�1
x;y

operators imply direct and inverse

spatial two dimensional Fourier

transforms.
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When the sound field is generated by a composite source

comprising mutually incoherent sources, it is necessary to use

several references. A multireference procedure based on sin-

gular value decomposition and described in terms of a refer-

ence cross-spectral matrix and a cross-spectral matrix linking

the reference and measured signals can be used to separate the

total sound field into a set of partial fields that are incoherent

with each other.15–17 It is usual to then extract the spatial pres-

sure field p(x, y, zA, x0) from the measurement surface for a

chosen angular frequency x0 or for several frequencies of a

frequency band. In order to choose these frequencies, the

whole pressure radiated by the system is computed, which

makes the most important frequencies emerge.

The aim of NAH is now to obtain the spatial pressure field

p(x, y, zS, x0) for x0 on the source plane. This is done in the

frequency-wavenumber domain using R operator in charge of

back-propagation and regularization. The purpose here is not

to give a detailed description of the techniques of regulariza-

tion, which are, in particular, reported in Ref. 5. The transfor-

mation to the wavenumber domain is provided by F x;y

operator representing the two dimensional spatial Fourier trans-

form. The use of inverse operator F�1
x;y is necessary, as men-

tioned in Fig. 2 and Eq. (2), to obtain p(x, y, zS, x0), the spatial

pressure field of the system studied for angular frequency x0,

p x; y; zs;x0ð Þ ¼ F�1
x;yRF x;y p x; y; zA;x0ð Þ; (2)

with the following definitions of operators F x;y and F�1
x;y :

F x;y �
ðþ1
�1

ðþ1
�1

ejkxxejkyydxdy; (3)

F�1
x;y �

1

2p

� �2ðþ1
�1

ðþ1
�1

e�jkxxe�jkyydkxdky: (4)

Therefore, the great advantage of NAH is to provide an

image of the spatial pressure field for one frequency or a fre-

quency band that allows one to locate the parts of the system

studied which radiate the most. In addition to pressure, NAH

also provides other features like velocity and acoustic inten-

sity. Furthermore, when dealing with stationary acoustic

sources, NAH is inexpensive in terms of experimental devi-

ces. Indeed, it is not necessary to have as many acquisition

channels as the total number of measurement points on the

hologram plane. As previously indicated, a relatively small

number of scan microphones may be used in combination

with reference microphones. The scanning method using a

moving frame technique with a microphone line array which

travels over the measurement plane at a constant speed is

also a low cost alternative.18

III. NAH FOR NONSTATIONARY ACOUSTIC SOURCES

The approaches6–9 used to backward project transient non-

stationary sound pressure fields come from the same theory.

The starting point is the wave-equation in Cartesian geometry

r2p x; y; z; tð Þ � 1

c2

@2p x; y; z; tð Þ
@t2

¼ 0; (5)

(where c denotes the sound speed) on which a three-dimension

Fourier transform, with respect to space and time, is operated,

yielding the expression

P kx; ky; z;x
� �

¼
ðþ1
�1

ðþ1
�1

ðþ1
�1

p x; y; z; tð Þ e�jxt

� ejðkxxþkyyÞdt dkx dky (6)

of the pressure P(kx, ky, z, x) in the frequency-wavenumber

domain.

These methods fall into two categories according to the in-

formation provided. The first idea leads to obtain time-signals

on each node of the mesh on the source plane that is the image

of the measurement surface.6–8 It is as if the time measurements

had been made directly on the surface including the acoustic

sources. The second idea involves providing, for a chosen fre-

quency band, a time-dependent map of the spatial pressure field

on the source plane which is, on the whole, a logical continua-

tion of standard NAH dedicated to stationary sources.9 The

common point of these methods is, except for repeatable sour-

ces, the simultaneous acquisition of the pressure signals from

the measurement grid. The method proposed in the paper

belongs to the first category in terms of information provided.

A. Time-dependent pressure

Hald proposed to reconstruct the pressure time-signals on

the source plane from signals acquired by a microphone

array.6–8 The starting point of the method, called “time domain

method” which is particularly well-adapted to the study of short

time events, is the acquisition of acoustic time-signals. How-

ever, long time sequences can be recorded, and in this case,

time intervals have to be selected for processing. Let us

describe the operations on one block of time data of T seconds.

The Fourier transform computed on the time-dependent pres-

sure signal acquired from each point of the measurement area,

as for standard NAH (see Fig. 3), gives a set of spectra for each

measurement point. Then the spatial pressure fields p(x, y,

zA, x), on the plane at a distance zA� zS from the source plane,

are extracted for each angular frequency x. The two dimen-

sional Fourier transforms are applied, yielding the values P(kx,

ky, zA, x) in the wavenumber domain for each x also. After

that, the back-propagation operator is applied to each spectral

line yielding the wavenumber spectrum P(kx, ky, zS, x) on the

source plane. The computation with the inverse two dimen-

sional Fourier transform provides the frequency-spatial pressure

field p(x, y, zS, x) on the source plane. Then, a point (x0, y0) of

the spatial grid is chosen giving the frequency-dependent pres-

sure p(x0, y0, zS, x). Finally, an inverse Fourier transform allows

the reconstruction of the time-dependent pressure p(x0, y0, zS, t)
for the specified space location on the source plane. The fol-

lowing equation sums up the time domain method,

p x; y; zS; tð Þ ¼ F�1
t F�1

x;yRF x;y F t p x; y; zA; tð Þ: (7)

Deblauwe et al. used also this method in order to study

an acoustic short time event of less than a second like a non-

repeatable impact noise.9 A derivation of this method has

been proposed and tested recently in order to study the sound
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pressure radiated by a free Plexiglas plate impacted by a

steel pendulum.19 The Fourier operators with respect to time

F t and F�1
t are then replaced with Laplace operators. This

change would suppress aliasing errors but requires a regula-

rization process to limit the instabilities due to the inversion

of the numerical Laplace transform.

The time domain method should preferably be applied,

using Fourier or Laplace operators, to one pressure time-sig-

nal of finite duration only. Therefore, the nonstationary stud-

ied event must be short. Indeed, in the time domain method,

standard NAH has to be reiterated as many times as there are

spectral lines. And the whole process has to be reiterated if

several data blocks are considered with long time sequences.

In addition, the possible use of a regularization technique

(L curve or generalized cross-validation)20 to reconstruct the

source plane at each frequency becomes enormously time-

consuming. An exponential or Wiener filtering in the wave-

number domain seems then more suitable. All the microphone

signals should be acquired at the same time.

However, the technique may be used on repeatable non-

stationary signals. It was done in the more simple case of for-

ward (not backward) prediction of sound pressure fields by La

Rochefoucauld et al.21 A 4 � 4 square array moved by a two-

axis robot is then used to acquire the pressure field radiated by

two loudspeakers and a baffled plate on a 8 � 8 or a 28 � 20

grid of measurement points. The goal is then to reconstruct,

during a short period of about 5 ms, the time pressure signals

on a plane z ¼ zF from the signals recorded on the plane z
¼ zA (see Fig. 1). Accurate results are obtained when the prop-

agation distance zF � zA is small compared with the wave-

length kmean calculated from the frequency of the spectrum

maximum [(zF � zA)=kmean � 0.35]. Note that this direct prob-

lem has also been investigated when the time domain method

is implemented using numerical Laplace transforms.22

B. Time-dependent spatial pressure field
for one frequency

Deblauwe et al.’s work focuses on a time-evolving spatial

map of the pressure field.9 The aim of the study is to provide

p(x, y, zS, s, x0), the time-dependent pressure field radiated by

an acoustic system directly on the plane source, into a time

interval centered at time t ¼ s, for a specific frequency x0.

The major development of this method called “transient

method” is the use of a short time Fourier transform (STFT)

on the acoustic time-signals acquired by the microphone array

(see Fig. 4). For each angular frequency x, this operation pro-

vides the time-dependent spatial pressure field p(x, y, zA, s, x)

on the plane at a distance zA from the source plane. Then, once

a frequency x0 has been chosen, the NAH processing tech-

nique described in Sec. II is iterated, for the frequency studied

x0, on the spatial pressure field p(x, y, zA, s, x0), for each time

interval s. The method ends with the recovered time-evolving

spatial pressure field p(x, y, zS, s, x0) on the source plane.

Equations (8) and (9) formalize the method

p x; y; zS; s;x0ð Þ ¼ F�1
x;yRF x;y p x; y; zA; s;x0ð Þ (8)

with

p x; y; zA; s;x0ð Þ ¼ p x; y; zA; s;xð Þ x¼x0
;j

¼ F t p x; y; zA; tð Þh t� sð Þ x¼x0
j ; (9)

where h(t) denotes the window used for the pieces of the sig-

nal and F t, the following Fourier operator

F t �
ðþ1
�1

e�jxtdt: (10)

The main advantage of this approach is that there is no li-

mitation on the length of the acoustic time-signals studied

because the processing method operates on pieces of time-sig-

nals. This is due to the use of the windowed Fourier transform.

The resolution in time and frequency depends on the spread of

the window used for the STFT. It is well established that the

two resolutions are dependent due to the Heisenberg uncer-

tainty principle.23 The spread of the window must be set once

and for all. Hence the time and frequency resolutions are

stated. The disadvantage of this approach comes from this

FIG. 3. Synopsis of time domain

holography for nonstationary sources

highlighting time-dependent acoustic

pressure on the source plane.
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point. Since the acoustic system studied is not stationary, differ-

ent patterns may occur such as fast transient signals and signals

with slower variations. In this case, the spread of the window

chosen for the analysis may be suitable for one pattern but not

for the other. It is known in speech analysis that a window suit-

able for the analysis of vowels is not so for consonants. When

the spread of the window is large, increasing the frequency re-

solution, the resolution in time decreases even if the pieces of

the signal are made to overlap significantly. Let us consider the

maximum overlap of pieces leading to a spatial pressure field

mapping every Ds ¼ 1=fe, where fe denotes the sampling fre-

quency. If a short transient signal appears, traces of the pattern

would be noticed on the representations for several moments

whose duration overruns that of the phenomenon itself.

For this method, which provides a time-dependent spa-

tial pressure field for one frequency, acquisitions from the

points of the measurement area need to be processed at the

same time which implies a system of about 100 channels.

However, for specific engine applications involving rela-

tively slow run-ups such as a revolution increment per

minute of 250, per second or less, Deblauwe et al. claim that

in practice the phase relationship between points of the mea-

surement area is repeatable according to different runs.9 In

this specific way, the analysis, where the time axis is

replaced by a rpm (revolutions per minute) axis, can be done

without the need of a high channel count acquisition system.

IV. RT-NAH

A. Theory

A formulation for radiating acoustic sources given in the

time-wavenumber domain was proposed by Forbes et al.13

This formulation has the advantage to allow one to continu-

ously reconstruct the pressure field at a plane z ¼ zF from

measurements done in a plane z ¼ zA with the configuration

shown in Fig. 1. In a recent study the approach was revisi-

ted, its accuracy was discussed, and the results obtained on

simulated cases implementing the direct problem encour-

aged us to investigate the inverse problem.14

The direct problem is described by means of a convolu-

tion product in the time-wavenumber domain between the

time-dependent wavenumber spectrum P(kx, ky, zA, t) and an

impulse response h(kx, ky, zF� zA, t),

P kx; ky; zF; t
� �

¼ P kx; ky; zA; t
� �

� h kx; ky; zF � zA; t
� �

:

(11)

The forward radiation can also be considered from the

source plane z ¼ zS to the measurement plane z ¼ zA. Then,

P kx; ky; zA; t
� �

¼ P kx; ky; zS; t
� �

� h kx; ky; zA � zS; t
� �

:

(12)

According to Ref. 14, the impulse response h(kx, ky,

zA � zS, t) can be written using the notations for the propaga-

tion distance Dz ¼ zA� zS, the wavenumber kr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

p
,

the propagation delay s ¼ Dz/c, and the transition pulsation

Xr ¼ ckr,

h kx; ky; zA � zS; t
� �

¼ h Xr; s; tð Þ
¼ d t� sð Þ � g Xr; s; tð Þ; (13)

with d(t) as the Dirac delta function and where

g Xr; s; tð Þ ¼ s X2
r

J1 Xr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p� �

Xr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p C t� sð Þ: (14)

J1 denotes the first order Bessel function of the first kind and

C(t), the Heaviside step function defined by

C tð Þ ¼
0
1
2

1

for t < 0;
for t ¼ 0;
for t > 0:

8<
: (15)

FIG. 4. Synopsis of the transient

method for nonstationary sources,

highlighting, for a given frequency

x0, the time-dependent spatial pres-

sure field on the source plane

(STFT).
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The approach called RT-NAH has the ability to continu-

ously reconstruct the time-dependent acoustic signals located

in a virtual grid facing the microphone array. It has the same

theoretical basis as the two previously discussed methods,

but it does not require to work in the frequency domain to

reconstruct the acoustic field on the source plane, including

the evanescent waves. The RT-NAH method reaches this

goal by performing the inverse operation of that described

by Eq. (12),

P kx; ky; zS; t
� �

¼ P kx; ky; zA; t
� �

� h�1 kx; ky;Dz; t
� �

; (16)

where h�1(kx, ky, Dz, t) is an inverse impulse response operat-

ing in the time-wavenumber domain to back-propagate the

pressure field from the measurement plane to the source

plane. The objective here is to provide the time-dependent

pressure signal on the source plane as for the time-method

by computing h�1(kx, ky, Dz, t). The synopsis of the method

is described in Fig. 5. Using operator Ct;h�1 of time convolu-

tion over the inverse impulse response h�1(kx, ky, Dz, t),
RT-NAH may be described by the following equation:

p x; y; zS; tð Þ ¼ F�1
x;yCt;h�1F x;y p x; y; zA; tð Þ: (17)

B. Interpretation in the frequency domain

Considering that Fourier operators are commutative,

Eq. (7) giving the time-dependent spatial pressure field on

the source plane may be re-written as

p x; y; zS; tð Þ ¼ F�1
x;yF�1

t RF tF x;y p x; y; zA; tð Þ: (18)

The step which provides the pressure field P(kx, ky, zS, t) on

the source plane in a time-wavenumber domain from that

on the measurement plane in the same domain is

P kx; ky; zS; t
� �

¼ F�1
t RF t P kx; ky; zA; t

� �
: (19)

Equation (19) is re-written with the unique operator Ct;h�1 of

Eq. (17) corresponding to the time convolution as

P kx; ky; zS; t
� �

¼ Ct;h�1 P kx; ky; zA; t
� �

: (20)

It is noticeable that the Fourier transform of Eq. (12)

with respect to time yields

P kx; ky; zA;x
� �

¼ P kx; ky; zS;x
� �

H Xr; s;xð Þ; (21)

where H(Xr, s, x) is the frequency response of the acoustic

radiation. H(Xr, s, x) is well known in NAH1 since it is

defined as the propagator from the plane z ¼ zS to the plane

z ¼ zA such as

H Xr; s;xð Þ ¼ e�js
ffiffiffiffiffiffiffiffiffiffiffi
x2�X2

r

p
for x � X r;

e�s
ffiffiffiffiffiffiffiffiffiffiffi
X2

r�x2
p

for x < X r:

(
(22)

This propagator is usually represented at a given fre-

quency as a function of wavenumber ðkr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

p
Þ,

whereas the idea here is to express it for a given wavenum-

ber (kr ¼ Xr/c) as a function of angular frequency. The

inverse problem can be analyzed in the frequency domain by

directly inverting the frequency response H(Xr, s, x) in

Eq. (22), yielding the inverse frequency response

H�1 Xr; s;xð Þ ¼ 1

H Xr; s;xð Þ

¼ ejs
ffiffiffiffiffiffiffiffiffiffiffi
x2�X2

r

p
for x � Xr;

es
ffiffiffiffiffiffiffiffiffiffiffi
X2

r�x2
p

for x < Xr:

(
(23)

H�1(Xr, s, x) allows one to obtain the time-wavenumber

pressure P(kx, ky, zS, t) on the source plane z ¼ zS from the

time-wavenumber pressure P(kx, ky, zA, t) on the measure-

ment plane z ¼ zA according to Eq. (24) which is also the

Fourier transform of Eq. (16),

FIG. 5. Synopsis of RT-NAH proc-

essing for nonstationary sources

highlighting time-dependent acous-

tic pressure on the source plane

[path (1)]. The configuration with

path (2) depicts Eq. (18).
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P kx; ky; zS;x
� �

¼ P kx; ky; zA;x
� �

H�1 Xr; s;xð Þ: (24)

The modulus and the phase of the inverse frequency

response H�1(Xr, s, x) are shown in Fig. 6. In the case of

RT-NAH, as for the direct problem described in Ref. 14, the

transition frequency fr ¼ Xr=2p takes an important part. It

separates two kinds of wave behavior in the frequency-

wavenumber domain. The components of the time-evolving

wavenumber spectrum P(kx, ky, zA, t) with a frequency f � fr
behave as propagating waves. Their back-propagation leads to

a change of phase, but their amplitudes remain unchanged.

The components P(kx, ky, zA, t) with a frequency f < fr behave

as evanescent waves. Their back-propagation leads to an

amplification of their amplitudes, but their phases remain

unchanged. This amplification may induce erroneous values

in the presence of measurement noise and thus is a difficult

point for solving the inverse problem. The value of the nor-

malized transition frequency for a transfer function associated

with a wavenumber (kx, ky) also indicates the proportion of

evanescent waves processed. The latter will obviously result

in difficulties in the inverse process. The influence of the tran-

sition frequency highlights the specificity of RT-NAH method

dedicated to fluctuating sources. In RT-NAH, processing in

the time-wavenumber domain does not lead to separate propa-

gating and evanescent waves while both kinds of wave are

well separated in the wavenumber domain in standard holog-

raphy. However, as reported before, propagating and evanes-

cent wave components are differently processed by h�1(kx, ky,

Dz, t) in RT-NAH. Since the goal of the study is to compute

the inverse impulse response h�1(kx, ky, Dz, t), the current

discussion gives an evident solution. By sampling in the

frequency domain the analytic inverse transfer function

H�1(Xr, s, x) in Eq. (23) and then by operating the inverse

Fourier transform, the time-wavenumber inverse impulse

response is obtained. This method is denoted Fourier-I (FI).

Another approach is to start with an expression of the

impulse response h(kx, ky, Dz, t) describing the direct problem

[see Eq. (12)] and then to invert it. It is clear that having the

analytic expression of g(kx, ky, Dz, t) [Eq. (14)] which is linked

to h(kx, ky, Dz, t) by Eq. (13) seems comforting. However,

Grulier, who investigated various pre-processed impulse

responses,24 demonstrated that it is necessary to carefully

sample g(kx, ky, Dz, t). According to a numerical work involv-

ing monopole sources driven by nonstationary signals,14 three

methods can be chosen to implement the impulse response

rather than directly sample it. These methods used to provide

operational impulse responses for the inversion process are

briefly introduced in Sec. IV C. Another technique tested here

to provide the discretized impulse response h(kx, ky, Dz, t) con-

sists of directly operating the inverse discrete Fourier trans-

form on the analytical transfer function H(Xr, s, x) in Eq.

(22). The approach is called Fourier-D (FD) method.

Before defining the inverse impulse response h�1(kx, ky,

Dz, t), let us give the expression of the impulse response

used h(kx, ky, Dz, t).

C. Processing the direct impulse response

The four treatments applied to the theoretical function

g(Xr, s, t) in Eq. (14), detailed in Refs. 14 and 24, are sum-

marized as follows:

(1) Direct method: g(Xr, s, t) is sampled at discrete equidis-

tant instants in time.

(2) Average method: g(Xr, s, t) is average sampled. For each

time t ¼ ns, the mean value �g(Xr, s, t) is computed into

the interval Dt centered at t ¼ ns using an integral.

(3) Chebyshev method: g(Xr, s, t) is low-pass filtered using a

Chebyshev filter with a cutoff frequency fc ¼ 6400 Hz. It

is achieved by upsampling g(Xr, s, t) by the factor

D ¼ 8, using the low-pass filter and then downsampling

the resulting response by the factor 1/D.
(4) Numerical Kaiser method: g(Xr, s, t) is low-pass filtered

using a Kaiser-Bessel filter with a cutoff frequency

fc ¼ 6640 Hz. An upsampling factor of D ¼ 2 is used,

and the integral for the convolution is numerically com-

puted using the trapezoidal method.

D. Inverting the impulse response

Suppose that a processing method among those described

before is used to provide N samples of g(Xr, s, n). The impulse

response h(Xr, s, n) or h(kx, ky, Dz, n) describing the acoustic

radiation from the source plane z ¼ zS to the measurement

plane z ¼ zA is deduced from Eq. (13). The goal of this step is

now to find out the inverse filter with the impulse response

h�1(kx, ky, Dz, n) that recovers the discrete time-dependent

wavenumber spectrum P(kx, ky, zS, n) on the source plane,

according to the discretized version of Eq. (16),

P kx;ky; zS;n
� �

¼ P kx;ky; zA;n
� �

� h�1 kx;ky;Dz;n
� �

: (25)

The number of coefficients N of the direct causal filter

with a finite-duration impulse response (FIR) is chosen, sup-

posing that after a duration of N � Te seconds (Te is the

inverse of the sampling frequency), the oscillations of the

impulse response are very weak and then insignificant. To

provide the inverse impulse response h�1(kx, ky, Dz, n), it is

necessary to fulfill the following condition:

FIG. 6. Magnitude and phase in rad of the theoretical inverse transfer func-

tion H�1(Xr, s, f ) for the normalized transition frequency fr=ðfe=2Þ ¼ 0:4
and the propagation distance Dz ¼ 0.05 m.
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h�1 kx; ky;Dz; n
� �

� h kx; ky;Dz; n
� �

¼ d nð Þ: (26)

In order to ensure the causality of h�1(kx, ky, Dz, n), the

right part of Eq. (26) must be replaced with d(n�N). Opti-

mum Wiener filtering may solve this problem.2 Many applica-

tions in acoustics indeed successfully reach their goals by the

use of a Wiener filter: Source deconvolution in exploration

seismology,25 in water environment,26 binaural reproduction

of stereo sound,27–29 and active control of sound and vibra-

tion.30 In these cases, the Wiener’s problem of finding a filter

in order to minimize the mean square error between the esti-

mated signal y(n) and the desired signal d(n) is represented in

a block diagram (see Fig. 7). The choice of the desired signal

d(n) provides a degree of freedom for the approach. When the

desired signal d(n) is the propagated signal sh(n), the aim of

the Wiener filter w(n) is to suppress the noise z(n) from the

received signal r(n). This configuration can be used in stand-

ard NAH in the frequency-wavenumber domain before back-

propagating the wavenumber spectrum for each frequency

from the measurement plane to the source plane. The mea-

surement noise is then attenuated by the Wiener filter in the

wavenumber domain just before exponential amplification of

the wavenumbers in the area corresponding to evanescent

waves. In fact, this Wiener filter is a particularly case of the

standard Tikhonov filter for which the regularization parame-

ter is taken as the inverse of the signal-to-noise ratio. When

the desired signal d(n) is the source signal s(n), the Wiener fil-

ter w(n) solves an inverse problem: Inverting the direct

impulse response h(n). By considering an impulse sound

source s(n) ¼ d(n) or its delayed version s(n) ¼ d(n�N) [with

N as the number of samples of the impulse response h(n)] in

order to have a causal inverse filter, the searched solution

h�1(kx, ky, Dz, n) is obtained by minimizing the mean square

error criterion

Jðkx; ky;DzÞ ¼
Xþ1

n¼�1
½dðn� NÞ � hðkx; ky;Dz; nÞ

� h�1ðkx; ky;Dz; nÞ�2: (27)

The solution sought corresponds to the impulse response

of a FIR filter with h�1(kx, ky, Dz, n) ¼ 0 for n < 0 and n � N.

Thus Eq. (27) yields

J kx; ky;Dz
� �

¼
Xþ1

n¼�1

"
d n� Nð Þ �

XN�1

m¼0

h�1 kx; ky;Dz;m
� �

� h kx; ky;Dz; n� m
� �#2

: (28)

The minimization of criterion J(kx, ky, Dz) leads to the

Wiener-Hopf equations2 which can be written in the com-

pact matrix form as

h�1 ¼ U�1
h hr; (29)

where h21 is the vector of the solutions, Uh the correlation

matrix of the direct filter, and hr the reverse vector of the

direct filter [h(n) ¼ h
r(N� 1� n), n ¼ 0, N� 1], which is

derived from the cross-correlation between the direct filter

and the desired signal (the Dirac delta function). Inverting

the correlation matrix can be done using the regularization

solution as

h�1 ¼ UH
h Uh þ kI

� ��1
UH

h hr; (30)

with k as the regularization parameter, I as the identity ma-

trix, and UH
h as the transconjugate of matrix Uh. The inverse

filter is causal, but the discrete time-dependent wavenumber

spectrum P(kx, ky, zS, n), obtained on the source plane from

Eq. (25), is delayed with a time delay equal to the number of

samples N of the impulse response. Note that it does not pre-

vent the method from continuously providing the time-de-

pendent wavenumber spectrum on the source plane.

V. NUMERICAL RESULTS

A. Set-up

Three monopoles driven by nonstationary signals radiate

from the source plane at the positions M1 (0.3125, 0.375,

0 m), M2 (0.75, 0.75, 0 m), and M3 (0.25, 0.75, 0 m). Both

monopoles M1 and M2 generate a signal with a linear fre-

quency modulation in the band [200, 1800] Hz and a Gaus-

sian amplitude modulation. Monopole M3 radiates a Morlet

wavelet according to the expression

s tð Þ ¼ cos 2pf0tð Þe�t2=2; (31)

with f0 ¼ 800 Hz. A 17 � 17 microphone array is used

for the simulation. It is located in the measurement plane

z ¼ zA ¼ 0.1575 m, as shown in Fig. 1. The step size in both

x and y directions is DL ¼ 0.0625 m, providing an overall

scan dimension of 1.0 � 1.0 m2. For industrial applications

the aim of real-time acoustic holography is of course to con-

tinuously reconstruct the time-dependent pressure field on

the source plane. But here, another reconstructed plane is

chosen to evaluate the accuracy of the method because of

the singularity of the pressure of a monopole on the source

plane. Time-dependent reference pressure field will be calcu-

lated on this plane from the sources. The back-propagation

distance between the measurement plane and the recon-

structed plane is Dz ¼ 0.1075 m so that the reconstructed

pressure is computed in the plane zR ¼ 0.05 m. The emitted

signals are sampled at a frequency fe ¼ 16 000 Hz providing

256 samples. This set-up is similar to that used in Ref. 14 for

the study of forward propagation of time-evolving acoustic

pressure.

FIG. 7. Optimum filtering: The aim is to find the Wiener filter w(n) which

minimizes the mean square error e(n) between the desired signal d(n) and

the estimated signal y(n).

J. Acoust. Soc. Am., Vol. 128, No. 6, December 2010 Thomas et al.: Real-time acoustic holography 3561

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



The goal of the current study is to provide the time-

dependent pressure signal on a virtual grid which is the pro-

jection of the microphone array onto the reconstructed plane.

It is easily done by using the two dimensional inverse spatial

Fourier transform once the time-dependent wavenumber

spectrum is computed on the reconstructed plane. The

inverse spatial Fourier transform is the inverse operator of

the discrete Fourier transform which was applied to the

time-signals acquired by the microphone array to provide the

instantaneous wavenumber spectrum. According to the sam-

pling theorem in space domain, the maximal spatial fre-

quency considered is p=DL rd m�1 and the smallest spatial

frequency which can be resolved is 2p rd m�1. Thus the key-

point is to obtain the back-propagated wavenumber spectrum

on the plane z ¼ zR. It is based on the equation

P kx; ky; zR; t
� �

¼ P kx; ky; zA; t
� �

� h�1 kx; ky; zA � zR; t
� �

:

(32)

Wiener optimum filtering is achieved to compute the

inverse impulse response h�1(kx, ky, zA� zR, t) from different

impulse responses h(kx, ky, zA� zR, t) for each pair (kx, ky) of

the time-wavenumber domain. The latter are built from the

Chebyshev method (C), the numerical Kaiser method (N),

the average method (A), the FD method, and the direct

method (D) for which the impulse response is provided by

directly sampling g(Xr, s, t) in Eq. (14) at fe ¼ 16 000 Hz or

fe ¼ 64 000 Hz. The other approach denoted FI method,

based on the inverse Fourier transform of H�1(Xr, s, x) [see

Eq. (23)], is also tested. Figure 8(a) shows two examples of

direct impulse responses h(kx, ky, zA� zR, n) obtained from

the direct and the Chebyshev methods for a location (kx

¼ 11.83 rd m�1, ky ¼ 11.83 rd m�1) of the wavenumber spec-

trum. Figure 8(b) shows the corresponding inverse impulse

responses h�1(kx, ky, zA� zR, n). The MATLAB language was

used to implement the computation.

B. Indicators

Two time indicators T1 and T2 are used [see Eqs. (33)

and (34)] to describe the results obtained objectively. They

are based on the reconstructed signals p(x, y, zR, t) and on

simulated signals pr(x, y, zR, t), considered as reference sig-

nals directly propagated on the plane z ¼ zR. For the compar-

ison based on the indicators, the time delay of the

reconstructed signals, due to the inverse process of the

impulse response, is compensated:

T1 ¼
h pr x; y; zR; tð Þp x; y; zR; tð Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h p2

r x; y; zR; tð Þih p2 x; y; zR; tð Þi
p ; (33)

T2 ¼
prms

r x; y; zRð Þ � prms x; y; zRð Þ
		 		

prms
r x; y; zRð Þ ; (34)

where prms
r x; y; zRð Þ and prms(x, y, zR) are the pressure root

mean square values given by

prms
r x; y; zRð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h p2

r x; y; zR; tð Þi
q

; (35)

prms x; y; zRð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h p2 x; y; zR; tð Þi

p
: (36)

h i is the time averaged value.

T1, as a correlation coefficient, is sensitive to the simi-

larity between the shapes of the signals and thus between

their phase difference. T2, defined as the relative difference

between the root mean square values of the two signals, pro-

vides information on the magnitude accuracy of the recon-

structed signals.

C. Results

Figure 9 highlights the time pressure signals p(0.25,

0.75, 0.05 m, t) reconstructed in R3 facing the monopole M3

(see Fig. 1). The pressure signals are provided by convolving

P(kx, ky, zA, t) the time-dependent wavenumber spectrum in

the measurement plane z ¼ zA over the inverse impulse

responses resulting from Wiener optimum filtering of the

impulse responses provided by the direct method for fe
¼ 16 000 Hz [Fig. 9(a)], for fe ¼ 64 000 Hz [Fig. 9(d)], the

Chebyshev method [Fig. 9(b)], the average method [Fig.

9(c)], the numerical Kaiser method [Fig. 9(e)], and the FD

method [Fig. 9(f)]. Through indicators T1 and T2, the recon-

structed pressure signals are objectively compared to the ref-

erence pressure signals directly propagated to the plane z
¼ zR by simulation. The values of indicators T1 and T2 for

reconstructed time-signals in locations R1, R2, R3, and R4

(see Fig. 1) are reported in Table I. A good similarity with

regard to magnitude gives T2 values near 0. Phase accuracy

gives T1 in the neighborhood of 1. The reconstructed signal

using the most evident method called FI method is not

shown as the indicator values are very poor. This result con-

firms that NAH is an ill-posed problem which must be

solved with great care. It is well known that in NAH filtering

in the wavenumber domain is required before reconstruction.

The same requirements are needed when using RT-NAH on

FIG. 8. Direct impulse responses h(kx, ky, zA� zR, n) (a) and inverse impulse

responses h�1(kx, ky, zA� zR, n) (b) truncated at 30 samples, obtained for

one location of the wavenumber spectrum kx ¼ 11.83 rd m�1 and ky

¼ 11.83 rd m�1 with the direct (circular markers) and the Chebyshev (square

markers) methods.
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nonstationary sources but in time-wavenumber domain. It is

then necessary to filter the analytic inverse transfer function

H�1(Xr, s, x) by means of a Tikhonov filter WT(Xr, s, k, x)

for instance, as proposed in Ref. 24, before operating the

inverse Fourier transform of H�1
regul Xr; s;xð Þ,

H�1
regul Xr; s;xð Þ ¼ H�1 Xr; s;xð ÞWT Xr; s; k;xð Þ; (37)

with

WT Xr; s; k;xð Þ ¼

1

1þ k
for x � Xr;

1

1þ ke2s
ffiffiffiffiffiffiffiffiffiffiffi
X2

r�x2
p for x < Xr:

8>><
>>: (38)

The most accurate reconstructed signal is obtained from

the direct method when the signal is oversampled. The Che-

byshev and the FD method give also interesting results with

regard to the phase (T1 indicator). It is clear that the average

method and the numerical Kaiser method are not suitable for

the inversion based on the optimum filtering approach used

in the study. The same conclusions can be drawn from the

examination of spatial maps given indicators T1 and T2 in

the whole space. Figure 10 highlights some of these maps

obtained by the direct method with two sampling frequencies

fe ¼ 16 000 Hz [Fig. 10(a) for T1, Fig. 10(b) for T2], and fe
¼ 64 000 Hz [Fig. 10(e) for T1, Fig. 10(f) for T2], and the

Chebyshev method [Fig. 10(c) for T1, Fig. 10(d) for T2].

The contour line value used for indicator T1 is 0.95 in

Figs. 10(a), 10(c), and 10(e). The gray area in Figs. 10(b),

10(d), and 10(e) correspond to T2 values within the interval

[0, 0.1]. This area is larger for the direct method with a sam-

pling frequency fe ¼ 64 000 Hz. The locations facing the

monopole sources do not give the best results in terms of

phase similarity [see Figs. 10(a), 10(c), and 10(e)]. The use

of the Chebyshev method [Fig. 10(c)] enhances this point in

comparison to the direct method [Fig. 10(a)] experimented

with the same sampling frequency fe ¼ 16 000 Hz. The error

is also higher near the edges of the scanned area, but this

problem is inherent with the field truncation by the hologram

FIG. 9. Reconstructed time-signals (solid line) versus reference signals (dotted line) in the time-space domain in location R3 (cf. Fig. 1) for different impulse

response inversions computed by five methods [direct (a) and (d), Chebyshev (b), average (c), numerical Kaiser (e), Fourier-D (f)]. The indicators T1 [Eq.

(33)] and T2 [Eq. (34)] are given on top of each graph.

TABLE I. Indicators T1 and T2 [see Eqs. (33) and (34)] computed from ref-

erence signals and pressure signals backpropagated to the plane z ¼ zR in

locations R1, R2, R3, and R4 (see Fig. 1) using the inverse impulse responses

obtained by the direct method [(D1) with fe ¼ 16 000 Hz, (D2) with fe
¼ 64 000 Hz], the average method (A), the Chebyshev method (C), the nu-

merical Kaiser method (N), the FD method, and the FI method.

D1 D2 A C N FD FI

R1

T1 0.780 0.913 0.617 0.888 0.654 0.831 0.884

T2 0.030 0.249 1.523 0.124 0.179 0.160 8.616

R2

T1 0.756 0.921 0.758 0.900 0.636 0.868 0.888

T2 0.014 0.135 0.394 0.005 0.292 0.162 9.749

R3

T1 0.849 0.965 0.759 0.933 0.663 0.858 0.967

T2 0.022 0.316 1.706 0.203 0.238 0.307 6.205

R4

T1 0.855 0.993 0.590 0.943 0.843 0.833 0.602

T2 0.086 0.114 7.478 0.119 1.212 0.164 16.305
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FIG. 10. Spatial maps for indicator T1 and T2 to, respectively, assess the phase and the amplitude similarities between the reference signals and the back-

propagated signals using the direct method with two sampling frequency fe ¼ 16 000 Hz (a), (b), fe ¼ 64 000 Hz (e), (f), and the Chebyshev method (c), (d).

The locations of R1(þ), R2(þ), R3(þ), and R4(*) are marked. The contour line for indicator T1 is set at the value 0.95 in (a), (c), and (e). For the (b), (d), and

(f) graphs, the areas in gray correspond to values of T2 within the interval [0, 0.1].
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and can be reduced by selective spatial filtering using

wavelets.31

Upsampling of the impulse response before inverse Wie-

ner filtering enhances the reconstruction error, particularly

with regard to the signal phase. This parameter seems to be

more relevant than processing the impulse responses. This

result differs from those obtained on forward reconstructed

time-dependent acoustic fields.14 In that study, processing the

impulse response appeared as a necessary condition to reach a

correct reconstruction error while working with a higher sam-

pling rate was not sufficient. In the case of RT-NAH, the con-

tribution of the processing techniques on the impulse response

in the time-wavenumber domain has not been yet demon-

strated. The numerical Kaiser method which led to the best

forward reconstruction error is not appropriate for solving the

inverse problem when Wiener optimum filtering is used for

inverting the impulse response. One assumption for that is the

ill-posed nature of NAH. It is probably necessary in future

works to enhance the inverting process of the correlation ma-

trix in Eq. (29) as mentioned in Eq. (30). In addition, using

regularization techniques for inverting the impulse response

for recovering time-dependent acoustic fields seems promis-

ing.32 And in this case, the reconstruction error seems sensi-

tive to the method used for processing the impulse response.

D. Interest of the method

Figures 11 and 12 are intended to show the interest of

RT-NAH. Indeed, the technique continuously provides infor-

mation on how the acoustic sources radiate. Time-signals

from spatial locations or images of the field radiated by sour-

ces are provided at any time: Each new time sample on the

microphone array gives a new time sample on the recon-

struction plane. It is different from time domain holography

for which the pressure time-signals are reconstructed by data

blocks. However, the aim of both methods is to reconstruct

time-signals on the source plane. Let us observe the time-

signals in Fig. 11. They have been reconstructed by RT-

NAH using the direct method with fe ¼ 16 000 Hz at three

locations facing the sources M1, M2, and M3. The reference

signals are drawn in dotted line showing an error in the phase

of the reconstruction. But it is not the point here as we want

to focus on the time evolution of the acoustic field radiated

by the sources. Four time instances t1 ¼ 5.87 ms, t2 ¼ 7.12

ms, t3 ¼ 8.19 ms, and t4 ¼ 9.44 ms are arbitrarily chosen

(see the vertical dashed lines in Fig. 11). The spatial fields

corresponding to these time instances are shown in Fig. 12.

At time t1 (a), as it can be checked in Fig. 11, the acoustic

field is dominated by the acoustic signals radiated by sources

M1 and M2. At time t2 (b), the level of radiation from the two

previous sources is getting higher and the effect of the source

M3 is visible. At time t3 (c), the acoustic field is composed of

three sources which radiate highly and similarly. At time t4
(d), only the source M3 radiates with a low level. Thus RT-

NAH provides a means of highlighting sound fluctuations

both in time and space.

VI. CONCLUSION

The method called RT-NAH has the advantage to contin-

uously reconstruct time acoustic signals on the source plane

from measurements done in the near-field using a microphone

array. The specificity of the method is that it operates in the

time-wavenumber domain with the means of a convolution

product between the time-dependent wavenumber spectrum

recorded by the array and an inverse impulse response.

Accordingly, the sound fields studied by this technique do not

require to be radiated during a short time period as for time

domain holography. In addition, the ability to provide time-

signals on the source plane as if the sensors were embedded

into the acoustic sources is promising. The reconstructed sig-

nals indeed can be post-processed in order to diagnose the

behavior of any system making noise. For instance, a time-fre-

quency analysis of the reconstructed signals would provide

their time-evolving frequency content and then the time-

evolving spatial pressure field for any frequency band chosen

a posteriori. It is also an advantage over the transient method

for which the frequency band of interest is chosen a priori at

the beginning of the analysis. It is also possible to rebuild all

other instantaneous acoustic quantities (velocity, sound

intensity, …) or instantaneous physical quantities in a me-

chanical structure (strain, stress, power flow) whose vibra-

tional field is identified on the reconstruction plane.

The heart of the method was shown to be inverting the

impulse response. Upsampling the analytic direct impulse

response or low-pass filtering it with a Chebyshev filter

before inversion using Wiener optimum filtering gave inter-

esting results in a simulated case involving three monopole

sources driven by nonstationary signals. However, it

appeared that improvement of the technique could be

reached by reconsidering the inversion process with regulari-

zation approaches.

For RT-NAH experimentations, it is important to notice

that each microphone of the array must record the acoustic

FIG. 11. Reconstructed time-signal on the plane zR ¼ 0.05 m using the

direct method with fe ¼ 16 000 Hz in three locations facing the monopoles.

The reference signals are drawn using a dotted line. Four time instances t1
¼ 5.87 ms, t2 ¼ 7.12 ms, t3 ¼ 8.19 ms, and t4 ¼ 9.44 ms are marked using

vertical dashed lines. The spatial acoustic fields corresponding to these time

instances are shown in Fig. 12.
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field at the same time, which often requires hundreds of

microphones and acquisition channels except if the sound

radiation is repeatable.
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