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A time-domain plane wave superposition method is proposed to reconstruct nonstationary sound

fields. In this method, the sound field is expressed as a superposition of time convolutions between

the estimated time-wavenumber spectrum of the sound pressure on a virtual source plane and the

time-domain propagation kernel at each wavenumber. By discretizing the time convolutions

directly, the reconstruction can be carried out iteratively in the time domain, thus providing the

advantage of continuously reconstructing time-dependent pressure signals. In the reconstruction

process, the Tikhonov regularization is introduced at each time step to obtain a relevant estimate of

the time-wavenumber spectrum on the virtual source plane. Because the double infinite integral of

the two-dimensional spatial Fourier transform is discretized directly in the wavenumber domain in

the proposed method, it does not need to perform the two-dimensional spatial fast Fourier transform

that is generally used in time domain holography and real-time near-field acoustic holography, and

therefore it avoids some errors associated with the two-dimensional spatial fast Fourier transform

in theory and makes possible to use an irregular microphone array. The feasibility of the proposed

method is demonstrated by numerical simulations and an experiment with two speakers.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4746035]

PACS number(s): 43.60.Sx, 43.60.Pt, 43.60.Gk [EGW] Pages: 2427–2436

I. INTRODUCTION

Nearfield acoustic holography (NAH)1,2 is a well-

known technique for reconstructing three-dimensional

sound fields based on the two-dimensional spatial fast Fou-

rier transform (SFFT) of sound pressure data measured

over a finite area. A set of methods avoiding the use of

SFFT was also developed, such as statistically optimized

nearfield acoustic holography (SONAH),3–6 Helmholtz

equation least-squares method (HELS),7,8 equivalent

source method (ESM),9–14 etc. SONAH, HELS, and ESM

are all based on the superposition principle: SONAH and

HELS, respectively, perform the superposition of the plane

wave functions and that of the spherical wave functions to

fit the measured sound field data; ESM performs the super-

position of the sound fields produced by a set of equivalent

sources to fit the given boundary condition on the source

surface or to fit the sound field data on the measurement

surface.

However, SONAH and ESM are usually applied to sta-

tionary sound fields. When the signals emitted by sources

are nonstationary, these two methods are unsuitable because

the spatial sound fields have statistical properties that fluctu-

ate with time. HELS can be implemented with a convolution

over time kernels for studying transient sound fields.15

Recently, transient NAH based on an interpolated time-

domain ESM was also proposed to reconstruct transient

acoustic fields directly in the time domain.16 To analyze non-

stationary sound fields, Hald17 proposed a method called

time domain holography (TDH). The reconstruction process

of TDH can be described as follows: The frequency spectra

of the pressure for each measurement point are first acquired

by applying the Fourier transform to the measured time-

dependent pressure signals, then for each angular frequency,

the reconstruction from the measurement plane to the source

plane is performed using standard NAH; finally an inverse

Fourier transform yields the time-dependent pressure on the

source plane. TDH is particularly well-adapted to the study

of short time events due to the use of the Fourier operators to

the time-dependent pressure signals. Real-time near-field

acoustic holography (RT-NAH) proposed by Thomas
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et al.18,19 has the advantage to continuously reconstruct

time-dependent pressure signals whatever the size of the sig-

nals analyzed. It is based on a time convolution formulation

in the time-wavenumber domain between the time fluctuat-

ing wavenumber spectrum and an inverse impulse response.

However, either in TDH or in RT-NAH, the two-

dimensional SFFT of the measured sound pressure is

employed. To reconstruct nonstationary sound fields, a time

domain plane wave superposition method (TD-PWSM) is

proposed in this paper. Unlike TDH and RT-NAH,

TD-PWSM replaces two-dimensional SFFT with the direct

discretization of double infinite integral of two-dimensional

spatial Fourier transform in the wavenumber domain to

avoid some limitations associated with the SFFT in theory

and then expresses the sound field as a superposition of the

time convolutions between the estimated time-wavenumber

spectrum of the sound pressure on the virtual source plane

and the time-domain propagation kernel at all wavenumbers.

But similarly to RT-NAH, TD-PWSM performs the recon-

struction directly in the time domain; this also provides the

advantage of continuously reconstructing time-dependent

pressure signals.

In Sec. II, the basic theory of TD-PWSM is outlined.

The formulas of TD-PWSM are deduced in Sec. II A.

Section II B describes the discretization method and an

iterative reconstruction process in detail. Because the recon-

struction process at each time step is ill-conditioned, the

Tikhonov regularization is introduced into the reconstruction

process. Sections III and IV, respectively, present a simula-

tion and an experiment to examine the feasibility of recon-

structing nonstationary sound fields by using TD-PWSM.

II. THEORY OF TD-PWSM

A. The formulas of TD-PWSM

Assume that all sources are behind the calculation plane

z ¼ zc. There exist a virtual source plane z ¼ zv in the half

space z � zc and a measurement plane z ¼ zm with N mea-

surement points in the half space z > zc, as shown in Fig. 1.

According to the forward propagation formulation of

the sound pressure in the time-wavenumber domain as

shown in Refs. 20 and 21, the time-wavenumber spectrum of

the pressure on the measurement plane can be expressed as

the convolution of that on the virtual source plane and the

impulse response function, that is

Pðkx; ky; zm; tÞ ¼ Pðkx; ky; zv; tÞ � hðkx; ky;Dzmv; tÞ; (1)

where Dzmv ¼ zm � zv, hðkx; ky; zm � zv; tÞ is the impulse

response function and given by

hðkx; ky;Dzmv; tÞ ¼ dðt� Dzmv=cÞ � Dzmv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q

�
J1ðc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � Dz2

mv=c2
p

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � Dz2

mv=c2
p

� Hðt� Dzmv=cÞ: (2)

In Eq. (2), c denotes the sound velocity, dðtÞ denotes the

Dirac delta function, J1 denotes the Bessel function of the

first kind and order 1, and HðtÞ denotes the Heaviside func-

tion. By applying the inverse two-dimensional spatial

Fourier transform with respect to x and y to Eq. (1), it yields

pðx; y; zm; tÞ ¼
1

ð2pÞ2
ð1
�1

ð1
�1
½Pðkx; ky; zv; tÞ

� hðkx; ky;Dzmv; tÞ� e�jðkxxþkyyÞdkxdky

¼ 1

ð2pÞ2
ð1
�1

ð1
�1

Pðkx; ky; zv; tÞ

� ½hðkx; ky;Dzmv; tÞe�jðkxxþkyyÞ� dkxdky:

(3)

Through setting r ¼ ðx; yÞ, which represents a coordinate

vector of any point in the space, and K ¼ ðkx; kyÞ, which rep-

resents a wavenumber vector, Eq. (3) is rewritten as

pðr; zm; tÞ ¼
1

ð2pÞ2
ð1
�1

ð1
�1

PðK; zv; tÞ

� ½hðK;Dzmv; tÞe�jðK•rÞ� dK: (4)

In Eq. (4), the double integral is discretized in the wavenum-

ber domain, then pðr; zm; tÞ is approximately given by

pðr; zm; tÞ �
XL

l¼1

PðKl; zv; tÞ

� DkxDky

ð2pÞ2
hðKl;Dzmv; tÞe�jðKl•rÞ

" #
: (5)

Here, fKl; l ¼ 1;…Lg is the set of the sampling points in

the wavenumber domain. Dkx and Dky are the sampling spac-

ing, respectively, for kx and ky wavenumbers. When

Dkx ! 0, Dky ! 0, and L!1, the accurate value of

pðr; zm; tÞ can be obtained from Eq. (5). However, due to dis-

crete computing, these conditions are never fulfilled. Mean-

while, because the evanescent waves corresponding to the

larger wavenumbers rapidly decay with an increasing dis-

tance, the tiny contributions associated with the larger wave-

numbers on the sound pressure pðr; zm; tÞ can be neglected.

Thus the almost accurate value of pðr; zm; tÞ can be obtained

by giving L, a limited number of wavenumbers. The choice

of L has to ensure that the sampling area in the wavenumber

FIG. 1. Geometry of the virtual source plane, the calculation plane, and the

measurement plane.
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domain covers all propagating waves and those evanescent

waves that have significant amplitude in the measurement

region.5 Defining the time-domain propagation kernel

between the sound pressure on the measurement plane

pðr; zm; tÞ and the time-wavenumber spectrum of the sound

pressure on the virtual source plane PðKl; zv; tÞ as

wðKl; r;Dzmv; tÞ ¼
DkxDky

ð2pÞ2
hðKl;Dzmv; tÞe�jðKl•rÞ; (6)

Eq. (5) can be rewritten as

pðr; zm; tÞ ¼
XL

l¼1

PðKl; zv; tÞ � wðKl; r;Dzmv; tÞ: (7)

Similarly the time-dependent spatial sound field on the cal-

culation plane z ¼ zc is

pðr; zc; tÞ ¼
XL

l¼1

PðKl; zv; tÞ � wðKl; r;Dzcv; tÞ; (8)

where Dzcv ¼ zc � zv. Equations (7) and (8) constitute the

basic formulas of the TD-PWSM that describe the time-

dependent sound pressure radiated by the actual sources as a

superposition of the time convolutions between the time-

wavenumber spectrum of the sound pressure on the virtual

source plane and the time-domain propagation kernel at each

wavenumbers. If the time-wavenumber spectrum PðKl; zv; tÞ
in Eq. (7) can be estimated properly by fitting the measured

sound pressure pðr; zm; tÞ and then is substituted to Eq. (8),

the time-dependent spatial sound field on the calculation

plane pðr; zc; tÞ would be directly obtained.

The aforementioned derivation process demonstrates the

two-dimensional SFFT of the measured sound pressure is

not used in the reconstruction process. Obviously, the double

infinite integral of the two-dimensional spatial Fourier trans-

form is discretized directly in the wavenumber domain. In

TDH and RT-NAH, the use of SFFT leads to confine kx and

ky to ½�p=a; p=a� where a is the sample spacing of the spa-

tial function, and the wavenumber resolutions Dkx and Dky

are always equal to 2p=W where W is the measurement aper-

ture in the x direction or in the y direction. In TD-PWSM,

the direct discretization of the integral brings the freedom of

extending the scope of kx and ky and narrowing the width of

Dkx and Dky. The extension provides abundant evanescent

wave information in the reconstruction results, and the nar-

rowing of Dkx and Dky implies that the aperture in the space

domain is enlarged; this weakens the effect of wrap-around

errors on the reconstruction results. Moreover, similarly to

RT-NAH, the TD-PWSM performs the reconstruction

directly in the time domain, which also provides the ability

of continuously reconstructing time-dependent pressure sig-

nals. The following section will describe this ability in

detail.

B. The discretization and reconstruction process

To implement Eqs. (7) and (8), the discrete time vari-

able ti such as

ti ¼ ði� 1ÞDt; i ¼ 1; 2; � � � I; (9)

is used where Dt is the sampling period. According to

Eqs. (2) and (6), the time-domain propagation kernel

wðKl; r;Dzmv; tÞ is equal to zero for t < s caused by the fact

that the impulse response function hðkx; ky;Dzmv; tÞ equals to

zero for t < s. s ¼ Dzmv=c corresponds to the time needed

for the waves to propagate from the virtual source plane to

the measurement plane. Consider that tk is the nearest time

step more than or equal to s. According to the discrete con-

volution formula, at time step tk, the spatial sound pressure

on the measurement plane z ¼ zm is

pðr; zm; tkÞ ¼
XL

l¼1

PðKl; zv; t1Þ � wðKl; r;Dzmv; tkÞ � Dt:

(10)

Here for the sake of simplicity, Dt is omitted in the following

formulas. The matrix formulation

pk
m ¼ Wk

mP1; (11)

where

pk
m ¼ ½ pðr1; zm; tkÞ pðr2; zm; tkÞ � � � pðrN; zm; tkÞ �T ;

(12)

P1 ¼ ½PðK1; zv; t1Þ PðK2; zv; t1Þ � � � PðKL; zv; t1Þ �T ;
(13)

Wk
m ¼

wðK1; r1;Dzmv; tkÞ wðK2; r1;Dzmv; tkÞ � � � wðKL; r1;Dzmv; tkÞ
wðK1; r2;Dzmv; tkÞ wðK2; r2;Dzmv; tkÞ � � � wðKL; r2;Dzmv; tkÞ

� � � �

wðK1; rN;Dzmv; tkÞ wðK2; rN;Dzmv; tkÞ � � � wðKL; rN;Dzmv; tkÞ

2
664

3
775; (14)

has the advantage to describe Eq. (10) for N measure-

ment points of coordinate rn ðn ¼ 1;…NÞ. Note that Wk
m

is a N � L matrix. If the number of measurement points

N is larger than the number of discrete wavenumbers L,

the wavenumber spectrum on the virtual source plane at

time t1 is provided using the left pseudo-inverse of ma-

trix Wk
m. The least-squares solution of Eq. (11) is then

expressed as
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~P
1 ¼ ðWk

m
HWk

mÞ
�1Wk

m
Hpk

m; (15)

where the symbol H represents the Hermitian transpose.

Although the condition N 	 L ensures the uniqueness of the

solution to the inverse problem, it leads to the requirement of

a large number of microphones for obtaining a space map

with the sufficient resolution. In practice, it is costly and diffi-

cult to meet this requirement. Therefore it is more realistic to

consider the number of measurement points N is smaller than

the number of discrete wavenumbers L. Although Eq. (11) is

under-determined when N < L and has infinitely many solu-

tions, its smallest two-norm solution can be obtained using

the right pseudo-inverse of matrix Wk
m, which is the standard

way to deal with under-determined cases in linear algebra.22

The smallest two-norm solution of Eq. (11) is expressed as

~P
1 ¼ ½Wk

m�
þR

pk
m; (16)

where ½Wk
m�
þR

represents the right pseudo-inverse of matrix

Wk
m and is given by

½Wk
m�
þR ¼ Wk

m
HðWk

mWk
m

HÞ�1: (17)

Once the smallest two-norm solution ~P
1

is solved, the pres-

sure at any point r0 on the calculation surface at the first time

step t1 can be deduced as

~pðr0; zc; t1Þ ¼ W1
c
~P

1
; (18)

where

W1
c ¼ ½wðK1; r

0;Dzcv; t1Þ wðK2; r
0;Dzcv; t1Þ …

wðKL; r
0;Dzcv; t1Þ�: (19)

According to the discrete convolution formula, at time

step tkþ1, the spatial sound pressure on the measurement

plane becomes

pðr; zm; tkþ1Þ ¼
XL

l¼1

PðKl; zv; t2Þ � wðKl; r;Dzmv; tkÞ

þ PðKl; zv; t1Þ � wðKl; r;Dzmv; tkþ1Þ:
(20)

Equation (20) can be described in the matrix form as

pkþ1
m ¼ Wk

mP2 þWkþ1
m P1; (21)

where

pkþ1
m ¼ ½pðr1; zm; tkþ1Þ pðr2; zm; tkþ1Þ …

pðrN; zm; tkþ1Þ�T ; (22)

Wkþ1
m ¼

wðK1; r1;Dzmv; tkþ1Þ wðK2; r1;Dzmv; tkþ1Þ � � � wðKL; r1;Dzmv; tkþ1Þ
wðK1; r2;Dzmv; tkþ1Þ wðK2; r2;Dzmv; tkþ1Þ � � � wðKL; r2;Dzmv; tkþ1Þ

� � � �

wðK1; rN;Dzmv; tkþ1Þ wðK2; rN;Dzmv; tkþ1Þ � � � wðKL; rN;Dzmv; tkþ1Þ

2
664

3
775: (23)

In Eq. (21), Wk
m, Wkþ1

m , and pkþ1
m are known quantities, and

P1 is replaced with ~P
1
. Similarly, using the right pseudo-

inverse of matrix Wk
m, the smallest two-norm solution of

Eq. (21) is expressed as

~P
2 ¼ ½Wk

m�
þRðpkþ1

m �Wkþ1
m

~P
1Þ: (24)

Once the smallest two-norm solution ~P
2

is solved, the pres-

sure at any point r0 on the calculation plane at the second

time step t2 can be deduced as

~pðr0; zc; t2Þ ¼ W1
c
~P

2 þW2
c
~P

1
; (25)

where

W2
c ¼ ½wðK1; r

0;Dzcv; t2Þ wðK2; r
0;Dzcv; t2Þ � � �

wðKL; r
0;Dzcv; t2Þ�: (26)

And so forth, the solution at the ith time step ti
(i ¼ 3; 4; � � � I � k þ 1) is given by

~P
i ¼ ½Wk

m�
þRðpiþk�1

m �Wkþ1
m

~P
i�1 �Wkþ2

m
~P

i�2

� � � � �Wiþk�1
m

~P
1Þ: (27)

Thus the pressure is obtained at any point r0 on the calcula-

tion surface at the ith time step ti

~pðr0; zc; tiÞ ¼ W1
c
~P

i þW2
c
~P

i�1 þ � � � þWi
c
~P

1
; (28)

where

Wi
c ¼ ½wðK1; r

0;Dzcv; tiÞ wðK2; r
0;Dzcv; tiÞ …

wðKL; r
0;Dzcv; tiÞ�: (29)

In Eqs. (16), (24), and (27), the direct use of the right

pseudo-inverse of matrix Wk
m leads to an inappropriate solu-

tion because the inversion is often ill-conditioned. Further-

more the above-mentioned iterative algorithm causes the

increase of calculation errors with time. To obtain an appro-

priate solution and suppress the increase of calculation
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errors, the Tikhonov regularization23 is implemented at each

time step. Then the smallest two-norm solution at the ith
time step ti (i ¼ 1; 2; � � � I � k þ 1) becomes

~P
i

k ¼ ½Wk
m�
þR
k ðpiþk�1

m �Wkþ1
m

~P
i�1 �Wkþ2

m
~P

i�2

� � � � �Wiþk�1
m

~P
1Þ; (30)

where ~P
i

k denotes the regularized solution, and

½Wk
m�
þR
k ¼ Wk

m
HðWk

mWk
m

H þ kIÞ�1: (31)

The regularization parameter k is estimated by the general-

ized cross validation (GCV),24 which consists of minimizing

the function JðkÞ defined by

JðkÞ ¼ kWk
m

~P
i

k � Bk2

½TrðI�Wk
m½Wk

m�
þR
k Þ�

2
; (32)

where

B ¼ piþk�1
m �Wkþ1

m
~P

i�1 �Wkþ2
m

~P
i�2 � � � � �Wiþk�1

m
~P

1
:

(33)

Because the matrix B is different at each time step, the regu-

larization parameter selected by Eq. (32) also changes with

time step. Currently, we have not found the significant trend

and regular pattern from the evolution of the regularization

parameter, and it is not sure that the regularization parameter

values returned from the GCV are always appropriate.

Nevertheless in the following, the relevance of the results

provided by the TD-PWSM method based on this regulariza-

tion is shown.

III. NUMERICAL SIMULATIONS

The setup of the numerical simulations is shown in

Fig. 2. The sources are composed of two monopoles the

positions of which are M1ð0:09 m; 0:27 m; 0 mÞ and

M2ð0:45 m; 0:27 m; 0 mÞ. M1 generates a nonstationary sig-

nal with a linear frequency modulation in the [200, 1800] Hz

band and a Gaussian amplitude modulation. M2 radiates

another nonstationary signal–Morlet wavelet defined by

sðtÞ ¼ cosð2pf0tÞe�t2=2; (34)

with f0 ¼ 800 Hz. The measurement plane located at

zm ¼ 0:13 m provides 7� 7 measurement points, and the

spacing of measurement points in both x and y directions is

set to a ¼ 0:09 m. The calculation plane is located at

zc ¼ 0:09 m, and the virtual source plane is located at

zv ¼ 0:06 m. The emitted signals are sampled at a frequency

fe ¼ 34 400 Hz providing 256 samples. According to the

Nyquist theorem, the wavenumber domain sampling area is

given as ½�p=a; p=a�. This sampling area is supposed to

cover all propagating waves and those evanescent waves that

have significant amplitude in the measurement region. In

theory, the wavenumber domain sampling spacing should be

equal to zero for realizing all wavenumber sampling in the

given sampling area. However, due to discrete computing,

the wavenumber domain sampling spacing can just take a

value more than zero. It is certain that the smaller is this

taken value, the more accurate is the approximation in

Eq. (5), but the smaller value will lead to the bigger compu-

tation loads. Basing on the comprehensive consideration of

the calculation precision and the computational efficiency,

the wavenumber domain sampling spacing is given as

p=ð18aÞ. A Gaussian white noise with a signal-to-noise ratio

(SNR) of 20 dB is also added to the simulated signals.

For the sake of assessing the relevance of the proposed

method in the time domain, four space points on the calcula-

tion plane are chosen, and their positions are R1ð0:09 m;
0:27 m; 0:09 mÞ, R2ð0:45 m; 0:27 m; 0:09 mÞ, R3ð0 m;
0:27 m; 0:09 mÞ, and R4ð0:27 m; 0:27 m; 0:09 mÞ. As shown

in Fig. 2, R1 and R2 are facing the source M1 and the source

M2, respectively, R3 is located at the edge of the calculation

plane, and R4 is located in the center of the calculation plane.

Figure 3 shows the comparisons between the calculated pres-

sure and the theoretical pressure at these points in the time

domain. It is demonstrated that the calculated results provide

accurate phases at all four points and a lower magnitude than

that of the theoretical pressure at R3.

To comment more objectively about the results calcu-

lated in the time domain, two error indicators T1 and T2 are

computed for a point ðxi; yjÞ on the calculation plane. They

are defined by

T1ðxi; yjÞ ¼
<ptðxi; yj; zc; tÞpcðxi; yj; zc; tÞ>tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

<p2
t ðxi; yj; zc; tÞ>t < p2

cðxi; yj; zc; tÞ>t

p ;

(35)

T2ðxi; yjÞ ¼
jprms

t ðxi; yj; zcÞ � prms
c ðxi; yj; zcÞj

prms
t ðxi; yj; zcÞ

; (36)

where prms
t ðxi; yj; zcÞ and prms

c ðxi; yj; zcÞ are the root mean

square pressure values given by

prms
t ðxi; yj; zcÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<p2

t ðxi; yj; zc; tÞ>t

q
; (37)

prms
c ðxi; yj; zcÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<p2

cðxi; yj; zc; tÞ>t

q
: (38)

<>t denotes the time averaged value. ptðxi; yj; zc; tÞ is the

theoretical time-dependent pressure, and pcðxi; yj; zc; tÞ is

FIG. 2. Geometric description of the virtual source plane, the calculation

plane, and the measurement plane. Points R1 and R2 marked with þ stand

for the points facing the source M1 and the source M2, respectively. Points

R3 and R4 marked with * stand for the points not facing sources.
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the calculated time-dependent pressure. T1 and T2 are sensi-

tive to the phase differences and the magnitude differences

between ptðxi; yj; zc; tÞ and pcðxi; yj; zc; tÞ, respectively.

Phase accuracy gives T1 in the neighborhood of 1, and mag-

nitude accuracy gives T2 near 0. The values of both indica-

tors T1 and T2 are computed for each point on the

calculation plane. The map of indicator T1 with the 0.95

contour line is shown in Fig. 4(a), and the map of indicator

T2 with the 0.1 contour line is shown in Fig. 4(b). In

Fig. 4(a), the values of indicator T1 at all points are greater

than 0.95, which indicates that the phase of the calculated

pressure matches well with that of the theoretical pressure.

Figure 4(b) shows that the values of indicator T2 are below

0.1 for most space points. The values of indicator T1 at

marked points R1(þ), R2(þ), R3(*), and R4(*) are 0.996,

0.990, 0.994, and 0.990, respectively. The values of indica-

tor T2 at marked points R1(þ), R2(þ), R3(*), and R4(*) are

0.041, 0.058, 0.214, and 0.093, respectively.

Similarly, to highlight the relevance of the proposed

method in the space domain, two time instants (t119¼ 3.4 ms

and t152¼ 4.4 ms) are chosen. Figures 5(a) and 5(c) show,

respectively, the theoretical spatial pressure field and the cal-

culated spatial pressure field at t119¼ 3.4 ms where the

source M1 radiates with a high level and M2 with a low level.

Figures 5(b) and 5(d) show the same spatial pressure fields

but at t152¼ 4.4 ms where the acoustic field is dominated by

the acoustic signals radiated by sources M1 and M2. From

the comparison of the theoretical spatial pressure field

FIG. 3. Comparison between the time-

dependent pressure signals on the calcu-

lation plane in points R1 (a), R2 (b), R3

(c), and R4 (d): The theoretical pressure

(solid line) and the calculated pressure

(dashed line).

FIG. 4. (Color online) Spatial maps for

indicator T1 (a) with a contour line at

the value 0.95 and for indicator T2 (b)

with a contour line at the value 0.1. The

points R1(þ), R2(þ), R3(*), and R4(*)

are marked.
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and the calculated spatial pressure field, it is demonstrated

that the proposed method provides a means of visualizing

the spatial pressure field when the sound field fluctuates with

time.

To evaluate the quality of the results calculated in the

space domain, two error criteria are introduced. One is the

total error criterion, defined by

Ex;yðtiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<ðpcðx; y; tiÞ � ptðx; y; tiÞÞ2>s

q
; (39)

which evaluates the difference between the calculated

pressure pcðx; y; tiÞ and the theoretical pressure ptðx; y; tiÞ at

a given time ti, and <>s denotes the spatial averaged

value. The other is the relative spatial error criterion,

defined by

FIG. 5. (Color online) Theoretical spatial

pressure field at t119¼ 3.4 ms (a) and at

t152¼ 4.4 ms (b) versus calculated spatial

pressure field at t119¼ 3.4 ms (c) and at

t152¼ 4.4 ms (d). The left marked location is

facing the source M1, and the right marked

location is facing the source M2.

FIG. 6. Simulated results: time evolutions of the total error (a) and the rela-

tive error (b). The vertical lines indicate the time instants chosen at

t119¼ 3.4 ms and at t152¼ 4.4 ms.

FIG. 7. (Color online) Experimental setup with two loudspeakers and a

double-layer microphone array.
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Er
x;yðtiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<ðpcðx; y; tiÞ � ptðx; y; tiÞÞ2>s

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<p2

t ðx; y; tiÞ>s

p ; (40)

which corresponds to the root mean square error between the

calculated pressure pcðx; y; tiÞ and the theoretical pressure

ptðx; y; tiÞ at a given time ti and is suitable to quantify the

quality of the reconstruction. The time evolutions of these

two errors are shown in Fig. 6 from which it can be seen that

at most time instants the values of the relative error are

smaller than 0.5. High values of the error are obtained at the

edges of the signal due to the fact that the theoretical pres-

sure field supplies the denominator of Eq. (40) with very low

values at these time instants. The values of the relative error

at t119¼ 3.4 ms and at t152¼ 4.4 ms are 0.178 and 0.143,

respectively.

IV. EXPERIMENT

To examine the feasibility of reconstructing nonstation-

ary sound fields based on TD-PWSM, an experiment is car-

ried out. The experimental setup is shown in Fig. 7.

Two loudspeakers are chosen as sources. The signals

generated by these two sources are very similar to those used

in the simulation case. These signals are also recorded at a

sampling frequency fe ¼ 34 400 Hz providing 256 samples.

In addition, the experiment provides the same locations

for the sources and the measurement planes as those in the

simulation case. A double-layer microphone array with an

interval of 0.04 m, shown in Fig. 7, is used to measure simul-

taneously the pressure fields on both the measurement plane

and the calculation plane. Each layer provides 2� 4 micro-

phones equally spaced every 0.09 m. For each measurement

the array is moved, both sources are synchronized and

FIG. 8. Comparison between the time-dependent

pressure signals on the calculation plane at points

R1 (a), R2 (b), R3 (c), and R4 (d): The measured

pressure (solid line) and the calculated pressure

(dashed line).

FIG. 9. (Color online) Spatial maps for

indicator T1 (a) with a contour line at

the value 0.9 and for indicator T2 (b)

with a contour line at the value 0.1. The

points R1(þ), R2(þ), R3(*), and R4(*)

are marked.
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generate exactly the same signals to simulate the simultaneous

sound field acquisition on a large area composed of 7� 7

measurement points providing an overall scan area of

0:54� 0:54 m2.

In the reconstruction process, the distance between the

virtual source plane and the measurement plane, the wave-

number domain sampling area and the wavenumber domain

sampling spacing are all the same as those selected in the

simulation case.

Four space points, with the same locations as those in

the simulation case, are chosen to show the results in the

time domain from TD-PWSM. Figure 8 shows the compari-

sons between the calculated pressure and the measured pres-

sure at these points in the time domain. Although the

calculated results do not provide very accurate phases and

magnitudes, especially as shown in Fig. 8(d), they at least

demonstrate that TD-PWSM has the ability to reconstruct

nonstationary signals in the time domain.

Indicators T1 and T2 are also computed for each location

facing the microphone positions. The map of indicator T1

with the 0.9 contour line is shown in Fig. 9(a), and the map

of indicator T2 with the 0.1 contour line is shown in

Fig. 9(b). Figure 9 indicates that the good reconstruction

results are obtained mainly in the area around two sources,

and the worse reconstruction results appear in the edge of

the calculation plane where all the measurement errors such

as the noise from microphones, the reflection from the wall,

and the scattering from the support beams become more sig-

nificant. The values of indicator T1 at marked points R1(þ),

R2(þ), R3(*), and R4(*) are 0.918, 0.949, 0.947, and 0.895,

respectively. The values of indicator T2 at marked points

R1(þ), R2(þ), R3(*), and R4(*) are 0.155, 0.198, 0.101, and

0.261, respectively.

The reconstruction results in the space domain are

studied for the same time instants (t119¼ 3.4 ms and

FIG. 10. (Color online) Measured spatial

pressure field at t119¼ 3.4 ms (a) and at

t152¼ 4.4 ms (b) versus calculated spatial

pressure field at t119¼ 3.4 ms (c) and at

t152¼ 4.4 ms (d).

FIG. 11. Experimental results: ticme evolutions of the total error (a) and the

relative error (b). The vertical lines indicate the time instants chosen at

t119¼ 3.4 ms and at t152¼ 4.4 ms.
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t152¼ 4.4 ms) as in the simulation case. Figures 10(a) and

10(c), respectively, show the measured pressure and the cal-

culated pressure at t119¼ 3.4 ms. Figures 10(b) and 10(d)

show the same sound fields but at t152¼ 4.4 ms. Obviously,

the proposed TD-PWSM seems effective to reconstruct spa-

tial pressure fields.

The total error and the relative error defined in Eq. (39)

and Eq. (40) are calculated for each time ti. Their time evo-

lutions are shown in Fig. 11, which highlights a somewhat

similar trend as that in Fig. 6 but with less accurate values.

The values of the relative error at t119¼ 3.4 ms and

t152¼ 4.4 ms are 0.302, 0.647, respectively.

Owing to the effects of measurement errors, the experi-

mental results are not as good as those in the simulation

case, but they really demonstrate the feasibility of recon-

structing nonstationary sound fields by using TD-PWSM.

V. CONCLUSIONS

A time domain plane wave superposition method was

proposed to reconstruct the nonstationary sound fields. This

method performs the reconstruction by replacing the two-

dimensional SFFT that is generally used in TDH and RT-

NAH with the direct discretization of double infinite integral

in the wavenumber domain, theoretically avoiding some lim-

itations associated with the SFFT. It also gave an iterative

reconstruction process in the time domain, thus providing

the ability of continuously reconstructing time-dependent

pressure signals. Numerical simulations and an experiment

have demonstrated that it is feasible to reconstruct the non-

stationary sound fields via TD-PWSM. Due to the use of the

Tikhonov regularization at each time step, the computation

time required by the TD-PWSM is longer than those by

TDH and RT-NAH, but this weakness does not prevent the

TD-PWSM from being used in a personal computer when

the signal length in the time domain is not too long. In fact,

the microphone array employed by TD-PWSM could be

irregular, such as cross array, circular array, random array,

etc. However, the problem of which kind of array can be

used to obtain the best reconstruction results is still under

investigation. In addition, some parameters influencing the

reconstruction results should be also investigated in future,

such as the distance between the measurement plane and the

virtual source plane, the distance between the calculation

plane and the virtual source plane, and the regularization pa-

rameter, etc.
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