
Downloaded
Total absorption peak by use of a rigid frame porous layer
backed by a rigid multi-irregularities grating
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The acoustic properties of a low resistivity porous layer backed by a rigid plate containing periodic
rectangular irregularities, creating a multicomponent diffraction gratings, are investigated.
Numerical and experimental results show that the structure possesses a total absorption peak at the
frequency of the modified mode of the layer, when designed as proposed in the article. These results
are explained by an analysis of the acoustic response of the whole structure and especially by the
modal analysis of the configuration. When more than one irregularity per spatial period is
considered, additional higher frequency peaks are observed.
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I. INTRODUCTION

This work was initially motivated by a design problem
connected to the determination of the optimal profile of dis-
continuous spatial distribution of porous materials and geo-
metric properties for the absorption of sound. Porous mate-
rials �foam� suffer from a lack of absorption at low
frequencies, when compared to the values at higher frequen-
cies. The usual way to solve this problem is by multi-
layering.1–3 The purpose of the present article is to investi-
gate an alternative to multilayering by considering periodic
irregularities of the rigid plate on which a porous sheet is
attached, thus creating a diffraction grating.

Acoustic wave propagation in porous materials was
mainly studied in order to deal with sound absorption,4 ma-
terial properties characterization, etc. Homogeneous porous
materials are well described by the first work of Biot5,6 and
later contributions.7–9 On the other hand, the equation that
describes acoustic wave propagation in a macroscopically
inhomogeneous rigid frame porous medium was only re-
cently derived in Ref. 10 from the alternative formulation of
Biot’s theory.6 The latter approach could eventually offer an
alternative to multilayering in the sense that it can be applied
to the design of �e.g., functionally gradient� rigid frame me-
dia with continuously varying properties.

The influence of the addition of a volumic heterogeneity
on absorption and transmission of porous layers was previ-
ously investigated by use of the multipole method in Refs. 11
and 12 by embedding a periodic set of high-contrast inclu-
sions, whose size is not small compared with the wavelength,
in a macroscopically homogeneous porous layer whose
thickness and weight are relatively small. This leads either to
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an increase in the absorption coefficient in the case of one
layer of inclusions or to band gaps and a total absorption
peak in case of multilayered inclusions �sonic crystal�. The
influence on the absorption coefficient was explained by
mode excitation of the configuration enabled by the periodic
inclusions, whose structure leads to energy entrapment.
Other works related to volumic heterogeneities in macro-
scopically homogeneous porous material were carried out
essentially by means of the homogenization procedure.13–15

Periodic arrangements of either surface irregularities or
volume heterogeneities usually lead to energy entrapment ei-
ther at the surface or inside the structure, this being strongly
linked to mode excitation and to an increase in the absorp-
tion coefficient �first noticed by Wood16 and partially ex-
plained by Cutler17�. The particular properties of such struc-
tures have been studied in mechanics, with application to
composite materials, in optics initially motivated by the col-
lection of solar energy18,19 with applications to photonic
crystals,20,21 in electromagnetics with application to so-called
left-handed materials,22 and in geophysics for the study of
the “city-site” effect.23–25 Absorption properties of such
structures, even involving only one surface irregularity per
spatial period, is still a relevant problem in optics.26 The
properties of such structures have been used for the design of
sound absorbing properties of porous materials using porous
slits or fractals.11,12,27–29

Here, we investigate theoretically, numerically, and ex-
perimentally the influence on the absorption coefficient of a
multicomponent gratings against which a rigid frame porous
layer is glued. The modal analysis shows that the modified
mode of the layer can easily be excited by use of such peri-
odic arrangement, this being associated with an entrapment
of the energy and so a possible large absorption. Numerical
experiments allow us to propose a design process for the

irregularities in order for the configuration to possess a total
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absorption peak at low frequency. Experiments, performed in
a square impedance tube, are in agreement with the theoret-
ical and numerical developments.

II. FORMULATION OF THE PROBLEM

A. Description of the configuration

Both the incident plane acoustic wave and the geometri-
cal configuration are assumed to be invariant with respect to
the Cartesian coordinate x3. A cross-sectional x1−x2 plane
view of the two-dimensional �2D� scattering problem is
shown in Fig. 1.

Before the addition of the structured backing, the layer
is a porous material saturated by air �e.g., a foam� which is
modeled �by homogenization� as a �macroscopically homo-
geneous� equivalent fluid M�1�. The upper and lower flat and
mutually parallel boundaries of the layer, whose x2 coordi-
nates are L and 0, are designated by �L and �0, respectively.
M�0� and M�1� are in firm contact through �L, i.e., the pres-
sure and normal velocity are continuous across �L ��p�x��
=0 and ��−1�np�x��=0, wherein �n designates the operator
�n=n ·�and n denotes the generic unit vector normal to a
boundary�. The rigid backing contains N rectangular irregu-
larities along the x1 axis with period d that create a diffrac-
tion grating. The nth irregularity of the unit cell occupies the
rectangular domain ��2�n�� of height bn and width wn and is
occupied by a fluid material M�2� �in this study, M�2� is the air
medium, but according to the formulation developed hereaf-
ter it can be any other fluidlike material�. The boundary of
��2�n�� is composed of the rigid portion �r�n� �Neumann type
boundary conditions, �np�x�=0� and of ��n� through which
media M�2� and M�1� are in firm contact �continuity of the
pressure and normal velocity�. The x1 coordinate of the cen-
ter of the base segment of ��2�n�� is dn. �0 is also composed
of a rigid portion �r �Neumann type boundary conditions�.

We denote the total pressure, wavenumber, and wave
speed by the generic symbols p, k, and c, respectively, with
p= p�0� , k=k�0�=� /c�0� in ��0�, p= p�1� , k=k�1�=� /c�1� in
��1�, and p= p�2�n�� , k=k�2�=� /c�2� in ��2�n��.

Rather than to solve directly for the pressure p̄�x , t�
�with x= �x1 ,x2��, we prefer to deal with p�x ,��, related to
p�x , t� by the Fourier transform p̄�x , t�=�−�

� p�x ,��e−i�td�.
Henceforth, we drop the � in p�x ,�� so as to denote the
latter by p�x�.

The wavevector ki of the incident plane wave lies in the
sagittal plane and the angle of incidence �i is measured coun-
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FIG. 1. Cross-sectional plane representation of a d-periodic fluidlike porous
plate backed by a rigid wall that contains periodic rectangular and macro-
scopic irregularities excited by a plane incident wave.
terclockwise from the positive x1 axis. The incident wave
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propagates in ��0� and is expressed by pi�x�
=Aiei�k1

i x1−k2
�0�i�x2−L��, wherein k1

i =−k�0� cos �i, k2
�0�i=k�0� sin �i,

and Ai=Ai��� is the signal spectrum.
The plane wave nature of the incident wave and the

periodic nature of �n�N��2�n�� imply the Floquet relation,

p�x1 + qd,x2� = p�x1,x2�eik1
i qd; ∀ x � R2; ∀ q � Z .

�1�

Consequently, it suffices to examine the field in the cen-
tral cell of the plate which includes the rectangulars ��2�n��,
n�N in order to obtain the fields, via the Floquet relation, in
the other cells.

The uniqueness of the solution to the forward-scattering
problem is assured by the radiation condition:

p�0��x� − pi�x� � outgoing waves; �x� → �, x2 � L .

�2�

B. Material modeling

Rigid frame porous materials M are modeled using the
Johnson–Champoux–Allard model. The compressibility and
density of these media, linked to the sound speed through
c=�1 / �K��, are9,10

1

K
=

�P0

		� − �� − 1�	1 + i
�c

Pr �
G�Pr ��
−1
 ,

� =
� f
�

	
	1 + i

�c

�
F���
 , �3�

wherein �c=�	 /� f
� is the Biot frequency, � is the specific
heat ratio, P0 is the atmospheric pressure, Pr is the Prandtl
number, � f is the density of the fluid in the �interconnected�
pores, 	 is the porosity, 
� is the tortuosity, and � is the flow
resistivity. The correction functions G�Pr �� �Ref. 30� and
F��� �Ref. 7� are given by

G�Pr �� =�1 − i�� f Pr �	 2
�

�	
�

2

,

F��� =�1 − i�� f�	 2
�

�	


2

. �4�

where � is the viscosity of the fluid, 
� is the thermal char-
acteristic length, and 
 is the viscous characteristic length.

The configuration is more complex than the one already
studied �for shear horizontal waves� in Ref. 24 by one of the
author of this paper, in the sense that more than one irregu-
larity per spatial period is accounted for. We also briefly
summarize the method of solution hereafter.

C. Field representations in Ω†0‡, Ω†1‡, and Ω†2„n…‡

Separation of variables, the radiation condition, and the

Floquet theorem lead to the representations:
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p�0��x� = �
q�Z

�e−ik2q
�0��x2−L��q + Rqeik2q

�0��x2−L�� � eik1qx1,

∀ x � ��0�,

p�1��x� = �
q�Z

�fpe−ik2q
�1�x2 + gpeik2q

�1�x2� � eik1qx1, ∀ x � ��1�,

�5�

wherein �q is the Kronecker symbol, k1q=k1
i + �2q� /d�, k2q

�s�

=��k�s��2− �k1q�2, with Re�k2q
�s���0 and Im�k2q

�s���0, s=0,1.
Rq is the reflection coefficient of the plane wave denoted by
the subscript q, whose angle is �q=−i log��k1q+ ik2q

�1�� /k�1��,
while fq and gq are the coefficients of the diffracted waves
inside the slab associated with the plane wave also denoted
by the subscript q.

Referring to Ref. 24, the pressure fields p�2�n�� admits the
pseudomodal representation that already accounts for the
boundary conditions on �r�n�:

p�2�n���x� = �
m=0

�

Bm
�n� cos�k1m

�2�n���x1 − dn + wn/2��

� cos�k2m
�2�n���x2 + bn��, ∀ x � ��2�n��, ∀ n � N ,

�6�

wherein k1m
�2�n��=m� /wn, k2m

�2�n��=��k�2��2− �k1m
�2�n���2, with

Re�k2m
�2�n����0 and Im�k2m

�2�n����0, ∀n�N and Bm
�n� are the co-

efficients of the pseudomodal representation.

III. DETERMINATION OF THE ACOUSTIC PROPERTIES
OF THE STRUCTURE

A. Application of the continuity conditions across �L
and �0

Applying the continuity of the pressure field and of the
normal component of the velocity across �L and �0, intro-
ducing the appropriate field representation therein, Eqs. �5�
and �6�, and making use of the orthogonality relations

�−d/2
d/2 ei�k1q−k1l�x1dx1=d�ql , ∀ �l ,n��Z2 and �0

wncos�k1m
�2�n��x1�

�cos�k1j
�2�n��x1�dx1=wn�mj /�m, ∀�j ,m��N2, wherein �0=1

and �m=2, ∀m�N�, give rise to the linear set of equations.
After some algebra and rearrangements, this reduces to a
J. Acoust. Soc. Am., Vol. 127, No. 5, May 2010
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linear system of equations for the solution of Bm
�n� which may

be written in the matrix form, when denoting by B the infi-
nite column matrix of components Bm

�n�

�A − C�B = F , �7�

where F is the column matrix of elements �q�ZFql
�t� and A

and C are two square matrices of elements Al
�t��tn, and

�q�ZCqjm
�t,n�, respectively. These elements are as follows:

Fql
�t� = Ai2
q

�0��q

Dq
Iql

+�t�eik1q�dt−wt/2�,

Al
�t� =

1

�l
cos�k2l

�2�t��bt� ,

Cqjm
�t,n� =

iwn
m
�2�n���
q

�1� cos�k2q
�1�L� − i
q

�0� sin�k2q
�1�L��

dDq
q
�1�

� sin�k2m
�2�n��bn�Iqm

−�n�Iqj
+�t�eik1q��dt−dn�−�wt−wn�/2�,

Dq = 
q
�0� cos�k2q

�1�L� − i
q
�1� sin�k2q

�1�L� , �8�

where Iqm
��n�=�0

1e�ik1qwn� cos�k1m
�2�n���wn�d�, 
q

�s�=k2q
�s� /��s�, s

=0,1, and 
m
�2�n��=k2m

�2�n�� /��2�. The components Fql
�t� accounts

for the excitation of the irregularity t by a wave that is pre-
viously diffracted by the layer, the components Al

�t� and Cqjm
�t,t�

account for the irregularity t while the components of Cqjm
�t,n�,

n� t accounts for the coupling, between the irregularities t
and n, through waves that are traveling inside the porous
layer.

B. Evaluation of the fields

Once Eq. �7� is solved for Bm
�n�, Rq, fq, and gq in terms of

Bm
�n� can be evaluated and, in particular,

Rq = �q


q
�0� cos�k2q

�1�L� + i
q
�1� sin�k2q

�1�L�
Dq

+ �
n�N

�
m=0

�
iwn
m

�2�n��

dDq
Bm

�n� sin�k2m
�2�n��bn�Iqm

−�n�e−ik1q�dn−wn/2�

�9�

Introduced in the appropriate field expression, it follows
pR
�0��x� = �

q�Z
�

n�N

iwne−ik1q�dn−wn/2�

dDq
�
m=0

�

Bm
�n�
m

�2�n�� sin�k2m
�2�n��bn�Iqm

−�n�eik1qx1+ik2q
�0��x2−L�

+ Ai

�0�i cos�k2

�1�iL� + i
�1�i sin�k2
�1�iL�

Di eik1
i x1+ik2

�0�i�x2−a�,

p�1��x� = �
q�Z

�
n�N

iwn�
q
�1� cos�k2q

�1��L − x2�� − i
q
�0� sin�k2q

�1��L − x2���e−ik1q�dn−wn/2�

d
q
�1�Dq

�
m=0

�

Bm
�n�
m

�2�n�� sin�k2m
�2�n��bn�Iqm

−�n�eik1qx1

+ Ai2
�0�i cos�k2
�1�ix2�

Di eik1
i x1, �10�
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wherein k20
�s�=k2

�s�i, 
0
�s�=
�s�i, s=0,1, and D0=Di. The latter

fields are expressed as a sum of �i� the field in the absence of
the irregularities with �ii� the field due to the irregularities of
the multicomponent grating.

C. Evaluation of the reflection and absorption
coefficients

In case of an incident plane wave with spectrum Ai, the
conservation of energy relation takes the form

1 = A + R , �11�

with R and A the hemispherical reflection and absorption
coefficients, respectively, defined by

R = �
q�Z

Re�k2q
�0��

k2
�0�i

�Rq�2

�Ai�2
= �

q=−q̃−

q̃+ k2q
�0�

k2
�0�i

�Rq�2

�Ai�2
, �12�

where q̃� are such that q̃��d /2��k�0��k1
i �� q̃�+1 and A

=AD+AS, where

AD =
1

dk2
�0�i�Ai�2

��0�

Re���1�����1�
Im��k�1��2��p�1��x��2d�̄

+
1

dk2
�0�i�Ai�2

��0�

Re���2�� �
n�N

�
��2�n��

Im��k�2��2�

��p�2�n���x��2d�̄ �13�

corresponds to the inner absorption of the domains ��1� and
��2�n��, ∀n�N. d�̄ is the differential element of surface in
the cross-sectional plane and

AS =
1

dk2
�0�i�Ai�2

Re �
�L

��0�

��1� p�1���x��01

· �p�1��x�
Im���1��
Re���1��

d�

+
1

dk2
�0�i�Ai�2 �

n�N
Re�

��n�

��0�

��1�	 Im���1��
Re���1��

−
Im���2��
Re���2��


�p�1���x��12 · �p�1��x�d� �14�

corresponds to the surface absorption related to interfaces �L

and ��n�, ∀n�N. d� is the differential arc length in the
cross-sectional plane, �01 �respectively, �12� is the outward-
pointing unit vector to the boundary �L �respectively, ��n��,
and p� is the complex conjugate of p.

AS accounts for the absorption induced by the viscous
dissipation at the interfaces. Effectively, it is obvious from
Eq. �14� that AS does not vanish because of nonvanishing
Im���s��, s=1,2, which is a consequence of the modeling of
viscous dissipation phenomena.4

In our calculations, the irregularities are filled with the
air medium. Any absorption phenomenon is associated with
this material and thus Eqs. �13� and �14� can be simplified
because Im���2�� vanishes. The second term of Eq. �13� van-
ishes, while the term in brackets of the second part of Eq.

�1� �1�
�14� reduces to �Im�� � /Re�� ��. The absorption associ-
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ated with the material properties reduces to the inner absorp-
tion of the domain ��1� and to surface absorption related to
the bounds of the porous layer.

Nevertheless, because of the complicated shape of ��1�

and ��2�n��, but also of the nonvanishing term AS, A will be
calculated by A=1−R.

IV. MODAL ANALYSIS OF THE CONFIGURATION

The modes �Pekeris modes in ocean acoustics, quite
similar to Love modes for SH polarization in geophysics� of
the configuration without irregularities of the rigid backing
�i.e., a rigid porous layer backed with a planar rigid wall�,
whose dispersion relation is

Di = 
�0�i cos�k2
�1�iL� − i
�1�i sin�k2

�1�iL� = 0, �15�

cannot be excited by a plane incident wave initially traveling
in the air medium.11,31 Effectively, Fig. 2 depicts the real and
the imaginary parts of the roots c�n�

� ���=� /k1,�n�
� ��� of Eq.

�15�, as calculated with the method already used in Ref. 31
for a L=0.8 cm thick porous layer, whose acoustical charac-
teristics are those used in Sec. V. Under the rigid frame as-
sumption and for frequencies higher than the Biot frequency
�and lower than the diffusion limit�, a porous material can be
considered as a modified fluid, its associated dissipation be-
ing considered as a perturbation of a fluid. For Eq. �15� to be
true without dissipation, k2

�0� should be purely imaginary
while k2

�1� should be purely real. Under the previous assump-
tions, this implies that Re�c�n�

� � should stand in
�Re�c�1�� ,c�0��, i.e., �k1

i � should stand in �k�0� ;Re�k�1���. Or for
a plane incident wave initially propagating in the air medium
�k1

i � is always smaller than k�0�. It is also necessary to note
that in the diffusion regime, i.e., for frequencies below the
Biot frequency, any mode exists. This fact constitute the ma-
jor difference when compared with a traditional fluid. Effec-
tively, below the Biot frequency, k�1� is purely imaginary.
This implies that k2

�1� is also purely imaginary whatever the
i i
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FIG. 2. �Color online� Real and imaginary parts of the root of the dispersion
relation in absence of irregularities c�1�

� . Real part of the modified mode of
the layer c�1,q�

� , q=1, . . . ,3, for d=40 cm are pointed out by dot �only the
first three modified modes are plotted�.
value of k1 and that D never vanishes.
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A particular feature of these modes in this configuration
is that they are close to k�0� at low frequency, i.e., below 4
kHz.

When the rigid backing presents periodic irregularities,
the dispersion relation of the modes of the configuration is
det�A−C�=0. The roots of latter dispersion relation are dif-
ficult to determine because of the complex nature of the ma-
trix A−C.

To get a grip on it, it is convenient to consider one
irregularity per spatial period and that a correct representa-
tion of the field can be given by accounting only for the
fundamental pseudomode �i.e., m=0� of the irregularity �i.e.,
low frequency approximation�. The dispersion relation also
reduces to

1 − �
q�Z

iw

d


�2� tan�k�2�b�sinc2	k1q
w

2




q
�1�
q

�0� cos�k2q
�1�L� − i
q

�1� sin�k2q
�1�L�


q
�1� cos�k2q

�1�L� − i
q
�0� sin�k2q

�1�L�

= 0, �16�

wherein 
0
�2�n��=k�2� /��2�=
�2�.

By referring to Cutler mode,17 but also to the modal
analysis carried out in Ref. 11, the latter dispersion relation is
satisfied �in the nondissipative case� when the denominator
of Eq. �16� is purely imaginary and vanishes. These condi-
tions are achieved when �k1q�� �k�0� ,Re�k�1��� and when ei-

ther Dq=0 or 
q
�1�=0 �i.e., k2q

�1�=0�, which, respectively, cor-
responds to modified modes of the backed-layer �MMBLs�
and to modes of the grating �MGs�. MMBLs depend on the
characteristic of the surrounding material, of the characteris-
tic of the porous layer, on the thickness of the latter, and on
the spatial periodicity, while MG only depend on the charac-
teristic of the porous layer and spatial periodicity. Both of
them are determined by the intersection of c1q=� /k1q, re-
spectively, with Re�c�n�

� ���� as calculated for the backed
layer and with Re�c�1��. The first three MMBLs are pointed
out by the dots on Fig. 2 for porous P1 �see Table II�, when
the spatial periodicity is d=40 cm. The associated attenua-
tion of each mode can then be determined by the values of
Im�c�n�

� � and Im�c�1�� at the frequencies at which the modes
are excited. The attenuation associated with MG is also
higher than the one associated with MMBL for all frequen-
cies. Moreover, MG corresponds to the highest boundary of
�k1q� for Eq. �16� to be true. This implies that MG should be
difficult to excite. The latter type of mode can only be poorly
excited by a plane incident wave, particularly at low frequen-
cies. Phenomenon can be understood as follows because MG
corresponds to a configuration with a semi-infinite domain
directly above the grating. On one hand, when the thickness
of the layer is smaller than or of the same order of the wave-
length in the layer, MG can hardly be excited because waves
associated with it can hardly stand at the lower bound of the
layer, and so modes of the configuration are close to MMBL.
On the other hand, when the thickness of the layer is larger
than the wavelength in the layer, MG can be excited �if the

waves could travel through the layer toward the grating�, and
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so modes of the configuration are close to MG. This latter
case corresponds to the asymptotic high-frequency regime of
MMBL.

In addition, the approximated dispersion relation, ob-
tained by use of the partition method and studied in Ref. 24,
points to the fact that the mode of the global configuration
can be understood either as a modified mode of the irregu-

larities �MI� satisfying cos�k2m
�2��n�

b�=0 or as a MMBL satis-
fying Dq=0. MI depends on the geometric properties of the
irregularities and of the characteristic of the material that fill
the latter, i.e., in our case the air medium. Modes of the
global configuration are also coupled ones resulting from a
complex combination between MI, MMBL, and the MG.

V. NUMERICAL RESULTS, EXPERIMENTAL
VALIDATION, AND DISCUSSION

The infinite sum �q�Z over the indices of the k1q is
found to depend on the frequency and on the period of the
grating. An empirical rule is employed, inspired from
Refs. 11 and 12 and determined by performing a large num-
ber of numerical experiments �q=−Q−

Q+ such that Q�

=int�d /2��3 Re�k�1���k1
i ��+10. In the latter equations,

int�a� represents the integer part of a. Considering the foam
plate without dissipation, k2q

�1� is the last vertical wave number
to become purely imaginary when q increases. The previous
numerical rule also ensures that the summation is performed
at least up to k2q

�1�= i�2�k�1�� �nondissipative case� with an
added security term equal 10.

In a similar way, the infinite sum �m=0
� over the indices

of k1m
�2��n��� is truncated �m=0

M+ , such that M+

=int�3wn Re�k�2�n��� /��+10. The previous numerical rule
also ensures that the summation is performed at least up to

k2m
�2�n��= i�2�k�2�n��� �nondissipative case� with an added secu-

rity term equal 10.
Numerical calculations have been performed for various

geometrical parameters whose values are reported in Table I,
and within the frequency range of audible sound, particularly
at low frequencies. The initial configuration C1, which is
composed of one irregularity per spatial period, becomes
more complex by addition of other irregularities in order to
construct configurations C2, C3, and C4. The spatial period
is d=40 cm. For all calculations, irregularities are filled
with air, i.e., the ambient �M�0� and M�2�� and saturating fluid

�0� �2� −3 �0� �2� �

TABLE I. Geometry of the considered configurations, d=40 cm and L
=8 mm.

N
dn,n+1

�cm� bn �cm��wn �cm�

C1 1 5�9
C2 2 d12=8 b1�w1=5�9

b2�w2=40�2
C3 2 d12=12 b1�w1=5�9

b2�w2=3�2.5
C4 4 d12=12, d23=d34=d�=8 b1�w1=5�9

b2�w2=1�2.5
b2�w2=b3�w3=b4�w4
is air �� =� =� f =1.213 kg m , c =c = �P0 /� f, with
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P0=1.01325�105 Pa, �=1.4, and �=1.839�
10−5 kg m−1 s−1�. One of the main constraints in designing
acoustically absorbing materials are the size and weight of
the configuration. A L=8 mm thick low resistivity foam
layer, whose parameters and Biot frequency are reported in
Table II, was used. These parameters have been evaluated
using the traditional methods described in Ref. 9. In the con-
sidered frequency range, the wavelength in the layer is larger
than the thickness of the layer. Modes of the configuration
should be close to MMBL, while MG should be weakly ex-
cited.

The MMBL will be around ��1,1�
850 Hz, ��1,2�

1700 Hz, and ��1,3�
2550 Hz, . . ., while the MG should
be excited around �1
700 Hz, �2
1500 Hz, and �3


2300 Hz.

A. One irregularity per spatial period

Different types of waves correspond to each kind of
mode related to the grating �MG and MMBL�: evanescent
waves in ��1� �and also in ��0�� for the MG, and evanescent
waves in ��0� and propagative ones in ��1� for the MMBL.
In order to determine the type of modes excited by the plane
incident wave, we have plotted in Fig. 3 the transfer function
as calculated by TF= p�x ,�� / p�0�i�x ,�� on �r�x2=0� at 20
cm from the center of the irregularity b1�w1=5�9 cm2,
when excited at normal incidence. The transfer function is
separated on the different intervals corresponding to the dif-
ferent types of waves that are involved in the total pressure
calculation: TF��� is the total transfer function, TF1��� is the
contribution of the propagative waves in both ��0� and ��1�,
TF2��� is the contribution of the evanescent waves in ��0�

and propagative ones in ��1�, and TF3��� is the contribution
of the evanescent waves in both ��0� and ��1�. The transfer
function possesses a large peak at a low frequency around

TABLE II. Acoustical parameters of the porous material constituting the
layer.

	 
�




��m�

�

��m�
�

�Nsm−4�
fc=�c /2�

�Hz�

P1 0.96 1.07 273 672 2843 334
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FIG. 3. �Configuration C1� Transfer function on �r at 20 cm from the center
of the irregularity, and its different contributions, when the configuration is

excited at normal incidence.
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��1,1�. The latter is mainly associated with evanescent waves
in ��0� and propagative in ��1�. This also proves that MMBL
are the most excited modes related to the grating, at least at
low frequencies. This peak results from a continuous drop
between evanescent waves in both material to evanescent
waves in the air medium. This also means that this peak is
neither a MMBL nor a MG, but result forms a complex com-
bination of these two type of modes, with a structure closer
to the one of the MMBL. Because of this structure, the en-
ergy is trapped in the layer, this leading to an increase in the
absorption of the configuration.

In particular, when the fundamental MI stands at ��1,2�,
i.e., c�2� /4b1
��1,2�
1700 Hz from which we can deter-
mine b1, and the second MI stands at ��1,3�, i.e.,
c�2� /2���� /2b1�2+ �� /w1�2
��1,3�
2550 Hz from which
we can determine w1, the absorption at the frequency of the
first MMBL is close to 1 �Fig. 4�.

This specific feature can be partly explained by the fact
that for ��1,2� and ��1,3�, the pressure at ��1� vanish. The as-
sociated waves with both the second and the third modified
mode of the backed layer are also unable to correctly stand in
the layer, and the energy is also much more trapped by the
first MMBL.

Despite the fact that several couples of b1�w1 can lead
to a total absorption peak, the previously explained rule for
the determination of b1 and w1 always leads to a total ab-
sorption at ��1,1� for any value of frequency ��1,1� and so for
any value of the spatial period d.

When the configuration is designed as proposed, a total
absorption peak is also obtained for low resistive porous
foam at a frequency which is half of the frequency of the
fundamental MI, which allow a reduction in the size of the
configuration. The resistivity has a significant influence on
the design of such configuration because the frequency of the
induced absorption peak should be larger than the Biot fre-
quency fc=�c=�	 /2�� f
�, which greatly depends on the
flow resistivity. Effectively, below the Biot frequency, any
mode related to the grating can be excited �Sec. IV�, and
particularly any MMBL exists. In addition, flow resistivity
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FIG. 4. �Configuration C1� Absorption coefficient for a L=8 mm thick
foam layer �– – –� backed with a rigid flat plate and �—� backed with a rigid
grating b�w=5�9 cm2 with d=40 cm excited by a normal incident plane
wave.
should have an influence on the height of the absorption peak
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associated with the first MMBL ���1,1�
850 Hz�. Effec-
tively, waves associated with the latter mode propagate in-
side the porous layer. The less resistive the porous material
is, the easier these waves can propagate inside the layer. The
mode is more easily excited and the absorption is higher at
this frequency. In fact, the larger the resistivity is, the more
attenuated the first MMBL should be.

Decreasing the angle of incidence leads to a decrease in
the frequency of the first MMBL. Effectively, the lower �i is,
the higher the slope of c1p=� /k1p=� / �k�0� cos��i�+2p� /d�
is. Figure 5 shows how the absorption peak varies as a func-
tion of the angle of incidence. The absorption value of this
peak is always higher than 0.9, while the level of the absorp-
tion on both sides of the peak is higher if the angle of inci-
dence is smaller �because the incident wave travel much
more inside the porous layer�.

B. Experimental validation in case of one irregularity
per spatial period

Remarkable absorption is obtained in case of periodic
irregular rigid backing, while the response of the structure
without irregularities is quite well known or at least much
more common. Experimental validation also focused on the
periodic structure, its effect having been emphasized by
comparison with the flat rigid backing in Sec. V A.

Usually, experiments related to 1D or 2D gratings are
carried out in a free field �anechoic room� and/or at higher
frequencies for a finite size sample.32

Here, experimental validation were carried out by use of
an impedance tube with a square cross section, 20
�20 cm2, whose cutoff frequency is 850 Hz. The latter cor-
responds to a wavelength of 40 cm.

The phenomena related to the MMBL occur when the
wavelength is of the order of the spatial period of the grating.
We also make use of the boundary conditions of the imped-
ance tube, which are perfect mirrors, in order to design the
sample. Because of the dimension of the impedance tube, the
spatial periodicity should be a multiple of 20 cm. If the pro-
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FIG. 5. �Configuration C1� Variation of the absorption peak for a L
=8 mm thick foam layer backed with a rigid grating b�w=5�9 cm2 with
d=40 cm as function of the angle of the incident plane wave �i.
file of the unit cell is symmetric with regard to the axis x2
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=d /2, the modeled spatial period is d=40 cm, as depicted in
Fig. 6. Along the x3 axis, the same idea is employed with use
of the image theory.

The infinitely rigid portion of the sample was made of
three 1 cm thick aluminum plates, which were screwed �head
screw was then filled with hard plastic silicone for the sur-
face to be perfectly flat� in order to create a step of 5 cm
height and 4.5 cm width. A L=8 mm thick porous foam
layer, whose characteristics are those reported in Table II,
was glued to the upper part of the step. In order to keep the
porous layer flat along the step area, two screws of small
diameter �3 mm� were added at both edges of the lower part
of the step and a nylon wire was tightened in between, such
that the free part of the foam layer rests on it.

The atmospheric pressure were measured at P0

=997 kPa. The measured and calculated modes associated
with the porous layer also stand at lower frequencies than
those calculated in Sec. IV for P0=1.013 25�105 Pa. A
comparison between the absorption coefficient as measured
experimentally and as calculated with the help of the previ-
ously presented method is plotted in Fig. 7. The experimental
absorption coefficient presents a small and smooth peak at
650 Hz and a total absorption peak at 750 Hz. The first peak
is attributed to the fundamental MG because it is weakly
excited and occurs at a frequency lower than the other one,
while the total absorption peak is attributed to the fundamen-
tal MMBL. A first remark is that the total absorption peak
lies 40 Hz below its theoretical frequency. This shift can be
partly attributed to the fact that the sample is not perfectly
perpendicularly mounted in the impedance tube, which leads
not only to a small modification of the angle of incidence but
also to a modification of the spatial periodicity of the sample
due to the mirror effects induced by the boundary conditions.
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FIG. 6. Cross-sectional view of the experimental setup and sample design.
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FIG. 7. �Configuration C1� Absorption coefficients as measured experimen-

tally �—�, as calculated for �v=0° �– – –� and as calculated for �v=5° �–·–�.
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Let us consider that the sample is misplaced of an angle �v
with regard to the cross section of the impedance tube. The
angle of incidence and the spatial periodicity become, re-
spectively, �v

i =�i��v and dv=d /cos �v. When the perturba-
tion �v is 5°, the theoretical and experimental total absorp-
tion peaks occur at the same frequency, as shown in Fig. 6.
Another possible explanation of this frequency shift lies in
the experimental boundary conditions itself which are not
perfect mirrors, this being hardened by the contacts between
the sample and the boundaries which are also not perfect.
The fact that the frequency of the total absorption peak is
close to the cutoff frequency of the impedance tube, i.e., 850
Hz, is another possible explanation of this frequency shift. A
second remark is that the first smooth and small peak attrib-
uted to the fundamental MG is not accounted for by the
theory. Increasing the number of plane waves involved in the
calculation do not induce such a peak. This suggests also
some discrepancies between the modeling of the experiments
and the experiments itself.

C. Two or more irregularity per spatial period

As pointed out in the modal analysis, the determination
of the modes of the global configuration is even more diffi-
cult to carry out in case of multiple irregularities per spatial
period.

The dimension of the first irregularity is kept as b1

�w1=5�9 cm2. Additional irregularities are then added in
such a way that the spatial periodicity of the global configu-
ration is constant equal to d=40 cm.

The addition of a second irregularity, whose fundamen-
tal resonance frequency is lower than the fundamental
MMBL frequency ���1,1�
850 Hz�, leads to another total
absorption peak at the frequency of the fundamental MI, see
Fig. 8�a� for b2�w2=40�2 cm2 �frequency of the funda-
mental MI is 
400 Hz� and d1,2=8 cm, depending on the
center-to-center distance. The fundamental frequency of the
corresponding Helmholtz resonator, which satisfies
sin�k�2�b�=0, i.e., �H=c�2� /2b, is twice the one of the funda-
mental MI �which satisfies c�2� /4b, Secs. IV and V A�. This
means that for a fixed dimension of the highest irregularity,
the entrapment of energy associated with its resonance in
such a configuration appears at a frequency that is half the
one of the corresponding Helmholtz resonator. In other
words, this means that for a fixed frequency of the associated
absorption peak, the height of the irregularity is half the one
of a Helmholtz resonator. Such a configuration could also
offer a good alternative to the use of Helmholtz resonator,
which is the usual way to entrap energy. This result should
be temperated by the fact that no thermal and viscous losses
are accounted for on the boundaries of the irregularities.
Nevertheless, this phenomenon is well known in building
engineering or marine architecture, for which the structure is
designed for its fundamental frequency to be higher than the
one of the ground or of the sea. On the other hand, addition
of a smaller size irregularity mainly leads to higher fre-
quency and/or higher amplitude peak either of high order
MMBL or of MI, see Fig. 8�b� for b2�w2=3 cm�2.5 cm

�frequency of the fundamental MI is 
2000 Hz� and d1,2
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=12 cm. This phenomenon was already encountered and
studied in the nonperiodic case involving two irregularities.24

It was attributed to a coupling effect between the irregulari-
ties and between the irregularities and the substructure. This
coupling leads to a modification of the nature of these types
of modes which become coupled ones associated with a
higher energy entrapment.

Adding periodically spaced identical irregularities of
smaller size than the irregularity denoted by 1 �the frequency
of the fundamental MI is also higher than the one of the
fundamental MMBL� leads to a higher frequency peak of
absorption associated with the excitation of the correspond-
ing quasi-MMBL, depending on the geometrical characteris-
tics of the irregularities. Effectively, when di,i+1=d�, i�2,
the quasispatial periodicity d� cannot lead to a total absorp-
tion peak because the associated mode is not fully excited,
the spatial periodicity of the configuration being d and not
d�. This peak can be either interpreted as scattering phenom-
ena occurring over the spatial period d or as a degenerated
MMBL associated with d�. Figure 9 shows the absorption
coefficient when three identical irregularities b��w�=1
�2.5 cm2 equally spaced with d�=8 cm are added, such
that d1,2=12 cm. The geometrical dimensions of these ir-
regularities are designed by use of the method presented in

500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

ν (Hz)

A
bs

or
pt

io
n

co
ef

fic
ie

nt
500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

ν (Hz)
A

bs
or

pt
io

n
co

ef
fic

ie
nt

(a)

(b)

FIG. 8. �Configurations C2 and C3� Absorption coefficient of the foam layer
�– – –� backed with a rigid flat plate and �—� backed with two irregularities
per spatial period rigid grating, such that b1�w1=5�9 cm2, �a� b2�w2

=40�2 cm2 and d1,2=8 cm, and �b� b2�w2=3�2.5 cm2 and d1,2

=12 cm.
Sec. V B. The frequency of the fundamental quasi-MMBL
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appears at ��1,1�� 
4000 Hz, b� is determined by matching
��1,2�� 
8000 Hz with the fundamental MI, and w� is deter-
mined by matching ��1,3�� 
12000 Hz with the second MI.

VI. CONCLUSION

We studied theoretically, numerically, and experimen-
tally the acoustic properties of a low resistivity porous layer
backed by a rigid plate with periodic irregularities in the
form of a grating.

We show, especially through a modal analysis carried
out in the case of only one irregularity per spatial period, that
the gratings lead to excitation of modes, whose frequency
depends both on the characteristic of the surrounding me-
dium and of the characteristics of the porous layer and on the
spatial period of the configuration d. These modes, whose
structures are close to the one of the modes of the layer, can
lead to a total absorption peak. According to the method
proposed to design the irregularity and the configuration, this
absorption peak occurs at the frequency of the fundamental
modified mode of the layer and seems to be always a total
absorption peak when the latter is half of the value of the
fundamental frequency of the mode of the irregularity.

Experiments were performed in an impedance tube with
square cross section. The boundary conditions of the latter
are perfect mirrors and allow us, thanks to the image theory,
to model diffraction of a plane wave at normal incidence at
frequencies below the cutoff of the tube. Experimental re-
sults are in accordance with the theory and particularly ex-
hibit a total absorption peak at the frequency of the funda-
mental modified mode of the layer.

Addition of more irregularities per spatial period leads
to a modification of the modes of the configuration, which
becomes coupled and so are associated with a larger entrap-
ment of the energy than the one encountered in the case of
only one irregularity. When the fundamental frequency of the
irregularity is lower than the fundamental frequency of the
modified mode of the layer �i.e., large high irregularity�, a
total absorption peak is obtained for the fundamental fre-
quency of the irregularity. When the added irregularities are
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FIG. 9. �Configuration C4� Absorption coefficient of the foam layer �– – –�
backed with a rigid flat plate and �—� backed with four irregularities per
spatial period rigid grating, such that b1�w1=5�9 cm2 and b��w�=1
�2.5 cm2, with d�=8 cm and d1,2=12 cm.
arranged periodically, creating a pseudoperiodicity which

J. Acoust. Soc. Am., Vol. 127, No. 5, May 2010

 17 May 2010 to 195.221.243.134. Redistribution subject to ASA licens
leads to pseudomode of the layer �associated with this
pseudoperiodicity�, a second absorption peak can be created
�associated with this pseudoperiodicity�, when the irregulari-
ties are correctly designed.
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