Use of specific Green’s functions for solving direct problems involving a heterogeneous rigid frame porous medium slab solicited by acoustic waves

J.-P. Groby¹,*, †, L. De Ryck¹, ‡, P. Leclaire¹, §, A. Wirgin², ¶, W. Lauriks¹, ∥, R. P. Gilbert³, ** and Y. S. Xu⁴, ††

¹Akoestieke en Thermische Fysica, KULeuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
²Laboratoire de Mécanique et d’Acoustique, UPR7051 du CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France
³Mathematical Sciences, University of Delaware, Newark, DE 19716, U.S.A.
⁴Mathematics Department, University of Louisville, Louisville, KY 40292, U.S.A.

SUMMARY

A domain integral method employing a specific Green’s function (i.e. incorporating some features of the global problem of wave propagation in an inhomogeneous medium) is developed for solving direct and inverse scattering problems relative to slab-like macroscopically inhomogeneous porous obstacles. It is shown how to numerically solve such problems, involving both spatially-varying density and compressibility, by means of an iterative scheme initialized with a Born approximation. A numerical solution is obtained for a canonical problem involving a two-layer slab. Copyright © 2006 John Wiley & Sons, Ltd.

KEY WORDS: Green’s function; Fredholm equation; Born approximation; wave equation
1. INTRODUCTION

This work was initially motivated by two problems: (i) the design problem connected with the
determination of the optimal profile of a continuous and/or discontinuous spatial distribution of
the material/geometric properties of porous materials for the absorption of sound [1] and (ii) the
retrieval of the spatially-varying mechanical and geometrical parameters of bone for the diagnosis
of diseases such as osteoporosis [2].

Such inverse problems [3] can be decomposed into two sub-problems: (i) the determination
of the constitutive and conservation relations linking the various spatially-variable mechanical
parameters of the porous medium to its response to an acoustic solicitation, and (ii) the resolution
of the wave equation in an inhomogeneous porous medium (for instance, within the Biot, or rigid
frame approximations). Here we focus on the second point.

In Reference [4], it is shown that the wave equation describing the propagation in a
macroscopically-inhomogeneous porous medium in the rigid frame approximation can formally
take the form of the usual acoustic wave equation in a macroscopically-inhomogeneous fluid
(in which the microscopic features of the porous medium are homogenized) with spatial (and
frequency) dependent compressibility $\kappa_e(x, \omega)$ and density $\rho_e(x, \omega)$.

The present work deals with a method of resolution of direct problems involving acoustic wave
propagation in a macroscopically-inhomogeneous fluid medium, whose density and compressibility
are both space dependent, this being a prerequisite to the resolution of related inverse problems.

This topic is also of great interest in quantum physics (inverse potential scattering [5–8]), ocean
acoustics [9–14] (detection of inhomogeneities, sediment exploration, influence of seawater and
seafloor composition and heterogeneity on the long-range propagation of acoustic waves in the sea,
etc.), seismology [15–17] (determination of the internal structure and composition of the Earth
via seismic waves, etc.), geophysics [17–20] (characterization of soil, detection of geological
features such as hydrocarbon reservoirs, etc.), optics and electromagnetism [21, 22] (design and
characterization of materials having specified response to waves, detection of flaws, etc.).

The wave equation in an inhomogeneous medium can be solved in a variety of manners: via
the wave splitting method [4, 23, 24], the transfer matrix method [25, 26] (for piecewise constant
media), integral methods [3, 6, 8], or purely numerical (e.g. finite-element [27] or finite-difference
[28]) methods. The methods dedicated to inverse problems are wave splitting and linearization
[7, 8] techniques deriving from the integral formalism. The two most widely-known approximations
for the Fredholm equations of the second kind involved in the integral formalism (at least when
the density is constant in the acoustic context) are the Born approximation [8, 29] and the Rytov
approximation [30]. We will focus on the Born approximation, despite the fact that several authors
[31, 32] have shown that the Rytov approximation is valid under a less restrictive set of conditions
than the Born approximation.

We postulate, and show, that the accuracy of the Born approximation can be increased by the
use of the integral formulation together with a specific Green’s function [6, 8, 33]. In most of
the articles dealing with the Born approximation and other linearization methods, the problems
are often simplified by considering the density to be constant. Herein, we consider both the
compressibility and the density to be spatially-variable. This induces supplementary difficulties,
because it can lead to meaningless integrals (involving first and/or second space derivatives of the
density), especially when the variation of the density is not continuous, and/or because it requires
the evaluation of the first space derivative of the pressure field. We will show how to deal with
these problems.
The usual first-order Born approximation is an outcome of the integral formulation employing the free-space Green’s function (FSGF) and consists in approximating the pressure field in the integrand (corresponding to the pressure field inside the heterogeneity) by the field in the absence of the heterogeneity (i.e. the incident field), this being equivalent to the assumption that the diffracted field is negligible compared to the incident field. Although this method usually provides good results for small contrasts between the mechanical parameters of the inhomogeneity and those of the host medium, its accuracy decreases in the case of dissipative media and larger contrasts.

Moreover, iterative schemes initialized with the zeroth-order Born or Rytov approximations often diverge in practice. This difficulty can be partially solved by employing the modified or distorted Born approximation \[\text{[8]} \] which basically consist in acting on one of the three terms involved in the integrand (the Green’s function, the contrast function and the field inside the heterogeneity).

The method described hereafter allows us to act on all three terms. The central idea of our method consists in reducing the eigenvalues of the kernel of the integrand (thought to be the cause of the difficulties with the usual iterative Born scheme) by employing a Green’s function—the so-called specific Green’s function (SGF)—of a canonical problem which is close, in some sense, to the original problem. The specification of the initial solution was already treated in Reference [33] in connection with the resolution of an inverse problem. The chosen problem (also canonical) is that of the diffraction of an incident plane wave, propagating in the host medium, by a two-component slab (each component being a homogeneous layer) considered as a single inhomogeneous slab. In the present instance, the close canonical problem involves a slab filled with a macroscopically-homogeneous fluid-saturated porous medium surrounded by the same fluid (air) medium as the original macroscopically-inhomogeneous fluid-saturated porous medium.

We will show, for this example: (i) how to construct an appropriate specific Green’s function (SGF), (ii) how to incorporate the latter into the integral formulation, and (iii) how the resulting integral equation can be solved by an iterative scheme initialized by a modified Born approximation.

The results are compared to those of the analytic solutions (obtained by the transfer matrix method (TMM)) for the two-component slab and found to be in good agreement with the latter, both in transmission and reflection and for several angles of incidence. The iterative scheme initialized with the modified Born approximation converges rather rapidly, i.e. within 5–7 iterations for our example. This demonstrates the efficiency of our SGF iterative scheme for the resolution of the direct problem relative to wave propagation in the presence of a macroscopically-inhomogeneous fluid-saturated porous slab.

2. USE OF THE SPECIFIC GREEN’S FUNCTIONS IN THE DOMAIN INTEGRAL FORMULATION TO SOLVE DIRECT SCATTERING PROBLEMS

2.1. An example of a direct scattering problem

The type of direct problem we deal with is illustrated in Figure 1(a). This problem involves spatially-dependent compressibility and density. As will be shown further on, the spatial variability, and discontinuity, of both these quantities, and in particular of the latter, can produce some difficulties in the domain integral formulations (but not in the TMM formulation). The wave equation for such
problems is given in Appendix A; to solve them in optimal manner, we treat the auxiliary problem depicted in Figure 1(b).

2.2. Specific Green’s function corresponding to the propagation of waves radiated by interior and exterior line sources in the presence of a homogeneous fluid-like layer immersed in a homogeneous fluid host medium

2.2.1. Features of the problem. The sagittal plane (cross-section) view of the scattering configuration is given in Figure 1(b). As we are dealing with a Green’s function, the supports of the sources reduce to dots in the figure, i.e. the sources are line sources. The homogeneous fluid-like layer is oriented horizontally (i.e. the normal to both of its faces is along the x_2-axis); its thickness is l, and the medium M^1 therein is homogeneous. The geometry and composition of the layer are thus invariant with respect to x_3. Ω_1 designates the trace of the layer in the x_1-x_2 cross-section plane. Γ_a and Γ_b designate the traces of the lower and upper faces, respectively, of the layer in the x_1-x_2 cross-section plane. The unit vectors normal to Γ_a and Γ_b are designated indistinctly by \mathbf{m}. The x_2 co-ordinates of Γ_a and Γ_b are designated by a and b, respectively.

The layer is immersed in a (host) fluid M^0. The trace of the host medium domain below (above) the layer in the x_1-x_2 cross-section plane is designated by Ω_0^+ (Ω_0^-).

The (direct scattering) problem is to determine the response $g^0\Sigma_0$ within Ω_0^+, $g^0\Sigma_0$ within Ω_0^-, and $g^1\Sigma_0$ within Ω_1 for line sources that are located either within Ω_0^+, Ω_0^- or Ω_1. This response constitutes the specific Green’s function we are looking for.

Let y designate the vector from O to the location of the line source. The Green’s function in Ω_j is designated by $g^j(x, y)$, which means the response at x due to line sources located at y.

2.2.2. Governing equations. Rather than to solve directly for $g^j(x, y, t)$, we prefer to deal with its Fourier transform $g^j(x, y, \omega)$ defined by

$$
g^j(x, y, t) = \int_{-\infty}^{\infty} g^j(x, y, \omega)e^{-i\omega t} d\omega; \quad j = 0^+, 1, 0^- \quad (1)$$
The mathematical translation of the boundary-value problem in the space-frequency domain is

$$\left[\Delta + (k_j^2) \right] g^j(x, y, \omega) = - \delta(x-y) : \forall x \in \Omega_j, \quad j = 0^+, 1, 0^-, \quad y \in \Omega_{0^+}, \Omega_1 \text{ or } \Omega_0^- \quad (2)$$

$$\forall x \in \Gamma_a \begin{cases} g^{0^+}(x, y, \omega) - g^1(x, y, \omega) = 0 \\ \frac{1}{\rho_0} \nu(x) \cdot \nabla g^{0^+}(x, y, \omega) - \frac{1}{\rho^1} \nu(x) \cdot \nabla g^1(x, y, \omega) = 0 \end{cases} \quad (3)$$

$$\forall x \in \Gamma_b \begin{cases} g^1(x, y, \omega) - g^{0^-}(x, y, \omega) = 0 \\ \frac{1}{\rho^1} \nu(x) \cdot \nabla g^1(x, y, \omega) - \frac{1}{\rho_0} \nu(x) \cdot \nabla g^{0^-}(x, y, \omega) = 0 \end{cases} \quad (4)$$

$$g^j(x, y, \omega) - G^j(x, y, \omega) \sim \text{outgoing waves} \quad \forall x \in \Omega_j; \quad j = 0^+, 1, 0^-; \quad \|x\| \to \infty \quad (5)$$

wherein G^j is the free-space Green’s function in the medium M^j given by

$$G^j(x, y, \omega) = \frac{i}{4} H_0^{(1)}(k^j(\|x-y\|)) = \frac{i}{4\pi} \int_{-\infty}^{\infty} \exp(ik_1(x_1-y_1) + ik_j^2(x_2-y_2)) \frac{dk_1}{k^j_2} \quad (6)$$

with $H_0^{(1)}$ the zeroth-order Hankel function of the first kind, $k_j^2 = \sqrt{(k_j^j)^2 - (k_1^j)^2}$ such that $\Re(k_j^2) \geq 0$ and $\Im(k_j^2) \geq 0$, $j = 0, 1$ for $\omega \geq 0$.

2.2.3. Field representations. We shall henceforth: (i) drop the ω-dependence with the understanding that it is implicit in all the field functions and (ii) employ the Cartesian co-ordinates (x_1, x_2) of x and (y_1, y_2) of y.

We use the separation of variables technique to obtain

$$g^{0^+}(x, y) = \text{H}_{\Omega_{0^+}}(y) G^{0^+}(x, y) + \int_{-\infty}^{\infty} B^{0^+} \exp(ik_1x_1 + ik_j^2(x_2 - a)) \frac{dk_1}{k^j_2} \quad (7)$$

$$g^1(x, y) = \text{H}_{\Omega_1}(y) G^1(x, y) + \int_{-\infty}^{\infty} \left(A^1 \exp(-ik_j^2x_2) + B^1 \exp(ik_j^2x_2) \right) \exp(ik_1x_1) \frac{dk_1}{k^j_2} \quad (8)$$

$$g^{0^-}(x, y) = \text{H}_{\Omega_0^-}(y) G^{0^-}(x, y) + \int_{-\infty}^{\infty} A^{0^-} \exp(ik_1x_1 - ik_j^2(x_2 - b)) \frac{dk_1}{k^j_2} \quad (9)$$

wherein H_{Ω_j} is the Heaviside function

$$\text{H}_{\Omega_j}(y) = \begin{cases} 1 & \text{if } y \in \Omega_j \\ 0 & \text{if } y \in \Omega_i, \quad i \neq j \end{cases} \quad (10)$$
2.2.4. Application of the transmission conditions. In Cartesian co-ordinates and on account of the orientation of the two faces of the layer

\[\mathbf{v}(\mathbf{x}) \cdot \nabla \mathcal{F} = \frac{\partial}{\partial x_2} \mathcal{F} \quad (11) \]

After introducing the fields expressions, Equations (7), (8) and (9) into the boundary conditions Equations (3) and (4), we multiply these relations by \(\exp(-iK_1x_1) \) and then integrate from \(-\infty\) to \(+\infty\), using the identity

\[\int_{-\infty}^{\infty} \exp(i(k_1 - K_1)x_1) \, dx_1 = 2\pi \delta(k_1 - K_1), \quad \delta(k_1 - K_1) \text{ being the Kronecker symbol} \quad (12) \]

so as to obtain the matrix equation

\[
\begin{pmatrix}
1 - k_2 e^{-ik_2 a}/k_2 & -k_2 e^{ik_2 a}/k_2 & 0 \\
\rho e^{-ik_2 a}/\rho & -\rho e^{ik_2 a}/\rho & 0 \\
-k_2 e^{-ik_2 b}/k_2 & -k_2 e^{ik_2 b}/k_2 & 1 \\
0 - \rho e^{-ik_2 b}/\rho & \rho e^{ik_2 b}/\rho & 1
\end{pmatrix}
\begin{pmatrix}
B^{0+} \\
A^1 \\
B^1 \\
A^0
\end{pmatrix} =
\frac{i e^{-ik_1 y} \Omega_0}{4\pi}
\begin{pmatrix}
-e^{ik_2(y_2-a)}\Omega_0+e^{ik_2(y_2-a)y}\Omega_1 \\
e^{ik_2(y_2-a)}\Omega_0+e^{ik_2(y_2-a)y}\Omega_1 \\
e^{ik_2(b-y_2)}\Omega_0+e^{ik_2(b-y_2)y}\Omega_1 \\
e^{ik_2(b-y_2)}\Omega_0+e^{ik_2(b-y_2)y}\Omega_1
\end{pmatrix} \quad (13)
\]

2.2.5. Final expressions of the specific Green's function. Once the matrix system (13) is solved for \(B^{0+}, A^1, B^1 \) and \(A^0 \), and these expressions are introduced into the expressions of the fields (7), (8), (9), we get

\[
g^{0+}(\mathbf{x}, \mathbf{y}) = \frac{i}{4\pi} \int_{-\infty}^{\infty} e^{ik_1(x_1-y_1)+ik_2(x_2-y_2)} \Omega_0 + \frac{dk_1}{k_2} \\
+ \int_{-\infty}^{\infty} \frac{e^{ik_1(x_1-y_1)+ik_2(y_2)}}{4\pi(2x^0x^1 \cos(k_2^2l) - i((x^0)^2 + (x^1)^2) \sin(k_2^2l))} \\
\times \left[e^{ik_2^0(y_2-2a)} \sin(k_2^1l)((x^0)^2 - (x^1)^2) - \frac{H_0^\alpha}{k_2^0} + 2ie^{-ik_2^0(y_2+l)}x^1 \frac{H_0^\alpha}{k_2^0} \\
+ 2ie^{-ik_2^0l}x^1 \frac{H_0^\alpha}{k_2^0} \right] \, dk_1 \quad (14)
\]
USE OF SPECIFIC GREEN’S FUNCTIONS

\[
g^1(\mathbf{x}, \mathbf{y}) = \frac{i}{4\pi} \int_{-\infty}^{\infty} e^{ik_1(x_1 - y_1) + ik_2|y_2 - y_2|} H_{\Omega_1} \frac{dk_1}{k_2} \\
+ \int_{-\infty}^{\infty} \frac{ie^{ik_1(x_1 - y_1)}}{4\pi(2x^0x^1 \cos(k_2 l) - i((x^0)^2 + (x^1)^2) \sin(k_2 l))} \\
\times \left[2e^{ik_2(y_2 - a)}(x^1 x^0 \cos(k_2(x_2 - b)) - i(x^0)^2 \sin(k_2(x_2 - b))) \frac{H_{\Omega_0+}}{k_2^0} \\
+ 2e^{ik_2(b - y_2)}(x^1 x^0 \cos(k_2(a - x_2)) - i(x^0)^2 \sin(k_2(a - x_2))) \frac{H_{\Omega_0-}}{k_2^0} \\
+ ((x^1)^2 - (x^0)^2) \cos(k_2^1(x_2 + y_2 - a - b)) \\
+ \exp(ik_2^1)(x^0 - x^1)^2 \cos(k_2^1(x_2 - y_2))) \frac{H_{\Omega_1}}{k_2^1} \right] \, dk_1
\]

\[
g^{0-}(\mathbf{x}, \mathbf{y}) = \frac{i}{4\pi} \int_{-\infty}^{\infty} e^{ik_1(x_1 - y_1) + ik_2^0|y_2 - y_2|} H_{\Omega_0} \frac{dk_1}{k_2^0} \\
+ \int_{-\infty}^{\infty} \frac{e^{ik_1(x_1 - y_1) - ik_2^0|y_2|}}{4\pi(2x^0x^1 \cos(k_2^0 l) - i((x^0)^2 + (x^1)^2) \sin(k_2^0 l))} \\
\times \left[2e^{-ik_2^0(l - y_2)}x^1 x^0 \frac{H_{\Omega_0+}}{k_2^0} + e^{-ik_2^0(y_2 - 2b)} \sin(k_2^1 l)((x^0)^2 - (x^1)^2) \frac{H_{\Omega_0-}}{k_2^0} \\
+ 2e^{ik_2^0b}x^1 \cos(k_2^1(a - y_2)) - ix^0 \sin(k_2^1(a - y_2))) \frac{H_{\Omega_1}}{k_2^1} \right] \, dk_1
\]

2.3. Use of a specific Green’s function to solve the direct problem of pressure wave scattered by an inhomogeneous fluid-filled slab

We treat the 2D fluid acoustic direct problem illustrated in Figure 2. In the absence of the heterogeneity, occupying the domain Ω_2, the configuration is that of the closed layer domain Ω_1 occupied by a known homogeneous fluid M^1 with (spatially-constant) acoustic parameters (k^1, ρ^1), surrounded by the open domain Ω_0 occupied by a known homogeneous fluid M^0 with (spatially-constant) acoustic parameters (k^0, ρ^0).

In the presence of the heterogeneity, localized in the domain $\Omega_2 \subset \Omega_1$, the problem is to solve the scattering problem for spatially-varying acoustic parameter functions $(k^2(x), \rho^2(x))$ of the medium M^2 filling Ω_2 in the subdomains Ω_{0+} and Ω_{0-} when the slab is probed by an incident wave.
2.3.1. Governing equations for scattering from a heterogeneous layer, included between Γ_a and Γ_b, probed by a cylindrical wave radiated by a cylindrical source whose support is Ω_0^+. Let $\Omega_1 = \tilde{\Omega}_1 \cup \Omega_2$. Then the governing equations for the pressure field are:

\[
\begin{align*}
[\Delta + (k^0)^2]p^0_+ (x) &= -s^0 (x); \quad x \in \Omega_0^+ \\
[\Delta + (k(x))^2]p^1 (x) &= \nabla \rho(x) \cdot \nabla p^1 (x); \quad x \in \Omega_1
\end{align*}
\]

\[
k(x) = \begin{cases}
 k^1; & x \in \tilde{\Omega}_1 \\
 k^2(x); & x \in \Omega_2
\end{cases}
\]

\[
\rho(x) = \begin{cases}
 \rho^1; & x \in \tilde{\Omega}_1 \\
 \rho^2(x); & x \in \Omega_2
\end{cases}
\]

\[
[\Delta + (k^0)^2]p^0_- (x) = 0; \quad x \in \Omega_0^-
\]

\[
p^0_+ (x) - p^1 (x) = 0; \quad x \in \Gamma_a
\]

\[
\frac{1}{\rho^0} v(x) \cdot \nabla p^0_+ (x) - \frac{1}{\rho^1} v(x) \cdot \nabla p^1 (x) = 0; \quad x \in \Gamma_a
\]

\[
p^1 (x) - p^0_- (x) = 0; \quad x \in \Gamma_b
\]

\[
\frac{1}{\rho^1} v(x) \cdot \nabla p^1 (x) - \frac{1}{\rho^0} v(x) \cdot \nabla p^0_- (x) = 0; \quad x \in \Gamma_b
\]

\[p^0_+ (x), p^1 (x) \text{ and } p^0_- (x) \sim \text{outgoing waves}, \quad \|x\| \to \infty\]
The previously-given governing equations for the specific Green’s function can be rewritten as

\[\Delta + (K(x))^2]g(x, y) = -\delta(x - y); \quad x, y \in \mathbb{R}^2 \quad (27) \]

\[K(x) = \begin{cases} k^0; & x \in \Omega_0^+ \cup \Omega_0^- \\ k^1; & x \in \Omega_l \end{cases} \quad (28) \]

\[g(x, y) = \begin{cases} g^0(x, y); & x \in \Omega_0^+ \cup \Omega_0^- \\ g^1(x, y); & x \in \Omega_l \end{cases} \quad (29) \]

\[g^{0+}(x, y) - g^1(x, y) = 0; \quad x \in \Gamma_a \quad (30) \]

\[\frac{1}{\rho^0} v(x) \cdot \nabla g^{0+}(x, y) - \frac{1}{\rho^0} v(x) \cdot \nabla g^1(x, y) = 0; \quad x \in \Gamma_a \quad (31) \]

\[g^1(x, y) - g^{0-}(x, y) = 0; \quad x \in \Gamma_b \quad (32) \]

\[\frac{1}{\rho^1} v(x) \cdot \nabla g^1(x, y) - \frac{1}{\rho^0} v(x) \cdot \nabla g^{0-}(x, y) = 0; \quad x \in \Gamma_b \quad (33) \]

\[g(x, y) \sim \text{outgoing waves}, \quad \|x\| \to \infty \quad (34) \]

2.3.2. Towards a domain integral representation of the pressure field in \(\Omega_0^+ \). In obvious short-hand notation (in addition: \(\hat{\nabla} := v \cdot \nabla \)), we obtain from the previous governing equations

\[g^{0+}[\Delta + (k^0)^2]p^{0+} = -g^{0+}s^0 \quad \text{in } \Omega_0^+ \quad (35) \]

\[p^{0+}[\Delta + (k^0)^2]g^{0+} = -p^{0+}\delta \quad \text{in } \Omega_0^+ \quad (36) \]

so that integrating the difference of these two equations over \(\Omega_0^+ \), we obtain

\[\int_{\Omega_0^+} (g^{0+}\Delta p^{0+} - p^{0+}\Delta g^{0+}) \, d\Omega = -\int_{\Omega_0^+} g^{0+}s^0 \, d\Omega + \int_{\Omega_0^+} p^{0+}\delta \, d\Omega \quad (37) \]

or, after use of Green’s theorem and the sifting property of the \(\delta \) distribution

\[\int_{\Gamma_a^0} (\hat{\nabla} p^{0+} - p^{0+} \hat{\nabla} g^{0+}) \, d\gamma \]

\[+ \int_{\Gamma_b^0} (\hat{\nabla} p^{0+} - p^{0+} \hat{\nabla} g^{0+}) \, d\gamma + \int_{\Omega_0^+} g^{0+}s^0 \, d\Omega = p^{0+}(y)H_{\Omega_0^+}(y) \quad (38) \]

We develop, for the domain integral representation of this pressure field, the integration over \(\Gamma_a^\infty \), so that to obtain

\[\int_{\Gamma_a^\infty} (g^{0+}\hat{\nabla} p^{0+} - p^{0+}\hat{\nabla} g^{0+}) \, d\gamma = \int_{\Gamma_a^\infty} g^{0+}[\hat{\nabla} p^{0+} - i\hat{\nabla} p^{0+}] \, d\gamma - \int_{\Gamma_a^\infty} p^{0+}[\hat{\nabla} g^{0+} - i\hat{\nabla} g^{0+}] \, d\gamma \quad (39) \]
It is readily shown that both of the integrals on the right-hand side of the expression vanish due to the fact that both \(p^{0+} \) and \(g^{0+} \) satisfy the (frequency domain) radiation condition at infinity.

2.3.3. Towards a domain integral representation of the pressure field in \(\Omega_1 \)

In obvious short-hand notation, we obtain from the previous governing equations

\[
[\Delta + (k^2)] p^1 = \frac{\nabla \rho}{\rho} \cdot \nabla p^1; \quad \Rightarrow \quad [\Delta + (k^1)^2] p^1 = [(k^1)^2 - (k(x))^2] p^1 + \frac{\nabla \rho}{\rho} \cdot \nabla p^1 = -\sigma(x) \tag{40}
\]

Consequently,

\[
g^1[\Delta + (k^1)^2] p^1 = -g^1 \sigma \delta \quad \text{in } \Omega_1 \tag{41}
\]

\[
p^1[\Delta + (k^1)^2] g^1 = -p^1 \delta \quad \text{in } \Omega_1 \tag{42}
\]

so that, integrating the difference of these two equations over \(\Omega_1 \), and after use of Green’s theorem and the shifting property of the \(\delta \) distribution, we obtain

\[
-\int_{\Gamma_a} (g^1 \partial_y p^1 - p^1 \partial_y g^1) \, d\gamma + \int_{\Gamma_b} (g^1 \partial_y p^1 - p^1 \partial_y g^1) \, d\gamma + \int_{\Omega_1} g^1 \sigma \, d\Omega = p^1(y) H_{\Omega_1^+}(y) \tag{43}
\]

which yields, on account of the transmission conditions

\[
-\int_{\Gamma_a} (g^{0+} \partial_y p^{0+} - p^{0+} \partial_y g^{0+}) \, d\gamma + \int_{\Gamma_b} (g^{0+} \partial_y p^{0+} - p^{0+} \partial_y g^{0+}) \, d\gamma + \frac{\rho^0}{\rho^1} \int_{\Omega_1} g^1 \sigma \, d\Omega = \frac{\rho^0}{\rho^1} p^1(y) H_{\Omega_1^+}(y) \tag{44}
\]

2.3.4. Towards a domain integral representation of the pressure field in \(\Omega_0^- \)

In obvious short-hand notation, we obtain from the previous governing equations

\[
g^{0-}[\Delta + (k^0)^2] p^{0-} = 0 \quad \text{in } \Omega_0^- \tag{45}
\]

\[
p^{0-}[\Delta + (k^0)^2] g^{0-} = -p^{0-} \delta \quad \text{in } \Omega_0^- \tag{46}
\]

so that, integrating the difference of these two equations over \(\Omega_0^- \), and following the procedure used in the last two subsections, we obtain

\[
-\int_{\Gamma_b} (g^{0-} \partial_y p^{0-} - p^{0-} \partial_y g^{0-}) \, d\gamma = p^{0-}(y) H_{\Omega_0^-}(y) \tag{47}
\]

2.3.5. Domain integral representations, without boundary terms, of the pressure fields in \(\Omega_0^+, \Omega_1 \) and \(\Omega_0^- \)

The addition of (38), (44) and (47) gives

\[
\int_{\Omega_{0+}} g^{0+} s^0 \, d\Omega + \frac{\rho^0}{\rho^1} \int_{\Omega_1} g^1 \sigma \, d\Omega = p^{0+}(y) H_{\Omega_0^+}(y) + p^1(y) H_{\Omega_1^+}(y) + p^{0+}(y) H_{\Omega_0^-}(y) \tag{48}
\]
from which it ensures, on account of the properties of the domain Heaviside function

\[p^{0+}(y) = \int_{\Omega_0^+} g^{0+} s^0 d\Omega + \frac{\rho_0}{\rho^2} \int_{\Omega_1} g^1(x, y) \left[(k(x)^2 - (k^1)^2) - \frac{\nabla \rho}{\rho} \cdot \nabla \right] p^1(x) d\Omega \quad \forall y \in \Omega_0^+ \quad (49) \]

\[p^1(y) = \frac{\rho^1}{\rho^0} \int_{\Omega_0^+} g^{0+} s^0 d\Omega + \int_{\Omega_1} g^1(x, y) \left[(k(x)^2 - (k^1)^2) - \frac{\nabla \rho}{\rho} \cdot \nabla \right] p^1(x) d\Omega \quad \forall y \in \Omega_1 \quad (50) \]

\[p^{0-}(y) = \int_{\Omega_0^+} g^{0+} s^0 d\Omega + \frac{\rho_0}{\rho^2} \int_{\Omega_1} g^1(x, y) \left[(k(x)^2 - (k^1)^2) - \frac{\nabla \rho}{\rho} \cdot \nabla \right] p^1(x) d\Omega \quad \forall y \in \Omega_0^- \quad (51) \]

2.3.6. Other integral representations, without boundary terms, of the pressure fields in \(\Omega_0^+, \Omega_1 \) and \(\Omega_0^- \). Let \(g^j_i(x, y) \) correspond to \(y \in \Omega_j \) and \(x \in \Omega_i \). Reciprocity implies \(g^j_i(x, y) = (\rho^j / \rho^i) g^j_i(y, x) \). The integral representations (49), (50) and (51) can finally be written in the condensed form (recalling that \(\Omega = \Omega_0^+ \cup \Omega_1 \cup \Omega_0^- \))

\[p(y, \omega) = \int_{\Omega_0^+} g_{0+}(y, x) s^0(x) d\Omega(x) \]

\[+ \int_{\Omega_1} g^1(y, x) \left[(k(x)^2 - (k^1)^2) - \frac{\nabla \rho}{\rho} \cdot \nabla \right] p(x) d\Omega(x) \quad \forall y \in \Omega \quad (52) \]

3. COMMENTS ON THE INTEGRAL REPRESENTATION OF THE FIELD

Equation (52) can be written as

\[p^s(y) := p(y) - \int_{\Omega_0^+} g_{0+}(y, x) s^0(x) d\Omega(x) \]

\[= \int_{\Omega_1} g^1(y, x) \left[(k(x)^2 - (k^1)^2) - \frac{\nabla \rho}{\rho} \cdot \nabla \right] p(x) d\Omega(x) \quad \forall y \in \Omega \quad (53) \]

wherein \(p^s(y) \) is the field scattered by the inhomogeneity of the slab.

This can be compared to the more common formulation employing the free-space Green’s function \(G^0(x, y) \):

\[p^d(y) := p(y, \omega) - \int_{\Omega_0^+} G^0(y, x) s^0(x) d\Omega(x) \]

\[= \int_{\Omega_1} G^0(y, x) \left[(k(x)^2 - (k^0)^2) - \frac{\nabla \rho}{\rho} \cdot \nabla \right] p(x) d\Omega(x) \quad \forall y \in \Omega \quad (54) \]

wherein \(p^d(y, \omega) \) is the field diffracted by the entire inhomogeneous slab (including the slab itself and its inhomogeneities). The SGF formulation thus appears to be more suitable than the FSGF.
formulation, because the scattered field $p^s(y, \omega)$ accounts at the outset for more of the physics of the interaction of the obstacle with the incident wave than $p^d(y)$.

It can be shown that the neglected field is generally smaller in the SGF formulation than in the FSFG formulation. Effectively, when the SGF formulation is employed, the zeroth-order Born approximation consists in neglecting $\int_{\Omega_1} g_1(y, x) [(k(x))^2 - (k^j)^2] - (\nabla \rho/\rho) \cdot \nabla p(x) \, d\Omega(x)$ compared to $\int_{\Omega_0^+} g_0^+(y, x)s^0(x) \, d\Omega(x)$ whereas when the FSFG formulation is employed, the zeroth-order Born approximation consists in neglecting $\int_{\Omega_1} G_0^0(y, x)[(k(x))^2 - (k^j)^2 - (\nabla \rho/\rho) \cdot \nabla] p(x) \, d\Omega(x)$ in comparison to $\int_{\Omega_0^+} G_0^0(y, x)s^0(x) \, d\Omega(x)$.

The use of the SGF includes some multiple reflections, while the FSFG formulation combined with the Born approximation does not apply to high contrasts, because the employed linearization tacitly precludes multiple reflections.

Finally, when the density is constant, the contrast component of the kernels of both formulations reduce to

$$(k^j)^2 \left(\left(\frac{k(x_2)}{k^j} \right)^2 - 1 \right) = (k^j)^2 \left(\left(\frac{\omega}{c(x_2)} + iz(\omega, x_2) \right)^2 \right) - 1 \quad (55)$$

wherein $z(\omega, x_2)$ is the absorption coefficient and $j = 0$ for the FSFG and $j = 1$ for SGF. It has been shown in [34] that the Born approximation is reasonable if the phase shift introduced by the inhomogeneous medium is less than π, i.e. weak and smooth heterogeneities of simple shape. The shift depends not only on the size, but also on the kernel (Equation (55)), i.e. on the frequency, on the absorption, and on the contrast between the two phase velocities. The use of the SGF, when the initial configuration is a homogeneous slab filled with a fluid-saturated porous material, allows us: (i) to reduce the frequency dependence of the kernel, (ii) to reduce the kernel itself by taking into account a phase-velocity that is closer to that of the host medium and also by taking into account the absorption (dissipation) of the material, and (iii) to provide more accuracy, in the sense that on the one hand, the specific Green’s function already accounts for dissipation and for some of the geometry of the problem and on the other hand, the approximation of the field in the integral is more realistic than when the FSFG is employed. The usual way (i.e. when the FSFG is used) to avoid the problem induced by the absorption consists in adding some dissipation term in the approximated field in the integrand (Modified Born approximation), but not by acting directly on the kernel of the integral. Methods such as the distorted Born approximation, whose convergence analysis has been carried out in [35], also allow to consider objects with larger contrast, but by acting only on the contrast function, i.e. without introducing additional effects on the approximated field in the integrand and on the Green’s function used in the formulation.

The SGF domain integral formulation thus allows the elimination of some of the disadvantages of the FSFG domain integral formulation. This is obtained by acting on the kernel, the Green’s function and the approximated pressure field, contrary to other methods employing the FSFG which act only on one or two of the components of the integrand.

The combined effects of this action is to allow us to define and implement an iterative scheme, starting with the zeroth-order Born approximation and using the SGF formulation, to solve wave propagation problems involving a medium, whose components have high contrasts and in which there exist abrupt heterogeneities, so to consider objects with larger contrasts, with respect to the surrounding medium, than would be possible with the conventional FSFG formulation.
4. SPECIFIC INGREDIENTS OF THE COMPUTATIONAL PROCEDURE FOR THE PREDICTION OF THE FIELD SCATTERED BY AN INHOMOGENEOUS POROUS SLAB SOLICITED BY A PLANE INCIDENT WAVE

We now adapt the previous analysis to the determination of the field scattered by an inhomogeneous slab (the direction of inhomogeneity being \(x_2\)) solicited by an incident plane wave.

This type of incident wave is associated with \(s^0 = 0\), so that it would appear that there is no solicitation in the above equations. Nevertheless, for an incident plane wave initially propagating in \(\Omega_{0+}\), the integral over \(\Gamma_{0+}\), (39), does not vanish. It follows that the term corresponding to the solicitation takes the form of \(p^{0+}(y)\), \(p^1(y)\) and \(p^{0-}(y)\), which are the responses in the subdomains \(\Omega_{0+}\), \(\Omega_1\) and \(\Omega_{0-}\), respectively (i.e. the zeroth-order Born approximation), to an incident plane wave propagating initially in \(\Omega_{0+}\) given by

\[
p^i(y, \omega) = A_i(\omega) \exp[i(k_{i1}y_1 - k_{i2}y_2)]
\]

wherein \(k_{i1} = k_0 \sin \theta^i\), \(k_{i2} = k_0 \cos \theta^i\) and \(\theta^i\) the angle of incidence with respect to the \(+x_2\) axis.

The spectrum of the incident takes the form of a Ricker-like wavelet of the form

\[
A_i(\omega) = \frac{-(\pi v_0)^2 \omega^2}{2\sqrt{\pi}(\pi v_0)^3} \exp\left(\frac{i\omega}{v_0} - \frac{\omega^2}{2(2\pi v_0)^2}\right)
\]

wherein we take (in the computations) \(v_0 = 100\) kHz to be the central frequency of the source spectrum.

The zeroth-order Born approximation is given in Appendix B.

4.1. Application of the first-order Born approximation in the SGF formulation

We give here the explicit form of the first-order Born approximation within the framework of the SGF formulation.

Remark

As a consequence of the separation of variables, all pressure fields can be written in the form

\[
p(x) = \exp(i k_1^0 x_1) \hat{p}(x_2)
\]

4.1.1. First-order Born approximation in the SGF formulation for \(y \in \Omega_{0+}\). When \(y \in \Omega_{0+}\), \(g_1(y, x, \omega) = g_1^{0+}(y, x, \omega)\), so that

\[
p(y, \omega) = p^{0+}(y, \omega)
\]

\[
\approx \int_{-\infty}^{+\infty} \int_{b}^{a} g_1^{0+}(y, x) \left[(k(x_2))^2 - (k_1^0)^2 - \frac{1}{\rho(x_2)} \frac{\partial \rho(x_2)}{\partial x_2} \frac{\partial}{\partial x_2} \right] p^1(x) \, dx_1 \, dx_2
\]

\[
\approx \int_{b}^{a} \left[\frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{\exp[i (k_1^0 y_1 + k_1^0 y_2 - a)] (x_1^0 x_1 \cos(k_1^0 x_2 - b) - i x_1^0 \sin(k_1^0 x_2 - b))}{2\pi x_1^0 \cos(k_1^0 x_2 - b) - i((x_1^0)^2 + (x_1^0)^2) \sin(k_1^0 x_2 - b))} \, dk_1^0 \right]
\]

\[
\times \left[(k(x_2))^2 - (k_1^0)^2 - \frac{1}{\rho(x_2)} \frac{\partial \rho(x_2)}{\partial x_2} \frac{\partial}{\partial x_2} \right] p^1(x) \left[\int_{-\infty}^{+\infty} \exp[i (k_1^0 x_1 - k_1^0 x_1)] \, dx_1 \right] \, dx_2
\]
By making use of the identity (12), (59) becomes

\[p(y, \omega) - p^{0+}(y, \omega) \approx \int_b^a \left[\frac{ie^{iky} + i\tilde{k}y}{k^2} \right] \left[\chi_{a, b}^1 (x^2 - b) \right] - i(z^0 \sin(k^2 (x^2 - b))) \]

\[\times \left[(k^2 - (k^1)^2) - \frac{1}{\rho(x^2)} \frac{\partial \rho}{\partial x^2} \right] \tilde{p}^1(x^2) \, dx^2 \]

Introducing the expression of \(\tilde{p}^1(x^2) \) from (B2), and after expanding, we get

\[p(y, \omega) - p^{0+}(y, \omega) \approx \frac{2ie^{iky} + i\tilde{k}y}{k^2} (2a^0, a^1, \tilde{a}^0, \tilde{a}^1) \]

\[\times \left[(k^2 - (k^1)^2) - \frac{1}{\rho(x^2)} \frac{\partial \rho}{\partial x^2} \right] \chi_{a, b}^1 (x^2 - b) \, dx^2 + i(\tilde{a}^0, \tilde{a}^1) \]

\[\times \int_b^a \chi(x^2) \cos(2k^2 (x^2 - b)) \, dx^2 + i(\tilde{a}^0, \tilde{a}^1) \]

\[\times \int_b^a \chi(x^2) \sin(2k^2 (x^2 - b)) \, dx^2 + \frac{1}{\rho(x^2)} \frac{\partial \rho}{\partial x^2} \]

\[\times \int_b^a \sin(2k^2 (x^2 - b)) \, dx^2 \]

(61)

where \(\chi(x^2) = ((k^2)^2 - (k^1)^2 - 1) \) is the contrast function.

We define the average value, cosine transform and sine transform of a function \(f(x^2) = h(x^2) \) \(\Pi(b \leq x^2 \leq a) \) (wherein \(\Pi(b \leq x^2 \leq a) \) is the so-called gate function and \(l = a - b \) by

\[\langle f(x^2) \rangle = \langle h(x^2) \rangle = \int_b^a h(x^2) \frac{dx^2}{l} \]

\[\text{TF}_c(f(x^2), q) = \int_{-\infty}^{\infty} f(x^2) \cos(qx^2) \, dx^2 \]

(62)

\[\text{TF}_s(f(x^2), q) = \int_{-\infty}^{\infty} f(x^2) \sin(qx^2) \, dx^2 \]

respectively.

DOI: 10.1002/mma
Equation (61) can then be written in the form

\[
p(y, \omega) - p^{0^+}(y, \omega) \approx \frac{2\text{i}e^{\text{i}[k_1(y_1 + \text{i}k_{1,1}y_2 - 2a)]}}{k_2^3(2x^0, i x^1 \cos(k_2^3 l) - i ((x^0, i)^2 + (x^1, i)^2) \sin(k_2^3 l))^2} \\
\times \left[(x^1, i)^2 - (x^0, i)^2 \right] \left(k^3 l \langle \gamma(x_2) \rangle \right) \\
+ \frac{(x^1, i)^2 + (x^0, i)^2}{2} \left(k^3 l \langle \gamma(x_2 - b) \rangle \right)
\]

\[
+ i x^1, i x^1, k^3, i \langle \gamma(x_2 - b) \rangle \left(1 - \frac{\partial \rho}{\partial x_2} \right)
\]

\[
- i x^1, i x^1, k^3, i \langle \gamma(x_2 - b) \rangle \left(1 - \frac{\partial \rho}{\partial x_2} \right)
\]

\[
+ \frac{(x^1, i)^2 + (x^0, i)^2}{2} k^3, i \langle \gamma(x_2 - b) \rangle \left(1 - \frac{\partial \rho}{\partial x_2} \right)
\]

\[
(63)
\]

The first-order Born approximation of the reflected field in the SGF formulation involves the average value of \(\gamma(x_2) \) and both the cosine and sine transform of \(\gamma(x_2 - b) \) and of

\[
\frac{1}{\rho(x_2 - b)} \frac{\partial \rho(x_2 - b)}{\partial x_2}
\]

while the first-order Born approximation in the FSGF formulation involves only the Fourier transform of \(\gamma(x_2 - b) \) and of

\[
\frac{1}{\rho(x_2 - b)} \frac{\partial \rho(x_2 - b)}{\partial x_2}
\]

defined by reference to the material parameter of the host [36].

4.1.2. First-order Born approximation in the SGF formulation for \(y \in \Omega_1 \). When \(y \in \Omega_1 \), \(g_1(y, x, \omega) = g_1^1(y, x, \omega) \), so that, proceeding as previously, we get

\[
p(y, \omega) - p^1(y, \omega) \approx \int_{-\infty}^{+\infty} \int_b^a \left[(k(x)^2 - (k^1)^2) \frac{1}{\rho(x_2)} \frac{\partial \rho(x_2)}{\partial x_2} \right] p^1(x) \, dx_2 \, dx_1
\]

\[
\approx \int_b^a \left[\frac{i}{2k^1} e^{\text{i}[k_1(y_1 + \text{i}k_{1,1}y_2 - 2a)]} \right]
\]

\[
\times \left[\frac{((x^1)^2 - (x^0)^2) \cos(k_2^3 l(y_2 + x_2 - a - b)) + e^{\text{i}[k_1(y_2 + x_2 - a - b)]}(x^0)^2 \cos(k_2^3 l(y_2 - x_2)))}{2k_2^3(2x^0, i x^1 \cos(k_2^3 l) - i ((x^0, i)^2 + (x^1, i)^2) \sin(k_2^3 l))^2} \right]
\]

\[
\times \left[(k(x_2)^2 - (k^1)^2) \frac{1}{\rho(x_2)} \frac{\partial \rho(x_2)}{\partial x_2} \right] \tilde{p}^1(x_2) \, dx_2
\]

(64)
4.1.3. First-order Born approximation in the SGF formulation for \(y \in \Omega_{0-} \). When \(y \in \Omega_{0-} \),
\[g_1(y, x, \omega) = g_1^0(y, x, \omega), \]
so that
\[p(y, \omega) - p^0(y, \omega) \]
\[\approx \int_{-\infty}^{+\infty} \int_b^a g_1^0(y, x) \left[(k(x_2)^2 - (k_1^2) - \frac{1}{\rho(x_2)} \frac{\partial \rho(x_2)}{\partial x_2} \right] p^1(x) \, dx_1 \, dx_2 \]
\[\approx \int_b^a \left[\frac{ie^{i[k'y_1 + ik_2^0(b-y_2)]}x^i \cos(k_2^i(a - x_2)) - i\chi^{0,i} \sin(k_2^i(a - x_2))}{k_2^i(2\chi^{0,i}x_2^i \cos(k_2^i) - i((\chi^{0,i})^2 + (x_2^i)^2) \sin(k_2^i))} \right] \]
\[\times \left[(k(x_2)^2 - (k_1^2) - \frac{1}{\rho(x_2)} \frac{\partial \rho(x_2)}{\partial x_2} \right] \hat{p}^1(x) \, dx_2 \quad (65) \]

Introducing the expression of \(\hat{p}^1(x) \) from (B2), and by making use of the definition (62), the previous equation can be written in the form
\[p(y, \omega) - p^0(y, \omega) \approx \left[\frac{2ie^{i[k'y_1 - ik_2^0(b+y_2)]}x^i \chi^{0,i}}{k_2^i(2\chi^{0,i}x_2^i \cos(k_2^i) - i((\chi^{0,i})^2 + (x_2^i)^2) \sin(k_2^i))} \right] \]
\[\times \left[\left(\frac{(\chi^{0,i})^2 + (x_2^i)^2}{2} \cos(k_2^i) - i\chi^{0,i} \sin(k_2^i) \right) \hat{p}^1(x) \right] \quad (66) \]

This equation involves the average values, the cosine and sine transform of both \(\chi(x_2) \) and \((1/\rho)(\hat{\rho}/\hat{\rho}x_2)\). Compared with the formulae (63), the transmitted field involves the additional term corresponding to the average value of \((1/\rho)(\hat{\rho}/\hat{\rho}x_2)\).

4.2. The iterative scheme for solving the direct problem

As pointed out previously, our aim is to define an iterative scheme to solve the direct problem of the diffraction of an incident plane wave by a heterogeneous porous slab. This would be of great
interest for both the direct and inverse problems, due to the possible increased accuracy it can enable with respect to both the zeroth- and first-order Born approximations (in both the SGF and FSGF formulations).

We want to compute the total fields in Ω_0^+ and Ω_0^-. These problems being formally similar, we will only detail the computation of $p(y); y \in \Omega_0^+$.

Let $p^{0+}(j)(y)$ and $p^{1}(j)(y)$ designate the jth iterates of the pressure fields in Ω_0^+ and Ω_1 respectively. The iterative scheme proceeds as follows:

- Calculation of $p^{0+}(1)(y)$ through (60), corresponding to the application of the Born approximation in the SGF formulation.
- Calculation of $p^{0+}(j)(y)$ for $j > 1$.

More specifically, we first have to calculate the pressure field in Ω_1 by means of

$$p^{1}(y, \omega) = p^{1(0)}(y, \omega)$$

$$\approx \int_b^a \left[\frac{i}{2k_1^j} e^{ik_1^j[y_1 + i(k_1^j)^2(y_2 - y_1)]} + \frac{ie^{ik_1^j(y_1 - (y_0,i)^2) \cos(k_1^j(y_2 - y_1 + x_2 - a - b)) + e^{ik_1^j(y_2 - (x_0,i)^2) \cos(k_1^j(y_2 - y_1))}}{2k_1^{2j}(2e_0,i x_1,i \cos(k_1^j l) - i((x_0,i)^2 + (x_1,i)^2) \sin(k_1^j l))} \right] \times \left[(k(x_2)^2 - (k_1^j)^2) - \frac{1}{\rho(x_2)} \frac{\partial \rho(x_2)}{\partial x_2} \frac{\partial}{\partial x_2} \right] \tilde{p}^{1(j-1)}(x_2) \, dx_2$$

(67)

wherein $p^{1(0)}(y, \omega)$ is the expression given in (B2).

Once a new $p^{1}(y, \omega)$ is evaluated, one evaluates a new $p^{0+}(j)(y)$ by means of the relation

$$p^{0+}(j)(y, \omega) = p^{0+}(0)(y, \omega)$$

$$\approx \int_b^a \left[\frac{ie^{ik_1^j y_1 + i(k_2^j (y_2 - a))} e^{ik_1^j(x_1,i \cos(k_1^j(x_2 - b)) - i\mu^0 \sin(k_1^j(x_2 - b)))}}{2k_2^{2j}(2e_0,i x_1,i \cos(k_2^j l) - i((x_0,i)^2 + (x_1,i)^2) \sin(k_2^j l))} \right] \times \left[(k(x_2)^2 - (k_1^j)^2) - \frac{1}{\rho(x_2)} \frac{\partial \rho(x_2)}{\partial x_2} \frac{\partial}{\partial x_2} \right] \tilde{p}^{1(j)}(x_2) \, dx_2$$

(68)

Remark

Another scheme is the iterative calculation of $p^{1}(y, \omega)$ and the subsequent computation of the reflected field $p^{0+}(j)(y, \omega)$.

The differentiation of $\tilde{p}^{1(j)}$, which is a particular feature of our method, is carried out analytically for $j = 0$ by means of (B3), and numerically for $j > 1$ using the finite difference scheme

$$\frac{\partial}{\partial x_2} \tilde{p}^{1(j)}(x_2) \approx \frac{\tilde{p}^{1(j)}(i + 1) - \tilde{p}^{1(j)}(i)}{X_2(i + 1) - X_2(i)}$$

(69)
The computation of \(\frac{\partial}{\partial x_2} \tilde{p}^{(j)}(x_2) \) cannot be carried out in this manner. We approximate this derivative by using the fact that \(1/\rho(x_2) \frac{\partial}{\partial x_2} \tilde{p}^{(j)}(x_2) / \partial x_2 \) is conserved, so that

\[
\frac{\partial}{\partial x_2} \tilde{p}^{(j)}(x_2) \bigg|_{x_2=X_2(N)=a} \approx \frac{\rho(N)}{\rho(N-1)} \frac{\partial}{\partial x_2} \tilde{p}^{(j)}(x_2) \bigg|_{x_2=X_2(N-1)}
\]

wherein \(N \) is the number of discretization points used to performed the calculation.

5. OUTLINE OF THE NUMERICAL PROCEDURE

We focus on the response of a double layer (each layer being homogeneous) porous slab (called layer1 and layer2), considered to be a single inhomogeneous slab. We assume that the medium in the slab responds to a solicitation as does an equivalent fluid (i.e. this is the rigid-frame approximation). The porous slab is saturated by air.

In an equivalent fluid medium [4], the appropriate conservation of momentum and constitutive relations take the form

\[
\omega^2 p + \frac{1}{\kappa_e(x, \omega)} \nabla \cdot \left(\frac{1}{\rho_e(x, \omega)} \nabla p \right) = 0
\]

wherein

\[
\rho_e(x, \omega) = \rho_e(x_2, \omega) = \rho_f x_2 \left(1 + \frac{\omega e(x_2)}{\omega} F(x_2, \omega) \right)
\]

\[
\frac{1}{\kappa_e(x, \omega)} = \frac{1}{\kappa_e(x_2, \omega)} = \gamma P_0 \frac{\phi(x_2) \left[\gamma - (\gamma - 1) \left(1 + \frac{\omega e(x_2)}{Pr^2 \omega} G(x_2, Pr^2 \omega) \right)^{-1} \right]}{\phi(x_2)}
\]

with \(w_e(x_2) = \sigma(x_2) \phi(x_2) / \rho_f x_2 \) and \(G(x_2, Pr^2 \omega) \) [38], \(F(x_2, \omega) \) [37] being two relaxation functions given by

\[
F(x_2, \omega) = \sqrt{1 - \frac{4\eta \rho_f x_2^2}{\sigma(x_2)^2 \phi(x_2)^2 A(x_2)^2 \omega}}
\]

\[
G(x_2, Pr^2 \omega) = \sqrt{1 - \frac{4\eta \rho_f x_2^2}{\sigma(x_2)^2 \phi(x_2)^2 A'(x_2)^2 \Pr^2 \omega}}
\]

The chosen profile of porosity \(\phi(x_2), A(x_2), A'(x_2), \sigma(x_2) \) and \(\rho(x) \) is presented Table I.

The inhomogeneous porous slab is included between \(b = -10 \times 10^{-3} \) m and \(a = 7.1 \times 10^{-3} \) m. The contact surface between the two homogeneous porous sub-slabs, is located at \(x_2 = 0 \) m. Special attention must be paid to:

- the discretization of \(x_2 \) in order to correctly model eventual jumps,
- the modelling of the jump; as pointed out in Appendix A, the spatial dependence of the density \(\rho(x) \) can lead to meaningless integrals, especially when this parameter presents some...
Table I. Properties of the two-layer medium studied.

<table>
<thead>
<tr>
<th></th>
<th>(\phi) ((\mu m))</th>
<th>(\tau_\infty) ((\mu m))</th>
<th>(\Lambda) ((N \text{ s m}^{-4}))</th>
<th>(\Lambda')</th>
<th>(R_f) (mm)</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1</td>
<td>0.96</td>
<td>1.07</td>
<td>273</td>
<td>672</td>
<td>2843</td>
<td>7.1</td>
</tr>
<tr>
<td>Layer 2</td>
<td>0.99</td>
<td>1.001</td>
<td>230</td>
<td>250</td>
<td>12000</td>
<td>10.0</td>
</tr>
</tbody>
</table>

discontinuities. To avoid this problem, we will consider such jumps to be well-approximated by the continuous function

\[
H(x_2 - e) \approx \frac{1}{2} \left(1 + \text{erf} \left(\frac{x_2 - e}{s} \right) \right)
\]

(74)

where \(e \) is the location of the jump, \(s \) the slope of the smooth jump and \(\text{erf} \) the error function.

- the determination of the parameters \(\rho^1(\omega) \) and \(k^1(\omega) \) filling the initial homogeneous slab.

5.1. Choice of the discretization step

Because of the necessary correct modelling of the continuous steps, making use of formulae (74) at both the location of the step and the sides of the slab, we consider a logarithmic scale, with an increase of the point density at these locations. This logarithmic scale occurs over a width \(\Delta \) on both sides of a jump. In our computations, \(\Delta \) is chosen equal to \(8 \times 10^{-6} \).

5.2. Choice of the modelling of the jumps

To model the jumps at \(x_2 = 0 \), we define a function \(\zeta \) such that

\[
\zeta(x_2) = \zeta_1 + \frac{(\zeta_2 - \zeta_1)}{2} \left(1 + \text{erf} \left(\frac{x_2 - e}{s} \right) \right)
\]

(75)

where \(\zeta(x_2) \) can be \(\phi(x_2) \), \(\lambda(x_2) \), \(\lambda'(x_2) \), \(\sigma(x_2) \), or \(\sigma'(x_2) \), and the indices 1 and 2 refer to the values of the parameter \(\zeta \) of the homogeneous layer 1 or 2. The quantities \(\rho(x_2) \) and \(k(x_2) \) are then computed.

Once \(\rho^1 \) and \(k^1 \) are determined, in order to take into account the jumps at both (or at least one) sides of the entire slab, we compute

\[
\rho(x_2) = \rho^1 + (\rho(x_2) - \rho^1) \left(\text{erf} \left(\frac{x_2 - b}{s} \right) - \text{erf} \left(\frac{x_2 - a}{s} \right) - 1 \right)
\]

(76)

Thus, on both sides of the slab we model the ‘half’ jump from \(\rho^1 \) to \(\rho(x_2) \) using a half of the \(\text{erf} \) function (compared to the jump inside the entire slab). This constitutes a better fit of the real jump.

In all our computations, the parameter \(s \) is chosen equal to \(2 \times 10^{-6} \).
5.3. Choice of parameters $\rho^1(\omega)$ and $k^1(\omega)$

The purpose of the SFG is to reduce the kernel of integral (53) compared to the kernel of the integral (54) in the FSGF formulation. Because of the spatial dependence of the density, the integral (53) can be split into two integrals whose respective kernels are

$$ (k(x))^2 - (k^1)^2 \quad \text{and} \quad \frac{1}{\rho} \frac{\partial \rho}{\partial x} $$

The easiest way to reduce these kernels would be (referred-to as choice 1), all the characteristic parameters of the slab being known, to consider the average value of $\rho(x_2, 175 \text{kHz})$ and $k(x_2, 175 \text{kHz})$ over $x_2 \in [b, a]$, as shown Figure 3 for $\Re(\rho(x_2), 175 \text{kHz})$.

Another choice (referred-to as choice 2), which can be more convenient, consists in taking $\rho^1(\omega)$ and $k^1(\omega)$ equal to the minimal value of $\rho(x_2, \omega)$ and $k(x_2, \omega)$ over $x_2 \in [b, a]$, as shown in Figure 4. This choice would normally lead to the disappearance of the remanent density (i.e. equal to ρ^1 whose values is larger than $\rho(b)$) at $x_2 = b$, Figure 3. Another advantage of this choice is the reduction of the interval of integration, the first kernel vanishing over a part of this interval.

To give an idea of the accuracy of the method, we introduce the following measure of the quadratic error, calculated for the jth iteration:

$$ E_{0^+, j} = \frac{\int_0^T (p^0_{\text{TMM}}(x, t) - p^0_{\text{SGIM}}(x, t))^2 \, dt}{\int_0^T (p^0_{\text{TMM}}(x, t))^2 \, dt} $$

wherein $p^0_{\text{SGIM}}(x, t)$ is the reflected pressure as computed by our specific Green’s function based iterative scheme (SGIM), and $p^0_{\text{TMM}}(x, t)$ the reflected pressure as computed by the classical transfer matrix method (TMM), Appendix C. The quadratic error corresponding to our computations is given Figure 5.

![Figure 3](image-url)
Figure 3. Real part of the density profile corresponding to $\rho^1(175 \text{kHz})$ chosen as the average value of $\rho(x_2, 175 \text{kHz})$ over $x_2 \in [b, a]$.
These experiments show that the correct choice of $\rho^1(\omega)$ and $k^1(\omega)$ is indeed to consider the average value of $\rho(x_2, \omega)$ and $k(x_2, \omega)$ over $x_2 \in [b, a]$. This choice leads to a quicker and better convergence than the one obtained by the choice of $\rho^1(\omega)$ and $k^1(\omega)$ as the minimum of $\rho(x_2, \omega)$ and $k(x_2, \omega)$ over $x_2 \in [b, a]$.

For both choices of these parameters, after a certain number of iterations, the SGIM results are the same as the classical TMM results, as shown Figure 6, for example, when choice 1 is made.
Figure 6. Reflected pressure as computed by the classical transfer matrix method (TMM)—dashed curve—and as computed by our specific Green’s function based iterative method (SGIM) when choice 1 is made. The angle of incidence 0 on the left and $\pi/3$ on the right.

Remark
For both choices, $\langle 1/\rho \frac{\partial \rho}{\partial x_2} \rangle$, involved in the calculation of the first-order Born approximation of both the reflected and transmitted fields, vanishes, i.e.

$$\frac{1}{\rho} \frac{\partial \rho}{\partial x_2} = \int_b^a \frac{1}{\rho} \frac{\partial \rho}{\partial x_2} \, dx_2 = \int_b^a \frac{\partial \ln(\rho(x_2))}{\partial x_2} \, dx_2 = \ln \left(\frac{\rho(a)}{\rho(b)} \right) = 0$$

because $\rho(x_2) = \rho^1(\omega)$ for both $x_2 = a$ and $x_2 = b$.

Remark
Other choices are possible, such as the one leading to the disappearance of the averages $\langle \chi(x_2) \rangle$ involved in the calculation of the first-order Born approximation of both the reflected and transmitted field. Consider $\langle \chi(x_2) \rangle$

$$\langle \chi(x_2) \rangle = \int_b^a \left(\frac{(k(x_2))^2}{(k^1)^2} - 1 \right) \frac{dx_2}{l} = \frac{1}{(k^1)^2} \int_b^a (k(x_2))^2 \frac{dx_2}{l} - 1$$

which vanishes only if $k^1 = \sqrt{\int_b^a (k(x_2))^2 \frac{dx_2}{l}}$. This choice corresponds to the particular case in which $k(x_2)$ is such that the Schwartz inequality is satisfied

$$\left(\int_b^a k(x_2) \frac{dx_2}{l} \right)^2 \leq \int_b^a (k(x_2))^2 \frac{dx_2}{l}$$

6. RESULTS AND DISCUSSION

We first present results, as calculated by the iterative scheme (FGIM) initialized with the zeroth-order Born approximation arising from the integral formulation incorporating the free-space Green’s function, to emphasize the fact that this method does not converge in all cases.
For small angles of incidence, the usual FGIM converges, Figures 8 and 7, but slower and with less accuracy than our SGIM (Figure 5). For large angles of incidence (in our example, $\pi/3$), the usual FGIM strongly diverges, Figure 7, while our method still rapidly converges. This is probably caused by the fact that the first iteration is far from the exact solution (Figure 8). The translation of this divergence can be appreciated in (Figure 6).

All the following computations are carried out with characteristic parameters $\rho^1(\omega)$ and $k^1(\omega)$ filling the initially-homogeneous slab chosen as the average, over $a \leq x_2 \leq b$, of $\rho(x_2, \omega)$ and $k^1(x_2, \omega)$, respectively.

We define a convergence criterion via the quadratic difference between two iterations i and j

$$D_{i,j} = \frac{\int_0^T (p^{0+,i}(x,t) - p^{0+,j}(x,t))^2 \, dt}{\int_0^T (p^{0+,j}(x,t))^2 \, dt}$$

Figure 7. Reflected pressure as computed by the classical transfer matrix method (TMM) and as computed by the classical free-space Green’s function based iterative scheme (FGIM). On the left: the incidence angle is 0; in the middle: the incidence angle is $\pi/6$ and on the right: the incidence angle is $\pi/3$.

Figure 8. Evolution of the quadratic errors as a function of the number of iteration for various angles of incidence in the FGIM method.
Incidence angle of 0

Incidence angle of $\frac{\pi}{3}$

Figure 9. Reflected pressure. At the top: Convergence criterion; in the middle: the reflected pressure; at the bottom: the spectrum of the reflected pressure. On the left: incidence angle $= 0$. On the right: incidence angle $= \frac{\pi}{3}$.

DOI: 10.1002/mma
Figure 10. Transmitted pressure. At the top: Convergence criterion; in the middle: the transmitted pressure; at the bottom: the spectrum of the transmitted pressure. On the left: incidence angle = 0. On the right: incidence angle = π/3.
We found empirically that a convergence criterion $\mathcal{C}(i)$ of the form

$$
\mathcal{C}(i) \text{ is true when } \frac{D_{i+1,i}}{D_{2,1}} \leq 1 \times 10^{-6}
$$

(83)

gives good results as shown Figures 9 and 10. Our method yields solutions that are close to those of the usual TMM both in transmission and reflection in both the frequency and the time domain for several angles of incidence. This validates the method employing the SGF, combined with an iterative scheme initialized by a zeroth-order Born approximation.

The time history of the reflected pressure Figure 9 is of particular interest for the demonstration of the accuracy of our method. We can clearly distinguish, for both angles of incidence 0 and $\pi/3$, the three reflections of the incident wave on the three interfaces of our canonical configuration. The zeroth-order Born approximation, i.e. corresponding to the homogeneous fluid-saturated porous slab, formally accounts for two of them. For the first and third reflection, the amplitude matches correctly with our convergence criterion. The second reflection, which comes from the inhomogeneous slab, matches in both amplitude and time of arrival.

The time history of the transmitted pressure Figure 10 contains only one peak due to the fact that absorption within the slab attenuates the transmitted waves resulting from multiple reflection.

7. CONCLUSION

A method, making use, in the domain integral formulation, of the specific Green’s function (SGF), i.e. the Green’s function of a canonical problem close to the original problem, for the resolution of problems of acoustic wave propagation in an inhomogeneous fluid medium (with spatially-varying density and compressibility) was studied and implemented for the canonical example of plane wave solicitation of a double layer fluid-saturated porous slab (considered as a single inhomogeneous slab) in the rigid frame (equivalent fluid) approximation.

A particular feature of our study is that we account for spatially-varying density, contrary to many authors who consider it to be constant. We also addressed the issue of the spatial differentiation of the pressure field at the boundaries of the inhomogeneity, which is carried by a finite-difference scheme for higher-than-zeroth-order Born approximations.

Our specific Green’s function iterative scheme, which is initialized by a zeroth-order Born approximation, was shown to converge, contrary to the iterative scheme relying on the free-space Green’s function, which is often found to be divergent. This improvement is the result to the combined effects of the use of the SGF and to a better Born-like approximation of the field inside the heterogeneity.

In our numerical examples, our method was found to converge within 5–7 iterations to the reference solution (obtained rigorously by the transfer matrix method), even for an abrupt heterogeneity, and for various choices of the acoustic parameters filling the homogeneous slab supposed to be the initial configuration (canonical problem) for the SGF.

Our method thus appears useful for the resolution of inverse problems. In such a context, some information about the geometry and/or the mechanical properties of the objects one is looking for, is often known. The SGF is the device by which this information can be incorporated into the inversion procedure in a rational manner.
APPENDIX A: THE WAVE EQUATION IN AN INHOMOGENEOUS FLUID MEDIUM

A.1. Solution of the direct problem involving both the pressure and its partial derivative

Wave propagation, relative to an acoustic wave in an inhomogeneous fluid occupying a domain \(\Omega = \Omega_0 \cup \Omega_1 \) (the homogeneous host medium occupies the domain \(\Omega_0 \) while the inhomogeneity occupies the domain \(\Omega_1 \)), is described by

\[
\nabla \cdot \nabla p + \frac{\omega^2}{c(x)^2} - \frac{\nabla \rho(x)}{\rho(x)} \cdot \nabla p = \rho(x)s(x) \quad \forall x \in \Omega
\]

(A1)

wherein \(c(x) = \sqrt{1/\kappa(x)\rho(x)} \) is the spatially-varying velocity, and \(\kappa(x) \) and \(\rho(x) \) the spatially-varying compressibility and density, respectively, of the fluid.

Applying the domain integral formulation with the usual free-space Green’s function, leads to the domain integral representation of the total field

\[
p(y) = p^i(y) + \int_{\Omega_1} G^0(y, x) \left(\frac{\omega^2}{c(x)^2} - (k_0^2) \right) p(x) - \frac{\nabla \rho(x)}{\rho(x)} \cdot \nabla p(x) \, d\Omega(x) \quad \forall y \in \Omega
\]

(A2)

wherein \(p^i(x) \) is the incident field. To obtain the field at an arbitrary point of space, \(p \) and \(\nabla p \) within \(\Omega_1 \) have to be determined. This can be done by solving the coupled system of integral equations

\[
\begin{align*}
p(y) &= p^i(y) + \int_{\Omega_1} G^0(y, x) \left(\frac{\omega^2}{c(x)^2} - (k_0^2) \right) p(x) - \frac{\nabla \rho(x)}{\rho(x)} \cdot \nabla p(x) \, d\Omega(x) \quad \forall y \in \Omega_1 \\
\nabla_y p(y) &= \nabla_y p^i(y) + \nabla_y \int_{\Omega_1} G^0(y, x) \left(\frac{\omega^2}{c(x)^2} - (k_0^2) \right) p(x) \\
&\quad - \frac{\nabla \rho(x)}{\rho(x)} \cdot \nabla p(x) \, d\Omega(x) \quad \forall y \in \Omega_1
\end{align*}
\]

(A3)

A vast literature exists on the subject of the numerical resolution of systems of domain integral equations [39–44].

A.2. Solving the direct problem via a single integral equation

Another, perhaps simpler (although unsuitable in the inverse problem context) way, to solve the previous problem is to make the substitution

\[
p(x) = q(x) \sqrt{\rho(x)}
\]

(A4)

whereby the following governing equation is obtained:

\[
\nabla^2 q(x) + \frac{\omega^2}{c(x)^2} + \frac{1}{2} \frac{\nabla^2 \rho(x)}{\rho(x)} - \frac{3}{4} \frac{\nabla \rho(x) \cdot \nabla \rho(x)}{(\rho(x))^2} q(x) = \rho^{1/2}(x)s(x) \quad x \in \Omega
\]

(A5)
Using the free-space Green’s function in the domain integral formulation yields the representation
\[
q(y) = q^i(y) + \int_{\Omega_1} G^0(y, x) \left[\frac{\omega^2}{(c(x))^2} - (k^0)^2 + \frac{1}{2} \frac{\nabla \cdot \nabla \rho(x)}{\rho(x)} - \frac{3}{4} \frac{\nabla \rho(x) \cdot \nabla \rho(x)}{(\rho(x))^2} \right] \\
\times q(x) \, dv(x) \quad \forall y \in \Omega
\] (A6)
from which is extracted a single integral equation for \(q(x); \quad x \in \Omega_1\).

Remark
The integral formulations (A3) and (A6) are identical when the density is constant.

A.3. A canonical problem involving a density discontinuity

Let us consider the simple 1D problem, depicted in Figure A1, of a plane wave striking a planar interface \(\Gamma\), located at \(x_2 = a\), between two homogeneous media \(\Omega_0\) and \(\Omega_1\). The normally-incident plane wave travels initially in \(\Omega_0\). The heterogeneity is supposed to be the domain \(\Omega_1\).

In practice, this problem can be treated rigorously by the TMM method. However, when one attempts to solve it by the integral method, the medium filling \(\Omega_1\) must be dissipative.

Let us suppose that the pressure field \(p^1\) in \(\Omega_1\) is known (for example, calculated by the TMM method).

We introduce \(\rho(x_2) = \rho^1 + (\rho^0 - \rho^1)H(x_2)\) and \(k(x) = k^1 + (k^0 - k^1)H(x_2)\), where \(H(x_2)\) is the Heaviside function, and \(k^j, \quad j = 0, 1\) the wavenumber in the domain \(\Omega_j\).

Equation (A2) splits into
\[
p(y_2) = p^i(y_2) + \int_{-\infty}^{a} G^0(y_2, x_2)(k^1)^2 p(x_2) \, dx_2 - (\rho^0 - \rho^1)\int_{-\infty}^{a} \frac{\delta(x_2-a)}{\rho(x_2)} \frac{\partial p(x_2)}{\partial x_2} \, dx_2 \quad \forall y \in \Omega
\] (A7)
wherein \(\delta\) is the Dirac delta distribution. All the integrals involved in (A7) can be solved analytically (\(p(x_2)\) begin known by hypothesis). In particular, the function \(1/\rho(x_2)\partial p(x_2)/\partial x_2\) is...
continuous (i.e. the function is C^0) at the interface Γ so that the second integral does not present any difficulties.

The formulation involving the evaluation of p and of ∇p allows us to take into account density discontinuities. Equation (A6) splits into

$$q(y_2) = q^+(y_2) + \int_{-\infty}^{a} G^0(y_2, x_2)(k^1)^2 q(x_2) \, dx_2$$

$$+ \frac{(\rho^0 - \rho^1)}{2} \int_{-\infty}^{a} \frac{\delta'(x_2 - a)}{\rho(x_2)} q(x_2) \, dx_2$$

$$- \frac{3(\rho^0 - \rho^1)^2}{4} \int_{-\infty}^{a} \frac{\delta(x_2 - a)\delta(x_2 - a)}{(\rho(x))^2} q(x_2) \, dx_2 \quad \forall y_2 \in \Omega$$ \hspace{1cm} (A8)

The calculation of first integral presents no particular difficulties. Let us consider the second integral $\int_{-\infty}^{a} \delta'(x_2 - a)/\rho(x_2) q(x_2) \, dx_2$, wherein $\delta'(x_2 - a)$ is the derivative of the Dirac delta distribution. The use of the formula

$$\int f(x_2)\delta'(x_2 - a) \, dx_2 = -\frac{\partial f(x_2)}{\partial x_2} \delta(x_2 - a)$$ \hspace{1cm} (A9)

requires the function $f(x_2)$ to be C^1 at $x_2 = a$, while the function $q(x_2)/\rho(x_2) = \rho(x_2)/\rho(x_2)^{3/2}$ is not continuous at the interface Γ. Thus, this second term cannot be handled analytically.

Finally, consider the third term

$$\int_{-\infty}^{a} \frac{\delta(x_2 - a)\delta(x_2 - a)}{(\rho(x))^2} q(x_2) \, dx_2$$

The integrand involves the scalar product of two Dirac delta distributions $\delta(x_2 - a)\delta(x_2 - a)$ which is not defined [45–47]. A numerical approximation of this quantity exists, but otherwise it is meaningless [47].

The resolution of problems via a single equation is also of no practical use when the problem one is faced with involves density discontinuities.

APPENDIX B: PRESSURE FIELD IN THE CASE OF A MACROSCOPICALLY-HOMOGENEOUS POROUS SLAB (ZERO-TH-ORDER BORN APPROXIMATION)

By referring to Reference [48], one finds, that for plane wave solicitation in Ω_0^+, the pressure fields in Ω_0^-, Ω_1 and Ω_0^+ are:

$$p^{0+}(x, \omega) = A^i(\omega) \exp(ik_1^i x_1 - ik_2^{0,i} x_2) + A^i(\omega) \exp(ik_1^i x_1 + ik_2^{0,i} (x_2 - 2a))$$

$$\times \sin(k_2^{1,i} l)((z_1^{1,i})^2 - (z_0^{0,i})^2)$$

$$2z_1^{1,i}z_0^{0,i} \cos(k_2^{1,i} l) - i(z_1^{1,i})^2 + (z_0^{0,i})^2 \sin(k_2^{1,i} l)$$

$$= \exp(ik_1^i x_1) \tilde{p}^{0-}(x_2, \omega)$$ \hspace{1cm} (B1)
After introducing the fields expressions into the boundary conditions (continuity of the pressure from $-\infty$ to $+\infty$), we use a separation of variables technique to obtain the field representations:

\[
p^0(x, \omega) = A^i(\omega) \frac{2 \exp(ik^1 x_1 - ik^0 x_2) z^{1,i} [z^{1,i} \cos(k^1 L (x_2 - b)) - iz^{0,i} \sin(k^1 L (x_2 - b))]}{2z^{1,i} \cos(k^1 L) - i((z^{1,i})^2 + (z^{0,i})^2) \sin(k^1 L)}
\]

\[
\frac{\partial p^1(x, \omega)}{\partial x_2} = A^i(\omega) \frac{2 \exp(ik^1 x_1 - ik^0 x_2) z^{0,i} k^1 \left[-z^{1,i} \sin(k^1 L (x_2 - b)) - iz^{0,i} \cos(k^1 L (x_2 - b))\right]}{2z^{1,i} \cos(k^1 L) - i((z^{1,i})^2 + (z^{0,i})^2) \sin(k^1 L)}
\]

\[
p^{0-}(x, \omega) = A^i(\omega) \frac{2 \exp(ik^1 x_1 - ik^0 (x_2 + l)) z^{1,i} z^{0,i}}{2z^{1,i} \cos(k^1 L) - i((z^{1,i})^2 + (z^{0,i})^2) \sin(k^1 L)}
\]

\[
= \exp(ik^1 x_1) p^{0-}(x_2, \omega)
\]

APPENDIX C: PRESSURE FIELD IN THE CASE OF A DOUBLE LAYER MACROSCOPICALLY-HOMOGENEOUS POROUS SLABS

We use a separation of variables technique to obtain the field representations:

\[
p^{0+} = A^i(\omega) e^{ik^1 x_1 - k^0 x_2} + B^{0+} e^{ik^1 x_1 + k^0 x_2}
\]

\[
p^1 = A^i x_1 (A^1 e^{-ik^1 x_2} + B^1 e^{ik^1 x_2})
\]

\[
p^2 = A^i x_1 (A^2 e^{-ik^2 x_2} + B^2 e^{ik^2 x_2})
\]

\[
p^{0-} = A^{0-} e^{ik^1 x_1 - k^0 x_2}
\]

After introducing the fields expressions into the boundary conditions (continuity of the pressure and of the normal velocity), we multiply these relations by $-iK_1 x_1$ and then integrate form $-\infty$ to $+\infty$ to obtain the matrix equation (solved numerically to get B^{0+} and A^{0-}):

\[
\begin{pmatrix}
1 & -1 & -1 & 0 & 0 & 0 \\
\chi^{0,i} & \chi^{1,i} & -\chi^{1,i} & 0 & 0 & 0 \\
0 & e^{ik^1 x_1} & e^{-ik^1 x_1} & -e^{ik^2 x_1} & -e^{-ik^2 x_1} & 0 \\
0 & -\chi^{1,i} e^{ik^1 x_1} & \chi^{1,i} e^{-ik^1 x_1} & -\chi^{2,i} e^{ik^2 x_1} & -\chi^{2,i} e^{-ik^2 x_1} & 0 \\
0 & 0 & 0 & 1 & 1 & -1 \\
0 & 0 & 0 & -\chi^{2,i} & \chi^{2,i} & \chi^{0,i}
\end{pmatrix}
\begin{pmatrix}
B^{0+} \\
A^1 \\
B^1 \\
A^2 \\
B^2 \\
A^{0-}
\end{pmatrix}
= \begin{pmatrix}
-A^i(\omega) e^{-ik^0 x_2} \\
A^1 \\
0 \\
A^2 \\
0 \\
A^{0-}
\end{pmatrix}
\]

wherein l^1 and l^2 are, respectively, the thickness of the layer 1 and the layer 2, (Table I) and
\[\kappa^{j,i} = k_j^{i,j} / \rho_j, \quad j = 0^+, 1, 2, 0^- . \]

REFERENCES

