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ABSTRACT
The optimal absorption of flexural energy by the critical coupling
of a locally resonant grating embedded in a thin plate is reported
in this work for the reflection and transmission problems. The grat-
ing is made of a 1D-periodic array of local resonators. A viscoelastic
coating is also placed on top of each resonator to control the intrin-
sic losses of the system. The scattering matrices for the propagative
waves of both problems are obtained by means of the Layered Mul-
tiple Scattering Theory and validated by the Finite Element Method.
In this work, we find that the perfect absorption can be obtained in
the reflection problem and the maximal absorption in the transmis-
sionproblem is limited to50%by tuning the losses only. These results
agree with the theoretical predictions since the eigenvalues reduce
to the reflection coefficient in the reflection problem and only one
of the two eigenvalues of the scatteringmatrix is critically coupled in
the transmission problem. These results highlight the adaptability of
the critical couplingmethod tooptimize the absorptionof locally res-
onant materials for flexural waves in 2D transmission and reflection
problems, and pave the way to the design of resonators for efficient
flexural wave absorption.
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1. Introduction

Mitigationof low-frequency vibrations inplatesby small and lightweight systems is a crucial
issue, especially in transport engineering where weight and space concerns remain critical.
While usual current passivemethods for vibration control lead to heavy and bulky solutions
by making use of viscoelastic materials [1] or Tuned Vibration Absorbers (TVA) [2], other
solutions relying on Locally Resonant Materials (LRMs), i.e. metamaterials, have emerged
over the past decades [3,4].

LRMs are made of resonant building blocks embedded in a host medium. The distribu-
tion of these blocks usually follows a periodic pattern in such a way that the wavelength
corresponding to their resonance frequency is much larger than the periodicity of the sys-
tem. This results in a resonance frequency that is much lower than the Bragg frequency
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and a strong dispersion in the LRMs around the resonance frequency, leading to origi-
nal features and properties in the deep subwavelength regime, i.e. with dimensions that
are much smaller than the wavelength of the impinging propagating waves. These prop-
erties are exploited in particular in vibration control from wave filtering and focusing to
waveguiding, among others [5–12]. However, among all the possibilities offered by LRMs
for flexural waves, very few studies have focused on maximizing the flexural wave absorp-
tion at low frequencies with small and lightweight systems. In this context, subwavelength
perfect absorbers, which have been extensively studied in acoustics and electromag-
netism [13–16], are of particular interest for vibration damping. These absorbers have been
recently proposed for 1D resonantbeamsystems, demonstrating thepossibility toperfectly
absorb the energy of one dimensional flexural waves [17].

Subwavelength perfect absorbers provide a total absorption of incident wave energy
whose wavelength is much larger than the size of the absorbers [18–23]. Their scattering
process for propagative waves can be represented in general by the scattering matrix. In
terms of thismatrix, the perfect absorption appears at the frequencies atwhich its eigenval-
ues are zero. This is known as the critical coupling condition or simply impedancematching
condition. From a physical point of view, this critical coupling condition is obtained by
making use of two properties of the perfect absorber. First, the field inside the resonator
interactswith the external one (i.e. with that in the surroundingmedium) through the inter-
face that connects the absorber to themedium. The wave energy can leak out through this
connection from the absorber to the surrounding medium and vice-versa. The absorber is
thus open to the surroundingmedium and the quality factor of its resonance represents its
energy leakage. Second, the inherent losses of the resonator are accounted for and form
an internal source of energy dissipation. The critical coupling of such resonant absorbers is
controlled by the ratio between the inherent losses and the energy leakage [24]. Particu-
larly, this corresponds to the situation in which the inherent losses exactly compensate the
energy leakage, i.e. when intrinsic losses are the same as the energy leakage [25]. This situa-
tion leads to amaximal absorptionof thewaveenergy [15,17]. Suchaphysical phenomenon
has been broadly studied in various fields for the reflection problem [26,27]. However, less
attention has been paid inmaximizing the absorption in a transmission problem,where the
critical coupling conditions are more difficult to obtain.

This work analyzes the scattering of flexural waves by an infinite critically coupled grat-
ing made of local and identical resonators embedded in a thin plate. The local resonators
aremade of circular reductions of the plate thickness in the center ofwhich amass is added.
A viscoelastic layer is also placed on top of each resonator to control the intrinsic losses of
the system. More specifically, this work focuses on the analysis of the absorbing efficiency
of this locally resonant grating in two configurations. The first one corresponds to a trans-
mission problem in which the grating is excited by a plane wave and the reflection and
transmission properties are evaluated to obtain the absorption. The second corresponds
to a reflection problem in which the scattered field by the grating interacts with a simply
supported boundary in a semi-infinite thin plate. This boundary is also assumed to be par-
allel to the grating axis. The excitation in both configurations takes the form of an incident
plane wave and is normal to the grating axis. The dimensions of the system are chosen in
such a way that the first resonance frequency of the inclusions are three times smaller than
the Bragg frequency of the grating. With these dimensions, the local resonances are well
decoupled to the Bragg diffraction of the grating and only the resonance is playing a role
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in the absorption process. The case in which the resonance frequency is close to the Bragg
frequency is also analyzed in order to show that perfect absorption can also be achieved
with several resonances playing a role in the absorption process. The composite mate-
rial formed by the inclusion and the viscoelastic coating is analytically modeled with the
Ross–Kerwin–Ungar (RKU) model for plates [1] and its losses are tuned in order to optimize
the absorption coefficient in both configurations.

The scattered fieldby thegrating is studiedbymeansof LayeredMultiple Scattering The-
ory (LMST) [28–31], which is perfectly adapted to the study of wave propagation in LRMs.
Other numerical and analytical theories developed over the past decades also lend them-
selves to this type of study. Examples of such theories include the plane-wave expansion
(PWE)method, finite-difference time-domain (FDTD)method, finite elementmethod (FEM),
and multiple scattering theory (MST) [31,32]. The results obtained from LMST in this work
are also numerically validated using a 3D semi-periodic FEMmodel from solidmechanics in
COMSOLMultiphysics�. The key feature of LMST is the application of field identities called
lattice sums or Schlömilch series [33] that makes use of Graf’s addition theorem [34] and
Bloch–Floquet condition to relate the scattered displacement field in the vicinity of one
scatterer to the fields scattered by all the others and arising from the external sources. The
main difficulty in the evaluation of these identities arises through their conditional con-
vergence due to the presence of Hankel function in the solution. Various works have been
devoted to the development of efficient and accurate methods for their calculation [35,36]
since Twersky’s seminalwork [37]. AlthoughMSTor LMSThavebeenwidely implemented in
vibration for waveguiding, wave focusing and filtering [5,9–11,38–42], its implementation
for maximizing the flexural wave absorption at low frequencies by using local resonances
have not been proposed in previous works.

The article is organized as follows. The formulation of the problems is presented in
Section 2. Section 3 summarizes the LMST as the semi-analytical model used to study the
scattering properties of the infinite grating made of the local resonators coated by a vis-
coelastic layer and embedded in a thin plate. Section 4 presents and discusses the critically
coupled transmission and reflection problems. Section 4.3 also presents an alternative opti-
mization of the absorption bymaking use of the local resonances and the periodicity of the
grating in the case of platonic crystal, i.e. when the first resonance frequency of the inclu-
sions are close to the Bragg frequency of the grating. Finally, Section 5 outlines the main
results and gives the concluding remarks.

2. Formulation of the problem

This section aims at describing the two configurations of scattering problems analyzed in
this work and also defining the theoretical context by means of the flexural wave equation
and the incident wave definitions.

2.1. Description of the configurations

2.1.1. Transmission and reflection problem
The two configurations analyzed in this work are represented in Figure 1, which represents
two views of an infinite thin plate in which a locally resonant grating is embedded. The thin
host plate has a constant thickness h, Young’s modulus E, Poisson’s ratio ν, mass density ρ
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Figure 1. (a) Scheme of the transmission problem by an infinite grating of circular inclusions embed-
ded in a thin plate. The configuration of the reflection problem is obtained by substituting the interface
�− by the interface �p in which a simply supported condition is considered. (b) Side view of the unit
cell�j

c .

and flexural rigidity D = Eh3

12(1−ν2) . The first configuration corresponds to what is named in
thiswork as the transmission problem, inwhich the locally resonant grating is embedded in
an infinite thin plate and excited by an incident plane wave as indicated in Figure 1(a). The
grating is limited between the interfaces�+ and�− as shown in Figure 1(a). The goal of the
study of this first configuration consists in evaluating the reflection and transmission coef-
ficients produced by the grating and making the connection between the performance of
the systemwith the critical coupling conditions in order to evaluate the limits of absorption.
The second configuration corresponds towhat is named as the reflectionproblem, inwhich
the locally reacting grating is placed in front of a simply supported boundary as indicated
in Figure 1(a). This boundary corresponds to the interface �p placed at a distance y0 from
the center of the grating and parallel to its axis. The system is also excited by a plane wave
and the scattered field is produced by amultiple scattering process between the inclusions
and the simply supported boundary.

2.1.2. Unit cells
Due to the periodicity of the system along the ex-axis, a semi-infinite unit cell�0

c of width
dx is considered in both configurations. This unit cell is attached to a global Cartesian
coordinate system (O, ex , ey), and thus the position vector is written as x = xex + yey . The
analyzed system consists of the dx-periodic repetition of the unit cell�0

c along the direction
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ex . The jth repetition of the unit cell is denoted�
j
c where j ∈ Z, and is included in the Carte-

sian domain x ∈ [0 + jdx ; dx + jdx] and y ∈ [y0 − a; y0 + a] for the transmission problem,
and x ∈ [0 + jdx ; dx + jdx] and y ∈ [0; y0 + a] for the reflection problem.

2.1.3. Inclusions
A circular inclusion of radius a and denoted by �0 is placed in the unit cell �0

c . The inclu-
sion consists of a circular reductionof theplate thicknesswith a thicknessh0 (h0 < h), in the
center of which an added mass of radius am and thickness hm is placed (see the side view
of Figure 1(b)). This mass is obtained by locally increasing the thickness of the inclusion
(hm > h0) and is therefore also made of the same material as the host plate. The center of
�0 is located at the point x0 of coordinates x0 = x0ex + y0ey = dx/2ex + y0ey (see Figure
1(a)). The inclusion is coated by a viscoelastic layer of constant thickness hl as shown in
Figure 1(b), whosematerial properties are defined by Young’smodulus El , Poisson’s ratio νl ,
density ρl and loss factor ηl . Each inclusion can be discretized in two homogeneous axisym-
metric layers, one containing the added mass and denoted by (m), and another without
mass denoted by (0) (see Figure 1(b)). The boundary conditions at the interfaces between
layer (m) and (0), and layer (0) and the surroundingplate, are the continuity of thedisplace-
ment, the normal derivative of the displacement, the bending moment and the (Kirchhoff)
shear force.

2.1.4. Domains�c,�+ and�−
In the first configuration corresponding to the transmission problem, the dx-periodic
repetition of �0

c can be divided into three domains �c, �+ and �− (see Figure 1(a))
where

• �c corresponds to the grating of dx-periodic repetitions of�0 and is included in the
Cartesian domain x ∈ [−∞;+∞] and y ∈ [y0 − a; y0 + a],

• �+ corresponds to the upper half-space included in the domain x ∈ [−∞;+∞] and
y ∈ [y0 + a;+∞], where the incident wave initially propagates and is reflected from
the grating,

• �− corresponds to the lower half-space included in the domain x ∈ [−∞;+∞] and
y ∈ [−∞; y0 − a], where the transmitted waves propagate away from the grating.

The interfaces between�c and�± are, respectively, denoted by �±. In the second con-
figuration corresponding to the reflection problem, only �+ is considered since a simply
supported boundary is placed below the grating (see Figure 1(a)). The interface between
�+ and �c is then denoted �+ in this case, whereas the simply supported boundary is
denoted by �p.

2.2. Flexural wave equation and incident wave

Assuming Kirchhoff–Love conditions, the flexural displacement at any position x in the thin
plate satisfies the biharmonic equation of motion [43]:

D∇2∇2W(x, t)+ ρh
∂2W(x, t)
∂t2

= 0. (1)
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This equation canbeexpressed in theharmonic domainwith the time conventionW(x, t) =
w(x) e−iωt (ω being the angular frequency) as

(∇2∇2 − k4)w(x) = 0, (2)

with k4 = ρhω2

D , k being thewavenumber. The solution of Equation (2) can bewritten as the
sum of an incident wave winc and the scattered fieldwsc:

w(x) = winc(x)+ wsc(x). (3)

The incident field winc is considered in both problems as a propagative plane wave of uni-
tary amplitude and frequency f = ω

2π . Note that winc initially propagates in �+ with an
incident angle which is normal to the grating, and can be written as

winc(x) = eik·x, (4)

where k = kyey = −key .

3. Field representations in�±

This section describes the main ingredients of the semi-analytical model used to study the
scattering properties of an infinite grating of circular inclusions coated by a viscoelastic
layer embedded in a thin plate. More details on LMST are presented in Appendix A. The
formalism considered in [31] for acoustic waves is also adapted here for flexural waves.

The scattered field in both configurations is expanded over plane waves. However,
only the discrete set of propagative wavevectors kμx ex ± kμy ey and evanescent wavevec-
tors γ μx ex ± γ

μ
y ey is admissible [44,45] due to the dx-periodicity of the grating, where the

propagative and evanescent Bloch wavenumbers are expressed, respectively, as

kμx = 2πμ
dx

, (5)

γ
μ
x = 2πμ

dx
, (6)

and kμy =
√
k2 − kμx

2 and γ μy =
√
(ik)2 − γ

μ
x
2 with μ ∈ Z.

3.1. Transmission problem

The displacement fields w+ in �+ and w− in �− are expanded over plane waves in the
transmission problem by considering the spatial periodicity as follows:

w+(x) =
∑
μ∈Z

δμ0 eik
μ
x x−ikμy (y−(y0+a)) + Rpμ e

ikμx x+ikμy (y−(y0+a))

+ Reμ e
iγ μx x+iγ μy (y−(y0+a)), with (x, y) ∈ �+, (7a)

w−(x) =
∑
μ∈Z

Tpμ e
ikμx x−ikμy (y−(y0−a)) + Teμ e

iγ μx x−iγ μy (y−(y0−a)), with (x, y) ∈ �−, (7b)
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where δμ0 is the Kronecker delta and corresponds to the unitary amplitude of the incident
plane waves and Rpμ, Reμ, T

p
μ and Teμ are the reflection and transmission coefficients asso-

ciated with the μ-th Bloch propagative (p) and evanescent (e) waves radiated from the
grating in �±. The expressions of the complex valued coefficients Rpμ, Reμ, T

p
μ and Teμ are

derived by means of the Green–Kirchhoff Integral Theorem [31] and take the form

Rpμ =
∑
n∈Z

A0Hn
Kp+μn e−ikμx x0+ikμy a, (8a)

Reμ =
∑
n∈Z

A0KnK
e+
μn e

−iγ μx x0+iγ μy a, (8b)

Tpμ = δμ0 eik
μ
x x−ikμy (y−(y0+a)) +

∑
n∈Z

A0Hn
Kp−μn e−ikμx x0+ikμy y0 , (8c)

Teμ =
∑
n∈Z

A0KnK
e−
μn e

−iγ μx x0+iγ μy y0 , (8d)

where A0Hn
and A0Kn are the scattering coefficients of the circular inclusion �0 determined

by means of the boundary conditions at the interface between the inclusion and the
surrounding plate, the computation steps of which are detailed in A.5, and

Kp±μn = 2(−i)n

dxk
μ
y

ei±nθμ , (9a)

Ke±μn = iπ

dxγ
μ
y

ei±nαμ , (9b)

with k eiθμ = kμx + ikμy and γ eiαμ = γ
μ
x + iγ μy . The reflectance, transmittance and absorp-

tion coefficient αT of the grating are subsequently evaluated via [46]:

|RT |2 =
∑
μ∈Z

Re(kμy )

k0y
|Rpμ|2, (10)

|TT |2 =
∑
μ∈Z

Re(kμy )

k0y
|Tpμ|2, (11)

αT = 1 − |RT |2 − |TT |2. (12)

3.2. Reflection problem

The interaction of the grating with a plane boundary �p parallel to the grating and located
at y = 0 is now studied (see Figure 1(a)). This study is possible owing to the expansion of
the scattered fieldwsc uponBlochwaves expressed in Equations (7a) and (7b). A simply sup-
ported condition is chosenhere inorder to analyze the simplest case inwhichnoconversion
of wave types from propagative to evanescent, and vice-versa, occurs [47]. The incident
wave remains the same as in the previous study and is also expressed by Equation (4). The
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half-space �+ is now only considered. The displacement field w+ in �+ formally reads as
the formof Equation (7a). However, the expressions of the reflection coefficients differ from
that of Equation (8a) and (8b) due to the presence of the simply supported boundary. The
scattering coefficients AHn and AKn by the circular inclusion�

0 are therefore determined by
a slightly different system and read as (details of the calculation are provided in Appendix
A.6)

Rpμ = −δμ0 ei2k
μ
y (y0+a) +

∑
n∈Z

AHn e
ikμy (y0+a)(Kp+μn e−ikμx x0−ikμy y0 − Kp−μn e−ikμx x0+ikμy y0), (13a)

Reμ =
∑
n∈Z

AKn e
iγ μy (y0+a)(Ke+μn e

−iγ μx x0−iγ μy y0 − Ke−μn e
−iγ μx x0+iγ μy y0). (13b)

The reflectance and absorption coefficient of the grating are thus expressed as

|RR|2 =
∑
μ∈Z

Re(kμy )

k0y
|Rpμ|2, (14)

αR = 1 − |RR|2. (15)

3.3. Critical coupling conditions

3.3.1. Transmission problem
The absorption efficiency of the grating is studied by analyzing its scattering properties. In
the study case of transmission in far-field (y → ±∞) with identical inclusions, the scattering
process is symmetric and reciprocal. The scattering of the system can thus be represented
bymeans of the scatteringmatrix S or S-matrix of the propagativewaveswith the following
form:

S =
[
TT RT
RT TT

]
, y → ±∞. (16)

The complex eigenvalues ψ1,2 of S can therefore be expressed as ψ1 = TT + RT and ψ2 =
TT − RT . These two eigenvalues correspond to the reflection coefficient of two indepen-
dent reflection problems created by a virtual boundary condition placed at y0 with either a
Neumann (∂w/∂y = 0) or a Dirichlet (w = 0) condition, respectively [48,49]. The first eigen-
value, ψ1 = Rs corresponds to the reflection coefficient of the symmetric sub-problem as
Neumannboundary condition selects themodeswith symmetric profiles [49]. Analogously,
the second one, ψ2 = Ra corresponds to the anti-symmetric sub-problem [49]. Then, the
absorption coefficient of the propagative waves for each sub-problem can be defined as

αs = 1 − |Rs|2, (17)

αa = 1 − |Ra|2. (18)

Finally, the total absorption coefficient of the original scattering problem in the transmis-
sion problem reads as

αT = αs + αa

2
. (19)
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The configuration in which the incident wave is totally absorbed corresponds, therefore, to
that where αs = αa = 1 and so |Rs|2 = |Ra|2 = 0. In other words, it corresponds to the case
in which the two eigenvalues of the original scattering matrix of the transmission problem
are zero. However, the grating analyzed here at the piston-like (monopolar) mode of the
inclusions, i.e. only the symmetric part of the problemcanbeperfectly absorbed. Therefore,
the optimal absorption of the system in the transmission problem is limited to 0.5.

3.3.2. Reflection problem
The reflection coefficient RR represents the scattering of the system in the case of a reflec-
tion problem, since no wave is transmitted through the grating. Thus, RR corresponds
directly to both the S-matrix and its associated eigenvalue (ψ = RR), and the absorption
coefficient of the scattering problem reads as αR = 1 − |RR|2. In this case, the configuration
of total absorption of the incident wave by the scatterer corresponds to that where RR = 0.

4. Results

The two scattering problems, depicted in Figure 1, are now considered in the particu-
lar case where the incident field winc is a propagative plane wave of unitary amplitude
along the direction −ey . An aluminium plate of thickness h = 5mm is considered with
E = 70 GPa, ρ = 2800 kg.m−3, and ν = 0.3, for all the problems. The viscoelastic coat-
ing used in the resonators is a tape of thickness hl = 0.3mm and properties El = 0.5 GPa,
ρl = 950 kg.m−3, νl = 0.3, and ηl = 0.7. Although the loss factor should be frequency-
dependent, it is assumed that this factor is constant over the analyzed frequency range.
This approximation has previously been considered in [17] and provided good agreements
between the analytical and experimental results. More complex viscoelastic models, like
Zener or generalized Maxwell-based model, or Karjanson’s formula could also be consid-
ered. Nevertheless, those are for highly dissipativematerials, with quality factors lower than
50. They also make the problemmore complex, which is not relevant in the context of this
work considering the frequency range of interest and the materials under study. It is also
considered that the inclusions have a radius of a = 7.5 cm, the addedmass has a thickness
hm = 5mm and the grating has a periodicity of dx = 20 cm.

This section focuses on the reflection and transmission of waves in the far-field, (y →
±∞), i.e. on the propagative waves that carry the energy. The expansion of the displace-
ment fields upon Bloch waves is truncated such that μ ∈ [−20 : 20]. The lattice sums SHn−q

and SKn−q used to compute the scattered displacement fields (see Appendix A.2 for more
details) are expanded upon 2000 terms, which ensures the convergence. The results are
validated against those simulated by 3D FEMmodels implemented with the solid mechan-
ics module in COMSOL Multiphysics�. The geometry of the FEM model is composed of
a single unit cell of the circular inclusion grating, in which the periodicity along ex is sim-
ulated using Floquet conditions and the infinite length along ey with Perfectly Matched
Layers (PML) (see Figure 2). The simply supported condition used in the reflection model is
simulated by imposing a zero displacement along ez at the corresponding boundary, while
the incident plane wave in both problems is created by imposing a harmonic load along a
line parallel to the grating axis.
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Figure 2. (a) 3D FEMmodel of three unit cells of the infinite grating of inclusions used in COMSOL soft-
ware to numerically compute |RT |2, |TT |2 and αT in the transmission problem. The periodicity along ex
is simulated using Floquet conditions and the infinite length along ey with Perfectly Matched Layers
(PML). (b) 3D FEM model of three unit cells of the infinite grating of inclusions used in COMSOL soft-
ware to numerically compute |RT |2 and αT in the reflection problem. The PML from one side imposes
the semi-infinite length of the system while on the other side, a simply supported boundary condition
is considered to create the reflection problem.

4.1. Transmission problem

The inclusion thickness h0 and the added mass radius rm are first optimized to reach the
maximum absorption coefficient at the inclusion fundamental frequency (piston-like or
monopolar mode). The maximum absorption is found for h0 = 0.3 mm and rm = 3 cm.
Figure 3(a) depicts |RT |2, |TT |2 and αT = 1 − |RT |2 − |TT |2 using both the LMST and FEM
models for this configuration, which are found to be in good agreement. The absorption
coefficient αT reaches 0.5 at f = 70.7 Hz as shown in Figure 3(a). This frequency corre-
sponds approximately to the resonance frequency of the first axisymmetric mode of the
isolated resonators, which was evaluated afterwards at f0 = 69Hz. This slight difference in
the resonance frequency can be explained by a weak coupling between the resonator in
the grating. The monopolar nature of the mode is also testified by the displacement field
snapshot depicted in Figure 3(b), where a maximum of displacement is clearly visible close
to the center of the inclusions. This pattern of displacement clearly shows that the reso-
nantmode of the system at the first axisymmetric mode is symmetric with respect to the ez
axis. Thus, as discussed in Section 3.3.1, the transmission problem can only be half critically
coupled by making use of a single symmetric mode [17], and the maximum of absorption
obtained here is only 0.5.

The results are also interpreted by making use of the Argand diagram, in which the real
and imaginary parts of a physical parameter are plotted. In this case, the Argand diagramof
the two eigenvalues ψ1 = |RT + TT |2 and ψ2 = |RT − TT |2 of the problem is plotted from
50 to 100Hz as shown in solid blue lines in Figures 3(c ) and 3(d), respectively. Note that
each frequency corresponds to a point in this diagram, therefore, the analysis of a range of
frequencies produces a line. Both eigenvaluesψ1 andψ2 follow a circular trajectory in each
diagram. The sense of the increasing frequencies is shown with arrows. It is clearly seen
that only the trajectory of ψ1 passes through the origin of the diagram as shown with the
purple point in Figure 3(c). The frequency corresponding to this point is f = 70.7 Hz and
corresponds to the frequency of maximal absorption, meaning that ψ1 = 0 and ψ2 �= 0 at
the resonance frequency. As a consequence, the perfect absorption is only obtained for
the symmetric sub-problem at f = 70.7 Hz and the maximum of absorption of the general
problem is limited to 0.5.
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Figure 3. (a) Representation of |RT |2,|TT |2 and αT around the first eigenfrequency of the critically cou-
pled resonators in the transmission problem. (b) Displacement field obtained in the FEM model in the
vicinity of the inclusions along ez at Re(f ) = 70.7 Hz in the transmission problem. The boundaries of
the resonators and the masses are outlined in white solid and dashed lines, respectively. (c) Argand dia-
gram of (RT + TT) from 50 to 100 Hz for ηl = 0.7 (solid line), ηl = 1 (dashed line) and ηl = 0.5 (dotted
line). The purple point corresponds to the maximum of absorption at f = 70.7 Hz. (d) Argand diagram
of (RT − TT) from 50 to 100 Hz. The point corresponds to the maximum of absorption at f = 70.7 Hz.

Such a kind of representation provides information about the effect of the losses on the
system. The Argand diagram ofψ1 is then depicted in dashed line in Figure 3(c) for the case
in which an excess of losses is introduced by the coating layer (ηl = 0.5). The trajectory of
ψ1 remains circular, but no longer passes through the origin due to the excess of losses.
As a consequence, ψ1 does not equal 0 and the maximum of absorption is under 0.5. Note
also that in this case, the origin of the diagram is located outside the circular trajectory of
ψ1. On the contrary, case where the system lacks losses as shown in black dotted line in
Figure 3(c), the circle still does not pass through the origin leading also to an absorption
lower than 0.5. However, the lack of losses is characterized in this case by a location of the
origin that is inside the circle ofψ1.

4.2. Reflection problem

The grating obtained in the transmission problem is now bounded by imposing a simply
supported boundary at a distance y0, converting the previous transmission problem to a
reflection one. As discussed in Section 3.3.2, perfect absorption can be obtained in this con-
figuration. Theonly free parameter that remains in this problem is thedistancebetween the
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Figure 4. (a) Representationof |RR|2 andαR around the first eigenfrequency of the critically coupled res-
onators in the reflection problem. The point corresponds to the maximum of absorption at f = 68.6 Hz.
(b)Displacementfieldobtained in theFEMmodel in thevicinity of the inclusions alongez at Re(f ) = 68.6
Hz in the reflection problem. The boundaries of the resonators and themasses are outlined inwhite solid
and dashed lines, respectively. (c) Argand diagram of RR from 50 to 100 Hz. The point corresponds to the
maximum of absorption at f = 68.6 Hz.

simply supported boundary and the grating. By doing a parametric analysis, it is found that
the perfect absorption is reached for y0 = 8.95 cm.

Figure 4(a) depicts |RR|2 and αR of the grating resonator located at x0 = 10 cm and
y0 = 8.95 cm in unit cells of width dx = 20 cm. An absorption αR � 1 at f = 68.6 Hz is
noticed, meaning that the incident plane wave is totally absorbed by the grating of res-
onators at this specific frequency. In order to interpret these results, the Argand diagram
is used once again for the reflection coefficient. Its trajectory in the Argand diagram from
50 to 100Hz in Figure 4(c) also illustrates the perfect absorption of the incident wave. The
trajectory of RR possesses a circular shape and passes through the origin of the diagram at
f = 68.6 Hz, meaning that |RR| � 0 at this particular frequency. The perfect absorption is
therefore obtained at f = 68.6 Hz and αR � 1. This means that the critical coupling condi-
tion is fulfilled for this configuration at this frequency. The displacement response inside
the resonators at f = 68.6 Hz takes again the typical form of that of a first axi-symmetric
mode as shown in Figure 4(b).

4.3. Optimization of absorption bymaking use of local resonances and the
periodicity of the grating: platonic crystal

The results presented in previous subsections highlight the adaptability of the critical cou-
plingmethod to optimize the absorption of LRMs for flexural waves in 2D transmission and
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Figure 5. (a) Representation of |RT |2, |TT |2 and αT around the Bragg frequency of the platonic crystal in
the transmission problem. (b) Displacement field obtained in the FEMmodel in the vicinity of the inclu-
sions alongez at Re(f ) = 196 Hz in the reflectionproblem. Theboundaries of the resonators are outlined
in white solid lines. (c) Representation of |RR|2 andαT around the Bragg frequency of the platonic crystal
in the reflectionproblem. The resonators are outlined inwhite solid lines. (d) Displacement field obtained
in the FEMmodel in the vicinity of the inclusions along ez at Re(f ) = 217 Hz in the reflection problem.

reflection problems. This was made possible by using a geometry of inclusion that ensures
its first resonance at a frequency which is three times smaller than the Bragg frequency of
the grating, allowing a decoupling between the resonances and the Bragg scattering. This
section aims to show that such results can also be obtained at higher frequencies in the
case of platonic crystals, and where the first inclusion resonance f0 is close to the Bragg fre-
quency fbragg of the grating. The two same scattering problems are considered here, except
that the inclusions havenomore an addedmass in their center but consist of homogeneous
circular reductions of the plate thickness, on top of which a viscoelastic coating is placed.
All the properties remain the same as before except the inclusion thickness h0 = 0.84mm
and radiusa = 10 cm, the coating thicknesshl = 0.7mmand loss factorηl = 2, and the size
of the unit cell of the grating dx = 24 cm and dy . These properties provide a first inclusion
resonance at f0 = 184.9 Hz and a Bragg frequency fbragg = 206.3 Hz. The properties of the
coating layer are also chosen to optimize the absorption of the system for both scattering
problems. The absorption coefficientαT reaches again 0.5 at f = 196Hz in the transmission
problem as shown in Figure 5(a), whereas αR � 1 at f = 214Hz in the reflection problem.

5. Conclusions

The absorption of a propagative flexural incident plane wave by an infinite grating of cir-
cular resonators in 2D thin plates is studied. The absorbing efficiency of this system is
analyzed by means of the reflection, transmission and absorption coefficients using the
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LMST for both the reflection and the transmission problems. In the transmission problem,
the physical conditions imply only one type of symmetry of the resonant modes, and limit
the absorption of the grating to 50%. Two strategies could be considered to obtain a per-
fection absorption. The first one would be to use degenerate resonators with two types
of symmetry at the same frequency. The second strategy would be to break the symme-
try of the resonators in order to treat the full problem with a single type of symmetry of
the resonance mode [14]. One way to break the symmetry of the resonators would be to
consider a stack of parallel gratings. The resonance of a stack of parallel gratings in plates
has already been studied for the transmission problem by Haslinger et al.[7,8]. In particu-
lar, Haslinger et al. brought to light the Elasto Dynamically Inhibited Transmission (EDIT) by
tuning and coinciding local symmetric and anti-symmetric resonances of a stack of three
parallel gratings of rigid pins with a shifted middle grating. This filtering effect is related
to the Electromagnetically Induced Transparency (EIT) in optic fields, and is characterized
by peaks of transparency due to the coherent interferences between the two resonators.
Although resonances have been studied in [7,8], the type of resonance obtained differs
from that presented in this work, in that the resonances in [7,8] are Fabry–Perot resonances
and not local resonances due to resonant scatterers. Therefore, these resonances are not
obtained from the geometry of the inclusions itself but from the spatial configuration of
the gratings. The wavelength related to the frequency range of interest in [7,8] is then of
the same order as the spatial configuration of the gratings. Note also that the analysis by
Haslinger et al. only focused on the lossless case, i.e. without inherent losses in the system.
No absorption phenomena have therefore been analyzed. In the reflection problem, per-
fect absorption is possible. The results of this work highlight the adaptability of the critical
couplingmethod applied to flexural waves for problems in thin plates. The resonators used
here, the type of incident wave and the boundary conditions have been chosen as sim-
ple as possible and give the key features for future designs of 2D subwavelength perfect
absorbers for flexural waves.
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Appendices

Appendix 1. Viscoelastic losses in the resonator: the RKUmodel for plates

Each resonator of the grating is covered by a thin absorbing layer of thickness hl , the losses of
which are considered frequency independent. The complex Young Modulus of the absorbing layer
is El(1 − iηl), where ηl is its loss factor. Each resonator can also be discretized in two homogeneous
axisymmetric layers, one containing the addedmass and denoted by (m), and another without mass
denoted (0) (see Figure 1(b)). Using the RKU model for a plate [1], each layer of the resonators is
modeled as a single composite layer with a given effective wave number kpi written as

kpi =
(
12ω2ρ(1 − ν2)

Eh2i

[
1 + ρ

p
r h

p
i,r

(1 − iη)+ 1 − iηl)h
p
i,rE

p
r α

p
i

])1/4

, (A1)

where i = 0 orm, and the indices 0,m and l stand for the parameters of the uncoated layer without
andwith the addedmass and of the absorbing layer, respectively,ρpr = ρl

ρ
, hpi,r = hl

hi
, Epr = El

E andαpi =
3 + 6hpi,r + 4hpi,r

2
. The flexural bending stiffness Dp

i for each layer can then be written as

Dp
i = h3i

12(1 − ν2)
E
[
(1 + hpi,rE

p
r α

p
i )− i

(
η + νlhi,rE

p
r α

p
i

)]
. (A2)

The mass density of the composite layers corresponds to the mean value of the mass density of the
uncoated layer and the absorbing material, such that

ρ
p
i = ρhi + ρlhl

hpi
, (A3)

where hpi = hi + hl , and the Poisson coefficient of the composite is considered the same as the
uncoated resonator’s:

ν
p
0 = ν. (A4)

Appendix 2. Computation of the scattering coefficients

This section aims at detailing the computation steps to determine the scattering coefficients of each
inclusion in the two scattering problems described in Section 2.1. To do that, a polar coordinate sys-
tem (Oj , ejr , e

j
θ ) is attached to the center of each circular inclusion �j (see Figure A6). The position

vector according to the coordinate systems attached to each inclusion�j iswritten as rj = rjejr + θ jejθ .

A.1 Quasi-periodicity

The displacement field in the infinite plate can be expressed as the sum of the incident plane wave
winc and the scattered fieldwsc by the grating. The latter is the sum of the scattered fieldswj

sc by each
inclusion�j , thus the total displacement field reads as

w = winc + wsc = winc(x)+
∑
j∈Z

wj
sc(r

j). (A5)

Each scattered field wj
sc is first expanded upon outgoing propagating and evanescent waves in its

own cylindrical coordinate system using Hankel functions of the first kind and Bessel functions of the
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Figure A6. Sketch of the configuration of the scattering problem by an infinite grating of circular
inclusions embedded in a thin plate with the polar coordinate systems.

second kind:

wj
sc(r

j) =
∑
n∈Z

[AjH,nH
(1)
n (krj)+ AjK,nKn(kr

j)] einθ
j
, (A6)

where AjH,n and AjK,n are the propagative and evanescent scattering coefficients of �j , respectively.
Due to the quasi-periodicity of the grating along ex , the number of scattering coefficients to deter-
mine can be reduced by exploiting the Floquet–Bloch condition:

AjH,n = A0H,n e
ijkxdx j ∈ Z, (A7)

AjK,n = A0K,n e
ijkxdx j ∈ Z. (A8)

As a consequence of Equations (A7)–(A8), it is sufficient to determine the scattering coefficients of
one inclusion�j to solve theproblem.Moreover, Equation (4) canbe expandeduponBessel functions
using the Jacobi–Anger expansion [50] such that

winc(r, θ) =
∑
n∈Z

[AJ,n incJn(krj)+ AincI,n In(kr
j)] einθ

j
, (A9)

where AincJ,n = in e−inθinc and AincI,n = 0 are the incident amplitudes and θinc = −π/2.

A.2 Lattice sum

The scattering coefficients of the inclusion�0 are now determined. The total scattered displacement
fieldwsc therefore takes the following form:

wsc(rj) =
∑
j∈Z

∑
n∈Z

[A0H,nH
(1)
n (krj)+ A0K,nKn(kr

j)] einθ
j
. (A10)

Graf’s addition [34] theorem is then used to express all the fields scattered by each inclusion�j , with
j ∈ Z

∗, according to the local polar coordinate system (O0, e0r , e
0
θ ) attached to�0. The total scattered

displacement fieldwsc can be expressed in the vicinity of�0 as

wsc(r0) =
∑
n∈Z

[A0H,nH
(1)
n (kr0)+ A0K,nKn(kr

0)] einθ
0

+
∑
n∈Z

∑
q∈Z

[A0H,qS
H
n−qJn(kr

0) einθ
0 + A0K,qS

K
n−qIn(kr

0)] einθ
0
, r0 < dx − a ∩�0

c , (A11)

where SHn−q and SKn−q are written as

SHn−q =
∑
j>0

H(1)n−q(kjd)(e
ijkx + (−1)n−q e−ijkx ), (A12)
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SKn−q =
∑
j>0

Kn−q(kjd)((−1)n e−ijkx + (−1)q eijkx ). (A13)

In particular, Equation (A12) is known as the lattice sum or the Schlömilch series. Such a serie arises
naturally in scattering problems where the scatterer is an infinite periodic structure and accounts for
the contribution of the fields scattered by�j , where j ∈ Z

∗, to the near-field close to�0 [35]. The form
of the series aswritten in Equation (A12) is not suitable for numerical computation due to its very slow
convergence. However, it can be transformed into another expression which is amenable for compu-
tation [35,37]. As H(1)q−n(kjd) = (−1)n−qH(1)n−q(kjd), S

H
n−q = SHq−n. Furthermore, the transformation of

this serie takes several forms whether the order |n − q| is even, odd or 0 [35,37]. If n−q = 0:

SH0 = −1 − 2i
π

(
C + ln

(
kd

4π

))
+ 2

kd sin�0
+
∑
m∈Z

′ ( 2
kd sin�0

+
)
, (A14)

where�m = arcos(cos θinc + 2mπ
kd ) and C is the Euler constant.

If |n − q| is even,

SHn−q = 2 − (−1)N
∑
m∈Z

ei(n−q) sign(m)�m

kd sin�m
+ 2iλN, (A15)

where N = (n − q)/2, sign(m) is the sign ofmwith the convention sign(0) = +1 and

λN = 1
2π

N∑
m=0

(−1)m22m(N + m − 1)!
(2m)!(N − m)!

(
2π
kd

)2m

B2m(0), (A16)

with Bm the Bernoulli polynomial.
If |n − q| is odd,

SHn−q = 2 − (−1)Mi
∑
m∈Z

ei(2M−1) sign(m)�m

kd sin�m
+ 2λM, (A17)

whereM = (n − q + 1)/2 and

λM = 1
π

M−1∑
m=0

(−1)m22m(M + m − 1)!
(2m + 1)!(M − m − 1)!

(
2π
kd

)2m+1

B2m+1(0). (A18)

Note that this slow convergence concerns only SHn−q in the lossless case and not SKn−q, since Kn(x)
is exponentially decaying with the increasing argument x. Using the appropriate expression of the
Schlömilch serie, the total displacement field in the polar coordinate system (O0, e0r , e

0
θ ) takes the

following form in the vicinity of�0 (r0 < dx − a ∩�0
c ):

w(r0) =
∑
n∈Z

[A0H,nH
(1)
n (kr0)+ A0K,nKn(kr

0)

+ (AJ,n
inc,0 + A0

H,n)Jn(kr
0)+ A0

K,nIn(kr
0)] einθ

0
, (A19)

where

A0
H,n =

∑
q∈Z

A0H,qS
H
n−q and A0

K,n =
∑
q∈Z

A0K,qS
K
n−q. (A20)
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A.3 Flexural field inside the inclusions

Amultilayer scattering approach is adopted to characterize the flexural field inside each inclusion [51].
This approach gives the relation between the converging and diverging amplitudes at the interface
inside the inclusions between the two circular coated layers (m) and (0). The flexural fieldwp

0 of layer

(0) is therefore described as the sum of the field wp
0
−
transmitted by the surrounded plate with the

fieldwp
0
+
scattered by layer (m):

wp
0 = wp

0
− + wp

0
+ =

∑
n∈Z

A(0)J,n Jn(k
p
0r)+ A(0)I,n In(k

p
0r)+ A(0)H,nH

(1)
n (kp0r)+ A(0)K,nKn(k

p
0r). (A21)

The notation − describes a converging propagation of the fields towards the center of the inclusion
and + denotes a diverging propagation. Due to the singularity of Hn(z) and Kn(z) when z = 0, the
field of layer (m) has to be described as

wp
m =

∑
n∈Z

A(m)J,n Jn(k
p
mr)+ A(m)I,n In(k

p
mr). (A22)

A.4 Reflection coefficient of isolated�0

By using the notationsW−
n,j =

(
A(j)J,n
A(j)I,n

)
, j = 0 orm,W+

n,0 =
(

A(j)H,0
A(j)K,0

)
,W−

n =
(

AincJ,n

AincI,n

)
andW+

n =
(

A0H,n
A0K,0

)
,

the scattering relations at the interface between layer (0) and layer (m) and between layer (0) and
the surrounding plate at the order n can be written in the case of a single inclusion as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

W−
n,m = T−

n,mW
−
n,0,

W+
n,0 = R+

n,mW
−
n,0,

W−
n,0 = T−

n,0W
−
n ,

W+
n = R+

n,0W
−
n + T+

n,0W
+
n,0,

(A23)

where T−
n,m and T+

n,m are, respectively, the converging and diverging transmission coefficients at the
order n at the interface, and R−

n,m and R+
n,m the converging and diverging reflection coefficients at the

order n, respectively. T−
n,m, T

+
n,m, R

−
n,m and R+

n,m are obtained by writing the boundary conditions at
each interfaces, i.e. the continuity of displacement, displacementnormal derivative, bendingmoment
and (Kirchhoff) shear force, and by considering two types of incidence: converging incidence and
diverging incidence [51]. Assuming that all the scattering coefficients are known, it might be possible
to express the amplitude of all the converging and diverging fields as a function of the incident field

outside the scatterer and its scattering coefficients. In particular,W+
n =

(
Rn11
Rn12

)
in the case of a prop-

agative incident wave of unit amplitude as expressed in Equation (A9) andW+
n =

(
Rn21
Rn22

)
in the case

of a pure evanescent incident wavewith AincJ,n = 0 and AincI,n = in, where Rn =
[
Rn11 Rn12
Rn21 Rn22

]
is the reflection

coefficient of a single inclusion.

A.5 Boundary conditions at�0 for the transmission problem

The scattering coefficients of�0 are determinedbymeans of theboundary conditions at the interface
�0 between the scatterer and the surroundingplate, i.e. the continuity of displacement, displacement
normal derivative, bendingmoment and (Kirchhoff) shear force [52], andby considering the scattered
amplitudes by the other inclusions of Equation (A20) in the incident field propagating toward�0. In
the casewhere the scattered field is expanded uponN orders of Hankel functions andmodified Bessel
functions of the second kind (n ∈ [−N;N],N ∈ Z), the scattering coefficients are determined from the
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boundary conditions by solving the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0H−N
− R−N

11

∑
q∈Z

A0Hq
SH−N−q − R−N

12

∑
q∈Z

A0KqS
K
−N−q = R−N

11 Ainc,0J,−N

A0K−N
− R−N

21

∑
q∈Z

A0Hq
SH−N−q − R−N

22

∑
q∈Z

A0KqS
K
−N−q = R−N

21 Ainc,0J,−N

...

A0H0
− R011

∑
q∈Z

A0Hq
SH0−q − R012

∑
q∈Z

A0KqS
K
0−q = R011A

inc,0
J,0

A0K0 − R021
∑
q∈Z

A0Hq
SH0−q − R022

∑
q∈Z

A0KqS
K
0−q = R021A

inc,0
J,0

...

A0HN
− RN11

∑
q∈Z

A0Hq
SHN−q − RN12

∑
q∈Z

A0KqS
K
N−q = RN11A

inc,0
J,N

A0KN − RN21
∑
q∈Z

A0Hq
SHN−q − RN22

∑
q∈Z

A0KqS
K
N−q = RN21A

inc,0
J,N

. (A24)

The sums are truncated in practice to n ∈ [−N;N] by using the following numerical recipe [53]:

N = floor(4.05(ka)1/3 + ka)+ 10 (A25)

to ensure their convergence. Note that this truncation concerns only the Hankel functions of the first
kind and the Bessel functions of the second kind in the scattered field, and that the lattice sumwhich
runs over the spatial repetition of the unit cell is evaluated independently of this truncation.

A.6 Boundary conditions at�0 for the reflection problem

The displacement field inside the unit cell�0
c can be expressed as the sumof the scattered field inside

�c (i.e. for 0 < y < y0 − a) and the reflected waves at the boundary �+ such that

w0
c (x) =

∑
μ∈Z

f p+μ eik
μ
x x+ikμy y + f p−μ eik

μ
x x−ikμy y + f e+μ eiγ

μ
x x+iγ μy y + f e−μ eiγ

μ
x x−iγ μy y

+
∑
n∈Z

A0Hn
Kp±μn e−ikμx x0±ikμy a eik

μ
x x+±ikμy (y−(y0+a))

+ A0KnK
e±
μn e

−iγ μx x0∓iγ μy a eiγ
μ
x x±iγ μy (y−(y0+a)), (A26)

where the upper signs are takenwhen y ∈ �+ (y > y0 + a) and the lower signswhen 0 < y < y0 − a.
f p+μ and f p−μ account for the amplitudes of the ingoing and outgoing propagative Bloch waves in
�0

c , respectively, whereas f
e+
μ and f e−μ correspond to the amplitudes of the ingoing and outgoing

evanescent Bloch waves in �0
c , respectively. The scattering coefficients in w+ as well as the waves’

amplitudes ofw0
c are determined by means of the boundary conditions at �+ and �p. The boundary

conditions at �p and the continuity conditions at �+ imply⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ dx

0
w0
c e

−ikνx x dx =
∫ dx

0
w+ e−ikνx x dx

∫ dx

0

∂w0
c

∂y
e−ikνx x dx =

∫ dx

0

∂w+

∂y
e−ikνx x dx

, y ∈ �+, (A27)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ dx

0
w0
c e

−ikνx x dx = 0

∫ dx

0

∂2w0
c

∂y2
e−ikνx x dx = 0

, y ∈ �p. (A28)
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Applying the boundary conditions at �+, �p and making use of the orthogonality relation∫ dx
0 eik

μ
x x e−ikνx x dx = 2πdxδνμ, the amplitudes f p+μ , f p−μ , f e+μ and f e−μ , and the propagative and evanes-

cent reflection coefficients Rpμ and Reμ can be expressed as

f p+μ = −δq0 eik
μ
y (y0+a) −

∑
n∈Z

AHnK
p−
μn e−ikμx x0+ikμy y0 , (A29a)

f p−μ = δμ0 eik
μ
y (y0+a), (A29b)

f e+μ = −
∑
n∈Z

AKnK
e−
μn e

−iγ μx x0+iγ μy y0 , f e−μ = 0, (A29c)

Rpμ = −δμ0 ei2k
μ
y (y0+a) +

∑
n∈Z

AHn e
ikμy (y0+a)(Kp+μn e−ikμx x0−ikμy y0 − Kp−μn e−ikμx x0+ikμy y0), (A29d)

Reμ =
∑
n∈Z

AKn e
iγ μy (y0+a)(Ke+μn e

−iγ μx x0−iγ μy y0 − Ke−μn e
−ikμx x0+iγ μy y0). (A29e)

f p−μ and f e−μ account therefore for the incident wave amplitudes in�0
c , whereas f

p+
μ and f e+μ accounts

for the reflection at �p of the incident wave and the scattered field by�0. The scattering coefficients
AHn and AKn of �0 are again determined by means of the boundary conditions at �0. However, it
requires beforehand to expand the exponential terms of w0

c upon Bessel functions in the coordinate
system (O0, e0r , e

0
θ ) by using the Jacobi-Anger expansion, such that

f p+μ eik
μ
x x+ikμy y =

∑
n∈Z

Fp+μn Jn(kr0) einθ
0
, (A30a)

f e+μ eiγ
μ
x x+iγ μy y =

∑
n∈Z

Fe+μn In(kr
0) einθ

0
(A30b)

with

Fp+μn =
(

−δμ0 eik
μ
y (y0+a) −

∑
m∈Z

A0Hm
Kp−μm e−ikμx x0+ikμy y0

)
in e−inθμ eik

μ
x x0+ikμy y0 , (A31a)

Fe+μn = −
∑
m∈Z

A0KmK
e−
μm e−iγ μx x0+iγ μy y0(−1)n e−inαμ eiγ

μ
x x0+iγ μy y0 . (A31b)

Hence, if the scattered field is expanded uponN orders of Hankel functions andmodified Bessel func-
tions of the second kind, the scattering coefficients are determined from the boundary conditions at
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�0 by solving the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0H−N
− R−N

11 SH
−N − R−N

12 SK
−N = R−N

11

⎛
⎝Ainc,0J,−N −

∑
μ∈Z

δμ0 eik
μ
y (y0+a)i−N eiNθμ eik

μ
x x0+ikμy y0

⎞
⎠

A0K−N
− R−N

21 SH
−N − R−N

22 SK
−N = R−N

21

⎛
⎝Ainc,0J,−N −

∑
μ∈Z

δμ0 eik
μ
y (y0+a)i−N eiNθμ eik

μ
x x0+ikμy y0

⎞
⎠

...

A0H0
− R011SH

0 − R012SK
0 = R011

⎛
⎝Ainc,0J,0 −

∑
μ∈Z

δμ0 eik
μ
y (y0+a) eik

μ
x x0+ikμy y0

⎞
⎠

A0K0 − R021SH
0 − R022SK

0 = R021

⎛
⎝Ainc,0J,0 −

∑
μ∈Z

δμ0 eik
μ
y (y0+a) eik

μ
x x0+ikμy y0

⎞
⎠

...

A0HN
− RN11SH

N − RN12SK
N = RN11

⎛
⎝Ainc,0J,N −

∑
μ∈Z

δμ0 eik
μ
y (y0+a)iN e−iNθμ eik

μ
x x0+ikμy y0

⎞
⎠

A0KN − RN21SH
N − RN22SK

N = RN21

⎛
⎝Ainc,0J,N −

∑
μ∈Z

δμ0 eik
μ
y (y0+a)iN e−iNθμ eik

μ
x x0+ikμy y0

⎞
⎠

(A32)

with

SH
n =

∑
q∈Z

A0Hq

⎛
⎝SHn−q −

∑
μ∈Z

ei2k
μ
y y0Kμq

p−in e−inθμ

⎞
⎠ , (A33a)

SK
n =

∑
q∈Z

A0Kq

⎛
⎝SKn−q −

∑
μ∈Z

ei2γ
μ
y y0Ke−μq (−1)n e−inθμ

⎞
⎠ . (A33b)
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