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This paper aims at providing an alternative analytical model, which would be more suitable than a
previous one �C. Potel and M. Bruneau, J. Sound Vib. 313, 738 �2008��, to describe the mode
coupling due to scattering on small one-dimensional irregularities �parallel ridges� of the surfaces of
a fluid-filled waveguide. Both models rely on standard integral formulation and modal analysis, the
acoustic field being expressed as a coupling between eigenmodes of a regularly shaped waveguide,
which bounds outwardly the corrugated waveguide considered. But the model presented here
departs from the previous one essentially because it starts from the integral formulation for the
acoustic pressure field, the solution relying on a modal expansion, whereas the previous one starts
from the inner product of the set of differential equations �which govern the acoustic pressure field�
and the appropriate eigenfunctions, the solution being obtained from using a one-dimensional
integral formulation. Substituting this alternative model for the previous one clearly accelerates
convergences �even permits to avoid divergences� of the iterative process used to solve the problem.
Finally, complex eigenfunctions are introduced here in order to account for the dissipative effects
due to thermoviscous phenomena �through an impedancelike boundary condition�, which is of
importance at the cut-off frequencies. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3191045�

I. INTRODUCTION

Numerous works on the acoustic propagation inside cor-
rugated waveguide have been carried out for several decades
�see Refs. 1–32 and references contained therein�. But it is
still a challenging topic to obtain tractable and accurate mod-
eling to predict the properties of these fields, having in mind
the characterization of the roughness of the boundaries of
waveguides. An analytical model proposed recently23 ap-
pears to be more tractable than the previous ones, and suit-
able to describe the mode coupling due to scattering phe-
nomena on small one-dimensional �1D� irregularities
�parallel ridges� of the surfaces of nondissipative fluid-filled
waveguides. In this former model,23 analytic solutions for
describing the acoustic coupling in fluid-filled rough
waveguides are given, using Green’s theorem and perturba-
tion method in the frame of a modal analysis. More precisely,
this model relies on standard integral formulation and modal
analysis, the acoustic field being expressed as a coupling
between a unique set of Neumann eigenmodes of a regularly
shaped waveguide, which bounds outwardly the corrugated
waveguide considered �“intermodal” approach as opposed to
the so-called “multimodal” approach�. This model, called
here “inner product” �IP� model, starts from the inner prod-
uct of the set of differential equations �which govern the
acoustic pressure field� and the appropriate eigenfunctions,
the solution being obtained from using a 1D integral formu-

lation and finally an iterative process to solve the problem.
Both the depth and the slope of the profile are taken into
account, which leads to identify two coupling mechanisms,
respectively, the bulk coupling and the boundary modal
coupling.3

An alternative analytical model, which would be more
suitable than the one mentioned above to describe this modal
coupling, is presented in this paper. Fundamentally, it relies
on the same analytical formalisms, i.e., integral formulation
and intermodal approach based on a unique set of eigenfunc-
tions, both the depth and the slope of the profile being taken
into account. But the model presented here, called “integral
formulation” �IF� model, departs from the previous one be-
cause it starts from the integral formulation for the acoustic
pressure field, the solution, which relies on a modal expan-
sion, being finally obtained using also an iterative process.
Thus, this alternative approach does not behave like the pre-
vious one. More specifically, it appears that it clearly accel-
erates convergences of the iterative process used to solve the
problem; even it permits to avoid divergences. Both models
are presented below �Sec. II�: the IP model �the previous
one� succinctly �Sec. II B� and the IF model �the new one�
with more details �Sec. II C�. Moreover, complex eigenfunc-
tions are introduced here in each approach in order to ac-
count for the dissipative effects due to thermoviscous phe-
nomena �through an impedancelike boundary condition�,
which is of importance at the cut-off frequencies. Finally,
theoretical results are discussed �Sec. III�, showing first the
role played by the dissipative effects, compared to the effects
of the diffusion due to the corrugations, in terms of attenua-
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tion of the amplitude of the wave propagating along the
waveguide, and second the advantages of the IF model.

II. ANALYTICAL APPROACHES OF THE INTERMODAL
COUPLING IN CORRUGATED WAVEGUIDE

A. The waveguide and its boundaries, the fundamental
problem

The two-dimensional �2D� �x ,z� structure under consid-
eration is shown in Fig. 1. A fluid-filled plate of axis x is
bounded by two surfaces having 1D shape perturbations
�corrugations parallel to the y-axis� set, respectively, at the
coordinates z1 and z2 �which depend on the coordinate x�.
These corrugations are assumed to be small deviations from
the regularly shaped surfaces �set at �Lz /2� bounding out-
wardly the perturbed surfaces. The distances between both
surfaces �the regular one and the corrugated one� are denoted
h1= �Lz /2�+z1 and h2= �Lz /2�−z2. An inner plate with regu-
larly shaped surfaces z= �d /2 is defined as being sur-
rounded by the 1D corrugations. The shape of the corruga-
tions is defined by the local unit vectors n1 and n2 normal to
the real surfaces of the waveguide. The fluid is characterized
by its density �0, the adiabatic speed of sound c0, its shear
viscosity coefficient �0, and its thermal conduction coeffi-
cient �0. For air in standard conditions, �0=1.2 kg m−3,
�0 / ��0c0CP�=5.8�10−8 m, and �0 / ��0c0�=4.7�10−8 m
where CP is the heat coefficient at constant pressure per unit
of mass of the gas.

In order to account for the reactive and dissipative ef-
fects due to thermoviscous phenomena inside the associated
boundary layers, the surfaces can also be characterized by an

adimensional admittancelike boundary condition Ŷ, the ef-
fects of the viscous factor being replaced here with half of its
maximum value �which is very close to its mean value over
all the directions of ingoing waves on a plane surface�. This
admittance, which is of importance at the cut-off frequencies,
is given by �for any surface and for any field considered�33

Ŷ = �1 + i��k0/�2�0c0����0/2 + �� − 1���0/CP� , �1�

where k0=� /c0 is the adiabatic wavenumber �� being the
angular frequency�.

It is assumed that an incident harmonic �with a time
factor exp�i�t�� propagating wave coming from x→−� or a
source, which is set at the input of the considered domain �at
the entrance x=0 of the corrugated waveguide�, is such as it
creates an acoustic pressure field p̂�x ,z� with a given profile
in the z-direction. The acoustic pressure field in the wave-

guide is governed by the set of equations including the
propagation equation and the boundary conditions, which
takes the following form:

��xx
2 + �zz

2 + k0
2�p̂�x,z� = − f̂�z�	�x�, ∀ x � �0,��, ∀ z

� �− Lz/2,Lz/2� , �2a�

��n1
+ ik0Ŷ�p̂�x,z� = 0, ∀ x � �0,��, z = z1, �2b�

��n2
+ ik0Ŷ�p̂�x,z� = 0, ∀ x � �0,��, z = z2, �2c�

Sommerfeld condition when x → � , �2d�

where f̂�z� represents the source strength at x=0 �	�x� being
the Dirac function�, and where the normal derivatives �ni

�i
=1,2� are given by

�ni
= ni · � = Ni

−1���xhi��x + �− 1�i�z� , �3a�

with Ni = ���xhi�2 + 1. �3b�

In both IP and IF approaches presented below, the solution is

expressed as an expansion on the eigenfunctions 
̂m
����z�,

namely,

p̂�x,z� = �
�=1

2

�
m=0

�

Âm
����x�
̂m

����z� , �4�

where the eigenfunctions 
̂m
����z� are solutions of the homo-

geneous Helmholtz equation subject to boundary conditions
in the 2D waveguide bounded by the regularly shaped, par-
allel, and plane surfaces set at z= �Lz /2 on the outer side of
the perturbed surfaces �see the Appendix�.

Then, the solutions are given in the frame of a modal
theory, using this unique set of eigenmodes of the regularly
shaped surface that bounds outwardly the perturbed surface
of the waveguide. It is worth noting that the height and the
length of the corrugations are here assumed to be such that
the perturbation induced by these corrugations on the behav-
ior of the waves propagating along the x-axis is very small.

B. The former IP modeling

Multiplying Eq. �2a� by the eigenfunctions 
̂m
����z�, and

integrating over the range z1�z�z2, and then integrating the
second term �which includes the operator �zz

2 � by parts, yield
reporting expressions �2b�, �2c�, �3a�, �3b�, and �4�, respec-
tively, for �np̂ and �zp̂ on the boundaries, and p̂,23

�

=1

2

�
�=0

�

��	�m
�
�� − B̂�m

�
���x����xx
2 + �k̂xm

����2� + �̂�m
�
���x��Â�

�
��x�

= − Ŝm
���, �5a�

where

�k̂xm

����2 = k0
2 − ��̂m

����2,

�̂m
��� being the eigenvalue of the mode ��,m� ,

FIG. 1. Sketch of the 2D waveguide with surfaces having small deviations
from the regular shape. �a� General view and �b� zoom on the corrugation.
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	�m
�
�� = 	
�	�m,

	rs being the Kronecker index, �5b�

B̂�m
�
���x� = 	


−Lz/2

z1

dz + 

z2

Lz/2

dz�
̂�
�
��z�
̂m

����z� �5c�

account for the depth of the roughness �bulk modal cou-
pling�,

Ŝm
��� = 


z1

z2


̂m
����z� f̂�z�dz �5d�

represents the energy transfer between the source and the
mode �� ,m�, and

�̂�m
�
���x� = − �

q=1

2


̂�
�
��zq����xhq��x + ik0ŶNq

+ �− 1�q�zq
�
̂m

����zq� �5e�

is the operator that represents the boundary modal coupling
due to the shape profile of the roughness, its depth, and the
thermoviscous boundary layers.

Invoking the following expression for the parameter

B̂�m
�
��, respectively, for �
 ,��� �� ,m� and for �
 ,��

= �� ,m�, straightforwardly obtained from its definition �5c�,

B̂�m
�
���x� = ���̂�

�
��2 − ��̂m
����2�−1�

q=1

2

�− 1�q�
̂m
����zq��zq


̂�
�
��zq�

− 
̂�
�
��zq��zq


̂m
����zq�� , �6a�

B̂mm
�����x� = 1 −

1

2
�N̂m

����2�
q=1

2

�− 1�q�zq − N̂m
���

��2�̂m
����−��zq

�−1
̂m
����2zq�� . �6b�

Equation �5a� can be written as follows �Eq. �19� of Ref. 23
with different notations�:

��xx
2 + �kxm

����2�Âm
����x� = − Ŝm

��� + �

=1

2

�
�=0

� ��
q=1

2


̂m
����zq�

�O�x,zq�
̂�
�
��zq� + B̂�m

�
���x���xx
2

+ �kx�

����2�
Â�
�
��x� , �7a�

where the “roughness operator” O�x ,zq� is given by

O�x,zq� = ik0Ŷ + Nq
−1���xhq��x + �− 1�q�zq

�, q = 1,2.

�7b�

The approximate integral solution of this equation can be
obtained by successive approximations, using at each stage
the integral formulation with an appropriate Green’s function
denoted gm

����x ,x��, namely, here

gm
����x,x�� = exp�− ikxm

����x − x���/�2ikxm

���� . �8�

Using an iterative method to express the amplitude of each

mode Âm
����x�, which assumes that the coupling function in

the right hand side of Eq. �7a� is a small quantity compared

to the source term Ŝm
���, thus the Nth-order solution of Eq.

�7a� for Âm
����x� is written as follows:

�N�Âm
��� = �0�Âm

��� + �1�Âm
��� + ¯ + �N−1�Âm

��� + �N�Âm
���, �9�

where �N�Âm
��� denotes the Nth-order perturbation expansion

for Âm
���, �0�Âm

��� the zero order approximation �the solution

without roughness�, �1�Âm
��� the first order correction term,

and so on.

C. The present IF modeling

The integral formulation of the problem stated above,
Eqs. �2a� and �2b�, can be written as follows, in the domain
�x� �0,�� ,z� �−Lz /2,Lz /2��:

�x � �0,��,z � �z1,z2� , p̂�x,z�
x � �0,��,z � �z1,z2� , 0



= 


0

�

dx�

z1

z2

dz�G�x,z;x�,z�� f̂�z��	�x��

+ �
q=1

2 

0

�

dx��G�x,z;x�,zq��nq
p̂�x�,zq�

− p̂�x�,zq��nq
G�x,z;x�,zq�� , �10a�

where the Green function G�x ,z ;x� ,z�� is given by the
eigenfunction expansion

G�x,z;x�,z�� = �

=1

2

�
�=0

�

�g�
�
��x,x��
̂�

�
��z���
̂�
�
��z� , �10b�

g�
�
��x ,x�� being given by Eq. �8�.

Invoking Eqs. �2b�, �2c�, �3a�, �3b�, �4�, �A1b�, and
�A1c�, Eq. �10a� yields straightforwardly

�x � �0,��,z � �z1,z2� , �
�=1

2

�
�=0

�

Â�
����x�
̂�

����z�

x � �0,��,z � �z1,z2� , 0
�

= �
�=1

2

�
�=0

� �F̂�
����x� + �


=1

2

�
�=0

�

Ĥ��
�
���Â�

�
��x���
̂�
����z� ,

�11a�

with

F̂�
����x� = 


z1

z2

�g�
����x,x��
̂�

����z��� f̂�z��dz�, �11b�
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Ĥ��
�
���Â�

�
��x�� = − �
q=1

2 

0

�

Â�
�
��x��
̂�

�
��zq�O�x�,zq�

�
̂�
����zq�g�

����x,x��dx�, �11c�

O�x� ,zq� being the roughness operator �7b�.
Then, using the orthogonality properties of the eigen-

functions in the interval z� �−Lz /2,Lz /2�, Eq. �11a� yields

Âm
����x� = F̂m

����x� + �

=1

2

�
�=0

�

�Ĥ�m
�
���Â�

�
��x��

+ B̂�m
�
���x�Â�

�
��x�� , �12�

the first term in the right hand side representing the effect of
the source on the mode m, the second and third ones repre-
senting the effects of the shape and the depth of the rough-

ness �the factor B̂�m
�
���x� is given by Eq. �6��.

Using here also an iterative method to express the am-

plitude of each mode Âm
����x�, which assumes that the cou-

pling function in the right hand side of Eq. �12� is a small

quantity compared to the source term F̂m
����x�, thus the

Nth-order solution of Eq. �12� for Âm
����x� is written as given

in Eq. �9�.
It is worth noting that

�0�Âm
����x� = F̂m

����x� , �13a�

�1�Âm
����x� = F̂m

����x� + �

=1

2

�
�=0

�

�Ĥ�m
�
����0�Â�

�
��x��

+ B̂�m
�
���x��0�Â�

�
��x�� , �13b�

and so on.

III. RESULTS AND DISCUSSIONS

The aim of this section is first of all twofold: �i� to show
the role played by the dissipative effects, compared to the
effects of the diffusion due to the corrugations, in terms of
attenuation of the amplitude of the waves propagating along
the waveguide, and �ii� to show that the alternative approach
presented in this paper �IF approach� clearly accelerates con-
vergences of the iterative process used to solve the problem
�even it permits to avoid divergences� in comparison with the
previous approach �IP approach�. Then, two examples of re-
sults showing the effects of the shape and the depth of the
roughness, in the vicinity or not of phonon relationships, are
presented, taking advantage of the integral formulation pre-
sented in this paper.

A. Effects of dissipative processes at the walls of the
waveguide

Accounting for the viscous and thermal boundary layers’

attenuation, here through an equivalent admittance Ŷ �Eq.
�1��, results in a quite weak excess of decreasing of the
propagating modes, especially those created by the source of
energy, compared to the decreasing due to the energy transfer
from these modes to other modes through the diffusion pro-

cess at the rough wall. The ability of the models presented
here to evaluate these dissipative effects on the boundaries is
shown in this section for a roughness assumed to be sinu-
soidal on one boundary �using Fourier analysis would then
permit to consider any geometry�. The values of the adimen-
sional parameters used are given in Table I, where f is the
frequency, d is the thickness of the regularly shaped sur-
faces’ inner fluid plate, c0 is the adiabatic speed of sound, �
is the spatial wavelength of the sinusoidal roughness, k0 is
the adiabatic wavenumber, � is the total length of the rough-
ness, � is the acoustic wavelength, and h is the depth of the
roughness. The incident wave is assumed to behave as the
antisymmetrical mode m=0. Three other modes, created by
couplings due to the roughness, are accounted for in the cal-
culus: the evanescent antisymmetrical mode �=1, and two
propagative modes, respectively, the symmetrical one �=0
and the symmetrical one �=1. The driving frequency is such
as the following phonon relationship is approximately veri-
fied:

kx�=0

�2� + kxm=0

�1� − 2�/� = 0, �14�

as shown in Fig. 2 �vertical straight line at fd /c0=1.3�.
The amplitudes of the modes considered here are shown

in Figs. 3�a� and 3�b� as functions of the adimensional dis-
tance from the entrance of the rough part of the waveguide
k0x. Because the curves with thermoviscous boundary layers
and those without dissipation effects are very close one to the
other �as mentioned above�, a third curve �the lower one� is
presented, which corresponds to an admittance of the walls

20 times higher than the real one Ŷ for air under standard
conditions.

The amplitude of the incident antisymmetrical mode m
=0 �Fig. 3�a�� decreases more or less �depending on the dis-
sipative effects� when this mode propagates. The symmetri-
cal mode �=0 �Fig. 3�b�� is created from the incoming wave

FIG. 2. �Color online� Dispersion curves �thick lines� of the guide with

smooth interfaces �k̂xm

���d / �2��=��fd /c0�2− ��2m+	�1�d / �2Lz��2�, and

curves �thin lines� corresponding to the phonon relation �14� �k̂xm

���d / �2��
=d /�−��fd /c0�2− ��2m+	�1�d / �2Lz��2�, �=1 and �=2 corresponding, re-
spectively, to antisymmetric and symmetric modes. Solid lines: mode
�m ,��= �0,1�, dashed-dotted lines: mode �m ,��= �0,2�, dashed lines:
�m ,��= �1,1�, and dotted lines: �m ,��= �1,2�.

TABLE I. Parameters used to calculate the results presented in Figs. 2, 3�a�,
and 3�d� �the notations are given in the text�.

fd /c0=1.3 � /�=0.52 k0�=245
d /�=2.5 h /d=0.01 � /�=75
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�initial mode generated by the source� by the diffusion pro-
cess along the corrugation; its amplitude increases when
propagating backward, i.e., from the right to the left �coun-
terpropagating wave� and actually its attenuation due to the
dissipative process increases also from the right to the left.
Its relative amplitude �rear to the amplitude of the incident
mode� is quite high because it is linked with the incoming
mode by the phonon relationship �14�. The amplitudes of the
two other modes considered, the antisymmetrical mode �
=1 and the symmetrical mode �=1, are much lower than the
incident mode �less than 4% of the amplitude of the incident
mode� because the first one is evanescent and the second one
is not linked with any other mode by a phonon relationship.

B. Convergence of the iterative processes

In this section, the convergence of the iterative processes
used to solve the problem is analyzed in both cases: the first
one when using the previous approach �IP approach�, and the
second one when using the approach presented in this paper
�the IF approach�. In the example given here, the roughness
is assumed to be a periodically corrugated surface �regularly
distributed symmetrical sawtooth profile� on one boundary
�Fig. 4�. The values of the adimensional parameters used are
given in Table II, the notations being the same as those used
in Table I.

The incident wave is assumed to behave as the sym-
metrical mode m=1. Three other modes, created by cou-
plings due to the roughness, are accounted for in the calcu-
lus: the antisymmetrical modes �=0 �propagative� and �
=1 �evanescent�, and the symmetrical mode �=0 �propaga-

tive�. The driving frequency is such as the following phonon
relationship between the symmetrical modes m=1 and �=0
is approximately verified:

kxm=1

�2� + kx�=0

�2� − 2�/� = 0, �15�

as shown in Fig. 2 �vertical straight line at fd /c0=1.44�.
The amplitudes of the modes considered here are shown

in Figs. 5�a�–5�d� as functions of the adimensional distance
from the entrance of the rough part of the waveguide k0x.
The amplitude of the symmetrical mode �=0, linked with
the incident mode �symmetrical mode m=1� by the phonon
relationship �15�, is obtained after 2 or 3 iterations with the
IF method �Fig. 5�a�� whereas it is obtained after about 30
iterations with the IP method �Fig. 5�b��. In the same manner,
the amplitude of the incident mode �symmetrical mode m
=1� is obtained after 2 or 3 iterations with the IF method
�Fig. 5�c�� whereas it is obtained after about 30 iterations
with the IP method �Fig. 5�d��. Note that at the lower order,
the result obtained for this incident mode using the IP
method is divergent �it is not the case when using the IF
approach�. The amplitudes of the two other modes consid-
ered, the antisymmetrical modes �=1 �evanescent� and �
=0 �propagative�, are much lower than the incident mode
�less than 4% of the amplitude of the incident mode� because
the first one is evanescent and the second one is not linked
with any other mode by a phonon relationship.

TABLE II. Parameters used to calculate the results presented in Figs.
5�a�–5�d�.

fd /c0=1.44 � /�=0.58 k0�=181.46
d /�=2.5 h /d=0.02 � /�=50

FIG. 3. �Color online� Relative amplitudes of the modes �rear the amplitude
of the incoming mode� as functions of the adimensional distance from the
entrance of the rough part of the waveguide k0x, without dissipation �thin
solid line�, with dissipative thermoviscous boundary layers �for air under
standard conditions, dotted line�, and with an admittance of the walls 20
times higher time than the real one �thick solid line�. �a� Incident antisym-
metrical mode m=0, and �b� symmetrical mode �=0 satisfying the phonon
relationship �14�.

FIG. 4. Fluid plate between two rigid walls: a wall being plane and a wall
having regularly distributed corrugation �symmetrical sawtooth profile�.

FIG. 5. �Color online� Relative amplitudes of the symmetrical modes �
=0 and m=1 �rear the amplitude of the incoming mode� as functions of the
adimensional distance from the entrance of the rough part of the waveguide
k0x: normalized modulus of the amplitude of the symmetrical mode �=0
�N�Â�=0

�2� calculated to the Nth order, �a� using the IF method with N=1 �thin
solid line�, 2 �dotted line�, and 3 �thick solid line�, and �b� using the IP
method with N=1 �thin solid line�, 15 �dotted line�, and 30 �thick solid line�;
normalized modulus of the amplitude of the symmetrical mode m=1 �N�Âm=1

�2�

calculated to the Nth order, �c� using the IF method with N=1 �thin solid
line�, 2 �dotted line�, and 3 �thick solid line�, and �d� using the IP method
with N=1 �thin solid line�, 15 �dotted line�, and 30 �thick solid line�.
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These results show that the alternative approach pre-
sented in this paper �IF approach� clearly accelerates conver-
gences of the iterative process �even it permits to avoid di-
vergences� in comparison with the previous approach �IP
approach�.

C. Examples of effects of roughnesses

Two examples of results showing the effects of the shape
and the depth of the roughness, in the vicinity or not of
phonon relationships, are presented in this section, taking
advantage of the IF presented in this paper.

In the first one, the roughness is assumed to be randomly
distributed on one boundary. The values of the adimensional
parameters are such that fd /c0=0.8, k0�=50, and h /d
=0.02. The incident wave is assumed to behave as the anti-
symmetrical mode m=0. Three other modes, created by cou-
plings due to the roughness, are accounted for in the calcu-
lus: the evanescent antisymmetrical mode �=1, and two
symmetrical propagative modes, respectively, �=0 and �
=1. The relative amplitudes of the incident antisymmetrical
mode m=0 as functions of the adimensional distance from
the entrance of the rough part of the waveguide k0x are
shown in Fig. 6. The amplitudes of the other modes are al-
ways much lower than the amplitude of the incoming mode
�less than 0.04 time lower� because no phonon relationship
occurs here. As expected, the amplitude of the incident mode
decreases regularly when propagating along the randomly
shaped roughness.

In the second example, the roughness is assumed to be
sinusoidal on one boundary. The values of the adimensional
parameters are given in Table III. The incident wave is as-
sumed to behave as the antisymmetrical mode m=0. Three
other modes, created by couplings due to the roughness, are
accounted for in the calculus: the antisymmetrical mode �
=1, and two symmetrical propagative modes, respectively,
�=0 and �=1. As examples, Figs. 7�a� and 7�b� show the
relative amplitudes of the incident antisymmetrical mode m
=0 and of the antisymmetrical mode �=1 as functions of

two coordinates, the adimensional frequency in the range
fd /c0� �1.2,1.8� and the adimensional distance from the en-
trance of the rough part of the waveguide X=x /�� �0,10�,
satisfying, respectively, the phonon relationships

kxm=0

�1� + kxm=0

�1� − 2�/� = 0 �16�

and

kxm=0

�1� + kx�=1

�1� − 2�/� = 0 �17�

�the color scale is given in the figures�.
The amplitudes of the other modes are always much

lower than the amplitude of the incoming mode because they
do not obey to phonon relationship in the frequency range
considered here.

The spatial period � �adimensional length equal to 1 on
the horizontal scale� appears clearly in both Figs. 7�a� and
7�b�, even for evanescent modes �lower part of Fig. 7�b��.
The upper part of Fig. 7�b� shows a relative value of the
amplitude, which is quite high �nearly the third of the value
of the amplitude of the incident mode� because at these fre-
quencies the phonon relationship �17� occurs for this mode.

IV. CONCLUSIONS

The results described in this paper indicate that the new
approach suggested �IF approach� can lead to substantial im-
provements, compared to a previous approach �IP approach�,
in the convergence of the iterative process used to calculate
the effect of the roughness of the wall on the wave propaga-

FIG. 6. Relative amplitudes of the incident antisymmetrical mode m=0 as
functions of the adimensional distance from the entrance of the rough part of
the waveguide k0x.

TABLE III. Parameters used to calculate the results presented in Figs. 7�a�
and 7�b�.

fd /c0� �1.2,1.8� d /�=2.5 h /d=0.02 � /�=10

FIG. 7. �Color online� Relative amplitudes of modes as functions of two
coordinates: the adimensional frequency in the range fd /c0� �1.2,1.8� and
the adimensional distance from the entrance of the rough part of the wave-
guide X=x /�� �0,10�. �a� Relative amplitude of the incident antisymmetri-
cal mode m=0 satisfying the phonon relationship �16�, and �b� relative
amplitude of the antisymmetrical mode �=1 satisfying the phonon relation-
ship �17�.
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tion in a fluid-filled waveguide. For example, when only N
=1 iteration is sufficient when using the IF approach, about
30 are needed when using the previous IP approach. More-
over, dissipative effects at the walls have been introduced in
both formalisms, which permit to account for the attenuation
due to nonvanishing admittance of the wall. Finally, the re-
sults show that important aspects, for both propagative and
evanescent waves, satisfying or not phonon relationship, can
be investigated in detail.
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APPENDIX: 1D EIGENMODES OF THE FLUID PLATE
SATISFYING MIXED BOUNDARY CONDITIONS

The 1D orthogonal, normalized, respectively, antisym-

metrical ��=1� and symmetrical ��=2� eigenfunctions 
̂m
���

considered �with associated eigenvalues �̂m
���� of the 2D

waveguide bounded by the regularly shaped, parallel, and
plane surfaces set at z=−Lz /2 and z=Lz /2 are solutions of
the homogeneous wave equation and subjected to mixed
boundary conditions given by

��zz
2 + ��̂m

����2�
̂m
����z� = 0, z � �− Lz/2,Lz/2� , �A1a�

��z − ik0Ŷ�
̂m
����z� = 0, z = − Lz/2, �A1b�

��z + ik0Ŷ�
̂m
����z� = 0, z = Lz/2, �A1c�

where it is assumed that the adimensional admittance Ŷ,
which accounts for the effects of thermoviscous boundary
layers, does not depend on the quantum number m �the vis-
cous term is replaced with its mean value over all incident
angles�.33

The orthogonality of these eigenfunctions can be verified
by integrating from z=−Lz /2 to z=Lz /2 the following equa-
tion:

�z�
̂m
����z
̂n

��� − 
̂n
����z
̂m

���� = ���̂m
����2 − ��̂n

����2�
̂m
���
̂n

���

�A2�

and by noting that the left hand side vanishes because the
eigenfunctions satisfy the boundary conditions �A1b� and
�A1c�.

The normalization of the eigenfunctions is then obtained
from the following integral:



−Lz/2

Lz/2


̂m
����z�
̂�

�
��z�dz = 	�m
�
��, �A3�

	�m
�
��=	
�	�m, 	rs being the Kronecker index, which leads to

the following expressions for the solutions of Eqs.
�A1a�–�A1c�, namely,


̂m
�1��z� = �N̂m

�1��−1 sin��̂m
�1�z� , �A4a�


̂m
�2��z� = �N̂m

�2��−1 cos��̂m
�2�z� , �A4b�

with

N̂m
��� =�Lz

2
+

1

�̂m
���

ik0Ŷ/�̂m
���

1 − �k0Ŷ/�̂m
����2

, �A4c�

the eigenvalues �̂m
���, ��=1,2� being solutions of the follow-

ing equations:

−
�̂m

�1�

ik0Ŷ
= tan��̂m

�1�Lz/2� , �A4d�

ik0Ŷ

�̂m
�2� = tan��̂m

�2�Lz/2� . �A4e�

When the admittance Ŷ vanishes, relations �A4a�–�A4e� give
the well-known Neumann eigenfunctions and eigenvalues


̂m
�1��z� = �2/Lz sin�km

�1�z� , �A5a�


̂m
�2��z� = ��2 − 	m0�/Lz cos�km

�2�z� , �A5b�

with

km
�1� = �2m + 1��/Lz, �A5c�

km
�2� = 2m�/Lz. �A5d�

Because in practice the modulus of the adimensional admit-

tance Ŷ is very small, i.e.,

�ik0Ŷ� � ��̂m
����or�ik0Ŷ� � km

���, ��,m� � �2,0� , �A6�

Eqs. �A4d� and �A4e� lead to the following expressions for
the eigenvalues:

�̂m
��� = km

��� + �̂m
��� �A7a�

with

�̂m
��� = �2ik0Ŷ/Lz, ��,m� = �2,0� , �A7b�

�̂m
��� = 2ik0Ŷ/�km

���Lz�, ��,m� � �2,0� , �A7c�

and the normalization factors can be approximated by those
which appear in Eqs. �A5a� and �A5b�.
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