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Pedagogically treating topics as having several ways to be
addressed: Harmonically varying states of free-edge circular
plates

Laure Lagny, Michel Bruneau,a) and François Gautier
Laboratoire d’Acoustique de l’Universit�e du Mans (LAUM), UMR 6613, Institut d’Acoustique-Graduate School (IA-GS), CNRS,
Le Mans Universit�e, Le Mans, 72085 Cedex 9, France

ABSTRACT:
The paper is mainly concerned with the training of students by treating exercises as having several ways to be

addressed. The topic considered herein focuses on the vibrations of a free edge axisymmetric homogeneous circular

thin plate excited by a time-periodic source. This topic is prepared using the three analytic methods available (but

these are not fully used analytically in the literature) to show the different aspects of the problem: modal expansion,

integral formulation, and exact general solution, against which the other models are tested. Several results are pro-

vided when the source is localized at the center of the plate to validate the methods with each other, and these are

discussed before concluding. VC 2023 Acoustical Society of America. https://doi.org/10.1121/10.0019635

(Received 9 October 2022; revised 7 May 2023; accepted 19 May 2023; published online 7 June 2023)

[Editor: Preston Scot Wilson] Pages: 3213–3220

I. INTRODUCTION

The intent of the paper is to show, through an example,

how to deepen the training of students by treating exercises

as having several ways to be addressed, and how solutions

of a given well-posed problem with apparently very differ-

ent analytical forms lead to a unique result (that should be

shown to students). The topic considered herein focuses on

the vibrations of a free edge axisymmetric homogeneous cir-

cular thin plate excited by a time-periodic source, where the

results are presented when the source is localized at the cen-

ter of the plate (formulas are also displayed for a source uni-

formly distributed over the plate surface). Many textbooks

and papers contain modelling, analytical results, and gray

scale plots on the behavior of the displacement fields of

such a device, including the well-known Chladni’s pat-

terns.1–4 Nevertheless, a systematic framework which treats

this topic of using the three analytic methods available to

show the different aspects of the problem and compare the

results obtained (to validate the methods with each other) is

not available. This approach presented should allow the stu-

dents that need to deepen their knowledge or just want to

practice through exercises to gain a deeper understanding of

the problem considered. Moreover, starting from the well-

posed problem (Sec. II), they can practice in a complete

manner when solving the details of this problem analytically

in an exact or approximate manner (Sec. III) or even numer-

ically (but from fully analytical expression herein; Sec. IV).

In Sec. II, given a pressure source acting on the plate,

the fundamental equation for the displacement field is pre-

sented in the framework of Kirchhoff theory of thin

plates.1–3 The associate Green’s function for the infinite

plate is given.1,3,5 The expressions of the source functions

considered and boundary conditions retained are detailed.6,7

In Sec. III, the first model (Sec. III A), against which the

other models are tested, starts from the exact general solu-

tion of the circular plate, the solution of the problem consid-

ered is obtained from applying inner edge (line source

distributed on a circle whose radius vanishes) and outer

edge conditions.4 This exact solution is presented below

with details which clarify some issues. The second model

(Sec. III B) involves a sum over the natural modes of the

simple finite homogeneous free plate,2 where the individual

terms involve the known eigenfunctions and eigenvalues for

the plate. Note that the weakness of this model arises from

the fact that the required sum is still difficult to evaluate.

Section III C presents the third model, which relies on an

integral formulation,8,9 giving a prominent role to the infi-

nite homogeneous plate Green’s function in the frequency

domain, and the results are obtained analytically, not numer-

ically (boundary-element method as usual).9 Several results

are finally discussed in Sec. IV before concluding.

II. ANALYTIC APPROACHES FOR POTOTYPE
PROBLEM: HOMOGENEOUS PLANE THIN ELASTIC
PLATE

A. The well-posed problem

As indicated in the Introduction, we consider analytic

approaches to express the displacement field of a homoge-

neous plane thin elastic circular plate, which can be (or not)

considered as an annular plate with an inner radius, a! 0,

and outer radius, denoted by b. The origin of the coordinates

is set at r ¼ 0. The boundary conditions on the contoura)Electronic mail: michel.bruneau@univ-lemans.fr
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denoted below C (a and b) are assumed to be of any kind in

this subsection (Fig. 1). The plate is subjected to a mechani-

cal excitation localized at rs ¼ a! 0, which is given by its

sinusoidal normal force (N).

Consider an area surface enclosed in a contour C and

let r designate an arbitrary interior point. Assume that a

homogeneous, isotropic, and finite plate of mass per unit

area, MS, and bending moment, Dh ¼ Eh3=12ð1� �2Þ,
extend throughout this surface area (E denotes the Young

modulus, h is the thickness, and � is Poisson’s ratio of the

plate). If a pressure source, psðr;xÞexpð�ixtÞ (unit Pa),

acts on the plate, the equation for the subsequent displace-

ment field, wðr;xÞexpð�ixtÞ (harmonically time varying

state), can be written classically as1

Dh D2 � k4½ �w r;xð Þexp �ixtð Þ ¼ �ps r;xð Þexp �ixtð Þ; (1)

where to the lower order of the small quantity, Ra=ðxMSÞ,

k ¼ MS

Dh

� �
x2 1� 1

ix
Ra

MS

� �" #1=4

ffi MS

Dh
x2

� �1=4

1� 1

i x
Ra

4MS

� �
(2)

is the complex wavenumber which accounts for the struc-

tural damping that is assumed to behave as viscous damping

(given by Ra@w=@t in the time domain).

The partial differential equation is solved and subjected

to any kind of classical boundary conditions, namely, simple

edge conditions (free, clamped, and simply supported).

Below, the free conditions are chosen by way of example

because this choice suffices to validate the methods pre-

sented in Secs. II B and II C.

B. The Green’s function

Assuming the axisymmetric behavior of the problem,

the normal force (unit N) of the source localized at rs ¼ 0

can be expressed as (frequency domain)

T
xð Þ

S ¼ lim
rs!0

2p
ðrs

0

ps r;xð Þr dr

ffi lim
rs!0

2pps 0;xð Þ
ðrs

0

r dr

¼ lim
rs!0

pr2
s ps rs;xð Þ; (3)

which leads to

ps r;xð Þ ¼ limrs!0 T
xð Þ

S = pr2
s

� �
if r � rs

0 if r > rs

( )

¼ T
xð Þ

S

d rð Þ
2pr

: (4)

The associated infinite plate free-field Green’s functions

ðb!1Þ denoted by Gðr; r0; xÞ, which satisfy Eqs. (1) and

(2) with Eq. (4), take the form1

G r; r0; xð Þ ¼
1= ixð Þ

8
ffiffiffiffiffiffiffiffiffiffiffiffi
MSDh

p H 1ð Þ
0 kqð Þ � H 1ð Þ

0 ikqð Þ
h i

; (5)

where

H 1ð Þ
0 kqð Þ ¼ J0 kqð Þ þ iN0 kqð Þ;

H 1ð Þ
0 i kqð Þ ¼ J0 i kqð Þ þ i N0 i kqð Þ;

q ¼ jr� r0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2

0 � 2 rr0 cos h0

q
; (6)

where J0ðzÞ and N0ðzÞ are the zero-order Bessel and

Neumann functions, respectively, H
ð1Þ
0 ðzÞ is the zero-order

Hankel function of the first kind, and the wavenumber k is

given by Eq. (2). Note that because of the choice of the time

dependence, e�ixt, the Sommerfeld radiation condition at

infinity is satisfied by this Green’s function.

The solutions of Eqs. (1) and (4), T
ðxÞ
S Gðr; r0; xÞ, are

measured in meters because T
ðxÞ
S is measured in Newtons

(N), and the Green’s function Gðr; r0; xÞ represents a dis-

placement field per unit amplitude of the shear force T
ðxÞ
S .

Note that the function ððMS=DhÞx2Þ1=4
in Eq. (2) shows

clearly the effects of the dispersion phenomenon due to the

fact that the speed of the flexural waves depends on the

frequency,

cf ¼ Dh=MSð Þ1=4 ffiffiffiffi
x
p
¼

ffiffiffi
f

p ffiffiffi
h
p ffiffiffiffi

x
p

; (7)

where

f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=q0

12 1� �2ð Þ

s
;

and q0 is the density of the plate (E and � are defined

above).

III. SOLUTIONS

A. The direct (exact) solution

This solution relies on the basic method used to obtain

the general result of the posed problem in the frequency

domain, which is frequently observed in mathematical text-

book discussions, but authors, in practice, often assume a

solution that can be used only when dealing with an eigen-

value problem, as we will see below. Considering the circu-

lar ða! 0Þ problem, the solution of Eq. (1) takes the form

(involving the quartet of zero-order cylindrical Bessel func-

tions of the first and second kinds)4

w krð Þ ¼ AJ0 nð Þ þ BI0 nð Þ þ C N0 nð Þ þ DK0 nð Þ½ �; (8)

where n ¼ kr and satisfies four boundary conditions (two at

r ¼ a and two at r ¼ b), which gives the four integration

constants. It is noteworthy that one of the boundary condi-

tions in the problems considered herein involves the line

source term set at r ¼ a and is expressed by its prescribed

normal force, T
ðxÞ
S , given in Eq. (4) such that
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ps r;xð Þ ¼ T
xð Þ

S d r � að Þ= 2prð Þ; (9)

which can be taken into account either on the right-hand

side of Eq. (1) or as the following boundary condition:

2paDh @rDw ¼ �T
xð Þ

S : (10)

When dealing with the circular plate ða! 0Þ, Eq. (10)

holds. The other conditions at the center of the plate are

indifferently given by any of the following requirements:

(a) the displacement w remains finite at the origin, leading

to D ¼ limn!0½�N0ðnÞ=K0ðnÞ� ¼ 2=p, functions N0ðnÞ
and K0ðnÞ have a logarithmic infinity at n ¼ 0, but

these can be cancelled against each other;

(b) the slope

@w nð Þ=@n ¼ �AJ1 nð Þ þ BI1 nð Þ

� C N1 nð Þ þ 2=pð ÞK1 nð Þ
	 


; (11)

vanishes;

(c) the resulting bending moment limr¼a!02prDh½@r

þð�=rÞ�@rw, which is proportional to

lim
n!0

n @n þ �=nð Þ
	 


@nw

¼ nf�AJ0 nð Þ þ BI0 nð Þ � C N0 nð Þ þ 2=pð ÞK0 nð Þ
	 


þ � � 1ð Þ �AJ1 nð Þ þ BI1 nð Þð
�C N1 nð Þ þ 2=pð ÞK1 nð Þ
	 
�

g; (12)

vanishes, according to the behavior of each Bessel

function at the origin; and

(d) then, accounting for

@nDw nð Þ ¼ AJ1 nð Þ þ BI1 nð Þ þ C N1 nð Þ � 2=pð ÞK1 nð Þ
	 


and

lim
n!0

N1 nð Þ þ 2=pð ÞK1 nð Þ
	 


¼ �4= pnð Þ; (13)

Equation (10) gives the scale factor

C ¼ �T
xð Þ

S = 8Dhk2
� �

: (14)

The advantage of using such a so-called “direct meth-

od” to solve the problem considered in the frequency

domain is that it gives the exact solution, and the integration

constants are given by the boundary conditions at the outer

edge of the disk. Equation (14) implies that the third deriva-

tive of the solution (8) has a jump of size one at the origin

because it is an odd function. Then, it is a Green’s function

in the frequency domain for a circular plate,

w krð Þ ¼ G krð Þ

¼ AJ0 krð Þ þ BI0 krð Þ

� 1

8Dhk2
N0 krð Þ þ 2

p
K0 krð Þ

� �
: (15)

The integration constants A and B are obtained by writing

the boundary conditions at r ¼ b, leading to the algebraic

equations,

OMJ0 kbð Þ OMI0 kbð Þ

OTJ0 kbð Þ OTI0 kbð Þ

 !
A

B

 !

¼ 1

8Dhk2

OM N0 kbð Þ þ 2=pð ÞK0 kbð Þ
	 


OT N0 kbð Þ þ 2=pð ÞK0 kbð Þ
	 


0
@

1
A; (16)

with

OM ¼
�

@

@r0

þ �

r0

�
@

@r0

and

OT ¼
@

@r0

�
@2

@r2
0

þ 1

r0

@

@r0

�
:

Note that the functions in Eq. (16) involve only zero- and

one-order Bessel functions.

It is worth noting that the eigenfunctions of the circular

plate mentioned in Sec. III B satisfies the homogeneous Eq.

(1) with ps ¼ 0, namely, with T
ðxÞ
S ¼ 0. Then C ¼ 0, and it

follows that the eigenfunctions imply only the Bessel func-

tions J0 and I0, which are regular at the origin.

B. The modal expansion method

The construction of the solution in terms of axisymmet-

ric eigenmodes of the circular homogeneous plates makes

use of the modal wave functions wjðrÞ ¼ ajJ0ðkjrÞ
þ bjI0ðkjrÞ [or wjðrÞ] and their associated eigenvalues,

kj,
2,4,8 which are solutions of the homogeneous equation

associated with Eq. (1) ðps ¼ 0Þ and subjected to the free

boundary conditions chosen here,2,4

w r;xð Þ ¼
X

j

gj xð Þwj kjrð Þ; (17)

where the coefficients of expansion gj are given by (dr

meaning r dr dh)

gj xð Þ ¼
ð ð

S

w r;xð Þwj rð Þdr
.ð ð

S

w2
j rð Þdr:

The constants aj and bj are expressed in terms of each other

by solving the system of two homogeneous algebraic equa-

tions given by the two edge conditions,

OMJ0 kjbð Þ OMI0 kjbð Þ
OTJ0 kjbð Þ OTI0 kjbð Þ

 !
aj

bj

 !
¼

0

0

 !
; (18)

where one of the integration constants is chosen by writing

that the eigenfunctions have the norm equal to one (for

example) and the eigenvalues kj result from writing that the

determinant of this system should be null.

The solution of Eq. (1) for an axisymmetric source

function psðr;xÞ on the right-hand side of the equation,

which makes use of these separable wave functions, can be
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derived by using the following procedure: multiply Eq. (1)

by w‘ðrÞ and integrate over the surface S of the plate, and

one readily obtains (invoking orthogonality)

�x2 � ix
Ra

MS
þ x2

j

� �
gj xð Þ ¼ �1

NjMS

ð ð
S

wj rð Þps r;xð Þdr;

(19)

where

r4wj ¼ k4
j wj; k4

j ¼ Ms=Dð Þx2
j

and

Nj ¼
ð ð

S

w2
j rð Þdr; (20)

which readily leads to

gj xð Þ ¼ exp �ixtð Þ
MSNj x2 þ 2ixxj=Qj � x2

j

� � ð ð
S

wj rð Þps r;xð Þdr;

(21)

where Qj ¼ 2xjMS=Ra represents the quality factor of the

plate at the angular frequencies that are significant only at

the frequencies close to the resonant frequencies x ffi xj,

and
Ð Ð

S
wjðrÞpsðr;xÞdr ¼ wjðrsÞTsðxÞ when exciting the

plate with a localized source set at r ¼ rs.

The relevant point here is that the weakness of this

model arises from the fact that the required sum is still diffi-

cult to evaluate.

C. The integral method

Given the free-field Green’s functions [Eq. (5)], solutions

of the originally posed problem [Eq. (1)] can be subsequently

achieved with the aid of Green’s integral theorem. This subsec-

tion is dedicated to the derivation of such a form of the solution.

Applying Green’s theorem within the bounded (or

unbounded) surface S of the plate, interior to the contour C,

it follows that9ð ð
S

fw r0;xð ÞDhD0D0G r; r0; xð Þ

� G r; r0; xð ÞDhD0D0w r0;xð Þgdr0

¼
þ
C

n � f�D0G r; r0; xð ÞDhr0w r0;xð Þ

þ DhD0w r0;xð Þr0G r; r0; xð Þ
þw r0;xð Þr0DhD0G r; r0; xð Þ
� G r; r0; xð Þr0DhD0w r0;xð Þgd‘0; (22)

where C is traversed counterclockwise and n is the unit normal

to C, which is directed to the exterior of the surface S. On the

other hand, invoking Eq. (1) on S and the reciprocity of the

Green’s function, the left-hand side of Eq. (22) becomesð ð
S

G r; r0; xð Þps r0;xð Þdr0 � w r;xð Þ: (23)

On substituting Eq. (23) into Eq. (22), it follows that

w r;xð Þ ¼
ð ð

S

G r; r0; xð Þps r0;xð Þdr0

þ
þ
C

n � fD0G r; r0; xð ÞDhr0w r0;xð Þ

� DhD0w r0;xð Þr0G r; r0; xð Þ

�w r0;xð Þr0DhD0G r; r0; xð Þ

þ G r; r0; xð Þr0DhD0w r0;xð Þgd‘0: (24)

When the contour C is circular (radii a and b), the operator

n � r0 reduces to 6@=@r (the sign depends on the circle

considered). On the other hand, it is convenient to express

the factors which involve the Green’s function as functions

of the associated functions:

• the outward normal derivative of displacement,

hG r; r0; xð Þ ¼
@

@r0

G r; r0; xð Þ; (25)

• the bending moment,

MG r; r0; xð Þ ¼ Dh
@

@r0

þ �

r0

� �
@

@r0

G r; r0; xð Þ; (26)

• the shear force,

TG r;xð Þ ¼ Dh
@

@r0

@2

@r2
0

þ 1

r0

@

@r0

 !
G r; r0; xð Þ; (27)

and equivalently for the displacement w.

The result that emerges is

w r;xð Þ¼
ðð

S

G r;r0;xð Þps r0;xð Þdr0

�2b

ðp

0

fw b;xð ÞTG r;b;xð Þ�h b;xð ÞMG r;b;xð Þ

þMw b;xð ÞhG r;b;xð Þ�Tw b;xð ÞG r;b;xð Þgdh0

þ2a

ðp

0

fw a;xð ÞTG r;a;xð Þ�h a;xð ÞMG r;a;xð Þ

þMw a;xð ÞhG r;a;xð Þ�Tw a;xð ÞG r;a;xð Þgdh0:

(28)

Note that the first term on the right-hand side of Eq. (28)

represents any source term set in the domain between con-

centric circular lines of radii a and b. When the source term

is concentrated on the internal circular boundary layer of

radius a [Eqs. (9) and (10)], the last term on the right-hand

side of Eq. (28) can be substituted for the first term because

�2a

ðp

0

Tw a;xð ÞG r; a; xð Þdh0

¼
ð ð

S

G r; r0; xð Þps r0;xð Þdr0

¼ T
xð Þ

S G r; a; xð Þ: (29)
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The integral over the interval ð0; 2pÞ can be expressed using

the following results:10

2

ðp

0

J0 k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2

0 � 2rr0 cos h0

q� �
dh0

¼ 2pJ0 krð ÞJ0 kr0ð Þ; (30)

2

ðp

0

N0 k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2

0 � 2rr0 cos h0

q� �
dh0

¼ 2pJ0 krð ÞN0 kr0ð Þ; r < r0: (31)

Note that knowing that the latter functions are continuous,

the field can be obtained on the edge r1 ¼ r2 because it can

be calculated as close as one wants to the edge. Note also

that due to the axisymmetric properties of the posed prob-

lems emphasized by Eqs. (30) and (31), it is readily verifi-

able that the integrands are always spatially regular at the

boundaries (including the center of the plate). Then, they

can be evaluated in the standard sense.

It is noteworthy that by differentiating Eq. (28) with

respect to r and using Eqs. (25)–(27) and Eqs. (30) and (31),

we obtain a set of four integral equations for the displace-

ment wðr;xÞ, the rotation hðr; xÞ, bending moment

Mðr ; xÞ, and shear stress Tðr ; xÞ, which are needed to solve

the problem. These equations are valid for any point within

the domain, but to formulate the final solution, one must first

take the point to the boundary: this classical procedure gives

a set of algebraic equations satisfied by a set of unknown

parameters involving the values of w, h, M, and T on the

boundaries. As an example, for the annular plate, there are

eight algebraic equations (four at r ¼ a and four at r ¼ b)

which give the eight unknown parameters, namely, w, h, M,

and T at r ¼ a and at r ¼ b. Substituting these values into

Eq. (28) gives the sought solution for w and then for each

element of the state vector, W ¼ ðw; h; M; TÞT .

Taking into account both of the Green’s functions dis-

played above [Eqs. (5) and (6)] and Eqs. (30) and (31), the

set of integral equations just mentioned takes the following

form for an external normal force on the inner edge of the

plate denoted by Tw and when assuming, for example, free

outer edge, namely, assuming that Mðb ; xÞ and Tðb ; xÞ
vanish:

w r; xð Þ ¼ b h b;xð Þ ~MG r; b ; xð Þ � w b;xð Þ ~TG r; b ; xð Þ
	 

�a
	
h a;xð Þ ~MG r; a ; xð Þ

� w a;xð Þ ~TG r; a ; xð Þ þ Tw
~G r; a ; xð Þ



;

(32)

h r; xð Þ ¼ b h b;xð Þ ~M
0
G r; b ; xð Þ � w b;xð Þ ~T 0G r; b ; xð Þ

h i
�a
	
h a;xð Þ ~M

0
G r; a ; xð Þ

� w a;xð Þ ~T
0
G r; a ; xð Þ þ Tw

~G0 r; a ; xð Þ


;

(33)

and so on for Mðr;R ; xÞ and Tðr;R ; xÞ, where (0) denotes

the derivative with respect to r and with the notation

~U ¼ 2

ðp

0

U h0ð Þdh0: (34)

Taking into account the expressions (5) and (6) of Gðr; r0; xÞ
and the expressions (26) and (27) of MGðr; r0; xÞ and

TGðr; r0; xÞ, respectively, and using the well-known proper-

ties of the Bessel functions, one readily obtains

~MG r;R; xð Þ ¼ 2

ðp

0

MG r;R; xð Þdh0

¼ i
p
4

J0 krð ÞH 1ð Þ
0 kRð Þ þ J0 ikrð ÞH 1ð Þ

0 ikRð Þ
h i

� p
4k

1� �
R

h
iJ0 k rð ÞH 1ð Þ

1 k Rð Þ

þ J0 ikrð ÞH 1ð Þ
1 ikRð Þ

i
; (35)

~TG r;R;xð Þ¼ 2

ðp

0

TG r;R;xð Þdh0

¼p
4

k �iJ0 krð ÞH 1ð Þ
1 kRð Þþ J0 ikrð ÞH 1ð Þ

1 ikRð Þ
h i

;

(36)

and the expressions for their derivative with respect to r
follows directly in using the equation ð@=@rÞJ0ðkrÞ
¼ �kJ1ðkrÞ. Note that when solving the integral equation

for the displacement field w, the related variables h, M, and

T can be expressed from simply differentiating w with

respect to the spatial coordinate instead of using the deriva-

tives of the integral equation for w [Eq. (33) and others].

If one allows the radius a to shrink to zero, on one hand,

the limiting values lima!0a ~MGðr; a ; xÞ, lima!0a ~TGðr; a ; xÞ,
and those of their derivatives vanish, and on the other hand, one

can write lima!0aTw
~Gðr; a ; xÞ ¼ TSGðr; 0 ; xÞ, and in doing

so, Eqs. (32) and (33) yield to the integral equations for the cir-

cular plate,

w r; xð Þ ¼ T
xð Þ

S G r; 0 ; xð Þ þ b
	
h b;xð Þ ~MG r; b ; xð Þ

� w b;xð Þ ~TG r; b ; xð Þ


; (37)

h r; xð Þ ¼ T
xð Þ

S G0 r; 0 ; xð Þ þ b
	
h b;xð Þ ~M

0
G r; b ; xð Þ

� w b;xð Þ ~T 0G r; b ; xð Þ


: (38)

Therefore, following the procedure described above, we are

left with a set of two algebraic equations at r ¼ b, namely,

w b;xð Þ ¼ T
xð Þ

S G b;0 ;xð Þþ b
	
h b;xð Þ ~MG b;b ;xð Þ

�w b;xð Þ ~TG b;b ;xð Þ


; (39)

h b;xð Þ¼ T
xð Þ

S G0 b;0 ;xð Þþb
	
h b;xð Þ ~M

0
G b;b ;xð Þ

�w b;xð Þ ~T 0G b;b ;xð Þ


; (40)

whose solutions wðb;xÞ and hðb;xÞ give the unknown

parameters included in Eqs. (37) and (38), then to the sought

solution wðr; xÞ of the problem itself for any point r on the

surface of the circular plate.
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When considering the specific problem, frequently

encountered in small electroacoustic components (especially

Micro Electro Mechanical Systems components), where a uni-

form harmonic pressure source psðr;xÞ (independent of r)

acts on the whole surface of a circular plate,11 the previous

results hold, subject to writing

• the exact solution as the sum of the general solution of the

homogeneous equation associated to Eq. (1) and a particu-

lar solution of Eq. (1) itself,

w r;xð Þ ¼ AJ0 krð Þ þ B I0 krð Þ

þ C N0 krð Þ þ 2

p
K0 krð Þ

� �
þ ps

k4Dh
; (41)

• the surface integral in the expansion coefficients [Eq.

(19)], involved in the sum over the natural modes [Eq.

(16)], asð ð
S

wj rð Þps r;xð Þd r ¼ ps

ð ð
S

wj rð Þdr; (42)

• and the source term in the integral solution [Eq. (28)] as

ðð
S

G r;r0;xð Þps r0;xð Þdr0¼ps

ðð
S

G r;r0;xð Þdr0: (43)

This problem (among others) is not considered here.

IV. SOME RESULTS AND CONCLUSION

The values of the parameters of the plate chosen are the

following: radius, b ¼ 0:5 m; thickness, h ¼ 5 � 10�3 m;

Young modulus, E ¼ 7� 1010 Pa; Poisson’s ratio, � ¼ 0:33;

density, q ¼ 2700 kg=m3; and quality factor, Qj ¼ 500. The

results presented below start from the expressions of the solu-

tions for the point source obtained through the three methods

presented above, which are given by Eqs. (15), (17), (19), and

(37). First and foremost, it is convenient to verify that even if

these three expressions are very different from each other,

they lead to the same results because the solution of a well-

posed problem must be unique. Figure 2 (among others not

presented here) shows the mobility ixwðr;xÞ=T
ðxÞ
S , relating

the amplitude of the velocity ixwðr;xÞ at a field point, r, to a

time-harmonic force, T
ðxÞ
S ¼ 1 N, which is applied normally

to the structure at the driving point r ¼ 0 (logarithmic scale)

as a function of the frequency (up to 10 kHz) for the receiving

radius r ¼ 0: direct method and integral method (perfectly

overlapped thin solid curves) and modal method (dashed

curve, 31 modes, eigenfrequencies up to 50 kHz; dashed-

dotted curve, ten modes, eigenfrequencies up to 5 kHz). The

crosses show the values of the eigenfrequencies given in the

literature.2 The discrepancies, due to the numerical errors, are

almost negligible everywhere, except those between the modal

method and the other methods in the higher frequency range

as a result of the truncation of the modal sum: in the higher

frequency range, the limitation of the modal method appears

at frequencies near the eigenfrequency of the higher mode

considered.

The curves or map presented in Figs. 2–4 have been cal-

culated using the direct method and the integral method

(curves perfectly overlapped). Figure 3 shows the amplitude

of the velocity (logarithmic scale, T
ðxÞ
S ¼ 1, mobility) as a

function of the frequency (up to 10 kHz) for several values

of the coordinate r 2 ðO; b ¼ 0:5 mÞ of the receiving point

such that (a) r ¼ b, (b) r ¼ 3b=4, (c) r ¼ 3b=5, (d) r ¼ b=2,

(e) r ¼ 2b=5, and (f) r ¼ b=4 (see r ¼ 0 in Fig. 2). The dif-

ferences between the shapes of the curves appear clearly.

Nevertheless, each curve always exhibits the fundamental

resonances and antiresonances of the circular plate. The

gray scale plot presented in Fig. 4 represents the amplitude

of the velocity as function of the frequency (horizontal axis)

and the coordinate r 2 ðO; b ¼ 0:5 mÞ of the receiving point

(vertical axis): this map permits one to interpret clearly the

shapes shown in Fig. 3. For example, at the distance r
¼ 2b=5 [Fig. 3(e)], the resonance and antiresonance in the

vicinity of the frequency f ¼ 7 kHz, which are very close

FIG. 1. Circular homogeneous plate, showing surface S and contour

C (internal radius, rs ¼ a! 0; external radius, r ¼ b). Notations:

q ¼ jr� r0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2

0 � 2rr0 cos h0

p
.

FIG. 2. Amplitude of the velocity (logarithmic scale, with T
ðxÞ
S ¼ 1, mobility)

at the center of the plate as a function of the frequency (up to 10 kHz): direct

method and integral method (perfectly overlapped thin solid curves) and

modal method (dashed curve, 31 modes, eigenfrequencies up to 50 kHz;

dashed-dotted curve, 10 modes, eigenfrequencies up to 5 kHz).
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together, correspond in the map (Fig. 4) to the intersection

between a white and black trace.

In conclusion, the purpose of this paper is not to present

a parametric investigation of the solutions considered

(including the modal behavior) because it exists in the litera-

ture for each method separately (only numerically for the

third method). However, it presents an analytic investigation

into several methods that are potentially of use in mode-

matching problems involving the behavior of circular plates

excited with a harmonically varying source set at the center

of the plate. The comparison between the direct method, the

integral method, and the modal method is particularly sig-

nificant in that it justifies the use of this set of solutions as a

means of representing such problems. Actually, it shows

that the direct formulation and the integral formulation

incorporate the characteristic modal quantities which

involve eigenfunctions and eigenvalues for the circular

plate. This is all the more important from a pedagogical

point of view as other problems, such as the nonuniform

plate (r-dependent properties), cannot be solved by a modal

method because of the absence of orthogonal eigenmodes,

but it can be solved by the other methods (eventually

through a discretization of the profile). Moreover, it is worth

noting that the map displayed in Fig. 4 permits one to inter-

pret clearly the shape of the velocity of the plate as a func-

tion of the frequency and coordinate r.

FIG. 3. Amplitude of the velocity (log-

arithmic scale, T
ðxÞ
S ¼ 1, mobility) as a

function of the frequency (up to

10 kHz) for several values of the coor-

dinate r 2 ðO; b ¼ 0:5 mÞ of the

receiving point, where (a) r ¼ b, (b)

r ¼ 3b=4, (c) r ¼ 3b=5, (d) r ¼ b=2,

(e) r ¼ 2b=5, and (f) r ¼ b=4 (see r ¼
0 in Fig. 1).

FIG. 4. Amplitude of the velocity (for T
ðxÞ
S ¼ 1, mobility) as function of the

frequency (horizontal axis, up to 10 kHz) and the coordinate r of the receiv-

ing point [vertical axis, r 2 ðO; b ¼ 0:5 mÞ].
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Also notice that the methods presented here in the

frame of the vibrations of a circular homogeneous plate can

be applied to many other problems, including those involv-

ing the simple Laplacian in the equation of motion instead

of the bi-Laplacian involved here.

ACKNOWLEDGMENTS

The authors appreciate the financial support from the

French Ministry of National Education to L.L., without

which this work could not have been performed.

1M. C. Junger and D. Feit, Sound, Structures, and Their Interaction (MIT

Press, Cambridge, MA, 1986), pp. 210–212.
2A. W. Leissa, Vibration of Plates (Scientific and Technical Information

Division, National Aeronautics and Space Administration, Washington,

DC, 1969), pp. 10–13.

3K. F. Graff, Wave Motion in Elastics Solids (Dover, New York,

1991).
4P.-M. Morse and K. U. Ingard, Theoretical Acoustics (McGraw-Hill, New

York, 1968), pp. 214–215, 220.
5S. I. Hayek, Advanced Mathematical Method in Sciences and
Engineering, 2nd ed. (CRC Press, London, 2010).

6J.-L. Guyader, Vibrations in Continuous Media (ISTE, London,

2006).
7M. G�eradin and D. Rixen, Th�eorie Des Vibrations (Theory of
Vibrations) Masson, Paris, 1992).

8M. Amabili, A. Pasqualini, and G. Dalpiaz, “Natural frequencies and

modes of free-edge circular plates vibrating in vacuum or in contact with

liquids,” J. Sound Vib. 188(5), 685–699 (1995).
9J. A. Costa, Jr., “Plate vibrations using B.E.M.,” Appl. Math. Modell. 12,

78–84 (1988).
10I. S. Gradstein and I. M. Ryzhik, Table of Integrals Series and Products

(Academic, New York, 1965), Sec. 6.684.
11K. Simonova, P. Honzik, M. Bruneau, and P. Gatignol, “Modelling

approach for MEMS transducers with rectangular clamped plate loaded

by a thin fluid layer,” J. Sound Vib. 473, 115246 (2020).

3220 J. Acoust. Soc. Am. 153 (6), June 2023 Lagny et al.

https://doi.org/10.1121/10.0019635

 10 July 2023 13:58:10

https://doi.org/10.1006/jsvi.1995.0618
https://doi.org/10.1016/0307-904X(88)90026-1
https://doi.org/10.1016/j.jsv.2020.115246
https://doi.org/10.1121/10.0019635

