
An alternative Biot’s displacement formulation for porous
materials

Olivier Dazel,a� Bruno Brouard, Claude Depollier, and Stéphane Griffiths
Laboratoire d’Acoustique de l’Université du Maine - UMR CNRS 6613, Avenue Olivier Messiaen,
F-72 085 Le Mans Cedex France

�Received 3 August 2006; revised 29 March 2007; accepted 29 March 2007�

This paper proposes an alternative displacement formulation of Biot’s linear model for poroelastic
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decoupled terms. Hence, new equations of motion are obtained whose elastic forces are decoupled.
The simplification of the formalism is extended to Biot and Willis thought experiments, and simpler
expressions of the parameters of the three Biot waves are also provided. A rigorous derivation of
equivalent and limp models is then proposed. It is finally shown that, for the particular case of
sound-absorbing materials, additional simplifications of the formalism can be obtained. © 2007
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I. INTRODUCTION

The purpose of this paper is to propose an alternative
formulation of Biot’s theory1,2 which models the deformation
of a poroelastic solid saturated by a compressible fluid. Sev-
eral types of materials can be modeled with this theory, in-
cluding geomaterials and sound-absorbing materials. Even if
Biot’s theory is not able to model every type of porous ma-
terials �porous rocks…�, it has been confirmed both theoreti-
cally by homogenization techniques3,4 or volume averaging
methods5,6 and experimentally7,8 for a wide range of materi-
als. The application of Biot’s theory to sound-absorbing ma-
terials takes its origin in the beginning of the 80’s. The mod-
eling of the viscous and thermal properties of air saturating a
porous immobile solid �equivalent fluid� has been a wide
research topic and many models have been proposed.9–13

These models consist of introducing a complex density �re-
spectively, compressibility� of air depending on frequency to
take into account viscous �respectively, thermal� effects. Bi-
ot’s theory has been the subject of many scientific papers and
books11,14–16 to which the reader can refer for more details.

In the paper published in 1956,1 Biot represented the
homogenized medium with six fields which are the three
displacements of each homogenized phase �solid and fluid�.
This paper and formulation are called original in the follow-
ing. The theory was reformulated in order to model inhomo-
geneous media.2 This second formulation is referred to as the
modified formulation. More recently, Atalla et al. proposed a
mixed formulation of Biot’s equations17 whose generalized
coordinates are the solid displacement and the interstitial
pressure of the fluid. It exhibits four generalized coordinates
instead of six for the displacement formulations. Another in-
terest of this formulation is the introduction of an in vacuo
stress tensor of the solid phase, which exhibits some advan-
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tages compared to the partial stress tensor of the solid phase
used in the original formulation. Nevertheless, this formula-
tion exhibits some drawbacks �valid only for harmonic prob-
lems, energy-related interpretation…� which prevents its use
in the general case.

The Biot theory has nevertheless a main drawback
which is not in the range of physics but lies in the scope of
analytical or numerical methods to predict the response of a
porous material while submitted to a given loading. The ac-
tual formulations often induce heavy analytical formulas and
even discourage new analytical indicators. It is also well
known that numerical models based on Biot’s equations are
quite huge and need tremendous calculations even for simple
configurations. Given this context, it seems necessary to find
alternative solutions; it is then natural to focus on Biot’s
equations first as they are the starting point of all analytical
and numerical models.

In this paper, an alternative displacement formulation of
Biot’s model is proposed. Its advantage is to simplify the
equations of the model without making additional assump-
tions. This simplification is only valid for a linear behavior
of the material; in the case of nonlinearity, the present ap-
proach is not valid. Even if no new physical result is pro-
posed in this paper, its originality is the simplification of the
formalism. This simplification is available for both geomate-
rials and sound-absorbing materials. It is shown that for the
latter, additional interesting simplifications can also be ob-
tained.

Section II proposes an alternative choice of generalized
coordinates simplifying equations of motion in the case of a
nondissipative medium. Section III shows that classical Bi-
ot’s results are simplified with the new formulation. Section
IV focuses on the case of equivalent fluid and limp models.
Section V deals with the generalization of the former results
in formulations for dissipative porous material, and Sec. VI

is devoted to the case of sound-absorbing materials.
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II. ALTERNATIVE SET OF GENERALIZED
COORDINATES IN THE ABSENCE OF DISSIPATION

A. Strain energy and stress-strain relations

The Cartesian coordinates are denoted by �x1 ,x2 ,x3�.
The displacement of the homogenized solid �respectively,
fluid� phase is designated by the components ui

s �respectively,
ui

f� with i=1,2 ,3 or in a vector notation by us �respectively,
u f�. For all displacement fields, the derivative with respect to
space is expressed with the generic notation ui,j =�ui /�xj.
The deformation is �ij =

1
2 �ui,j +uj,i� and the dilatation of solid

and fluid phase are, respectively, e=ui,i
s and �=ui,i

f , with con-
vention for repeated indices. The deformation tensor is de-
noted by � in tensor form.

In the original paper,1 Biot proposed use of us and u f as
a set of generalized coordinates and the total stress tensor
was separated into two parts. The first and second parts are
the stress components acting on the solid and fluid phase,
respectively. The corresponding stress tensor is denoted by
�ij

s �respectively, �ij
f =��ij�, where �ij denotes the Kronecker

symbol. Hence, the fluid partial stress tensor is isotropic and
diagonal. The stress of the fluid part is represented by �; it is
linked to the porosity � and the fluid pressure pf by the
relation �=−�pf. In tensor form, the stresses are denoted by
a bold symbol �e.g., �s�.

In 1962 paper,2 Biot proposed to use us and w=��u f

−us� as generalized coordinates, where w is the flow of the
fluid relative to the solid measured in terms of volume per
unit area of the bulk medium. This new choice of generalized
coordinates induces a modification of conjugate variables
which are the total stress tensor �noted �ij� and the fluid
pressure pf.

The strain energy of a porous elastic solid saturated by a
fluid can be defined as the isothermal free energy of the
fluid-solid system. In �us ,u f� formulation, this energy W0

reads

W0 = A
e2

2
+ R

�2

2
+ 2N�ij

s �i,j
s + Qe� . �1�

A, R, N, and Q are the constitutive coefficients of the
homogenized porous medium.18 N is the shear modulus of
the skeleton. Q is a coupling coefficient between the dilata-
tion and stress of the two phases; R may be interpreted as the
bulk modulus of the air occupying a fraction � of a unit
volume of aggregate. The elastic coefficients A, Q, and R can
be obtained by the Biot and Willis experiments18 from Kb,
the bulk modulus of the skeleton in vacuo, from Ks, the bulk
modulus of the elastic solid from which the skeleton is made,
and from Kf, the bulk modulus of the fluid in the pores. A
and N are the Lamé coefficient of the solid partial stress
tensor. The expression18 of A shows a dependence on Kf.
Hence, this apparent solid parameter depends on the intersti-
tial fluid property.

In 1962 formulation, the strain energy is then written as

W1 = A�
e2

2
+ 2N�ij

s �i,j
s −

Q + R

�
e� +

R

�2

�2

2
, �2�

with A�=A+2Q+R and �=−� ·w. It can easily be checked

that W0 and W1 are equivalent. The stress-strain relations of
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the porous media are obtained from Helmholtz relations, and
for each formulation the two corresponding stress tensors
depend on both generalized coordinates. Biot wrote the ex-
pressions of W0 and W1 by way of the virtual work of surface
forces. An alternative way to obtain W1 is to substitute in �1�
the expression of � derived from the definition of w. The
expressions of W0 and W1 are not formally different as both
are the sum of three types of terms. The first type corre-
sponds to quadratic terms associated with the solid deforma-
tion, the second with quadratic terms related to the dilatation
of the considered second generalized coordinate, and the last
with coupling terms.

B. Strain decoupled formulation

This section is central in this paper. Its purpose is to
propose a strain decoupled formulation. Let u1 and u2 be an
adapted set of generalized coordinates. Without loss of gen-
erality, the following linear relations can be written:

us = au1 + bu2, u f = cu1 + du2. �3�

The strain energy W2 is written as

W2 =
e1

2

2
�Aa2 + Rc2 + 2Qac� +

e2
2

2
�Ab2 + Rd2 + 2Qbd�

+ e1e2�Aab + Rcd + Q�ad + bc�� + 2N�a2�ij
1 �ij

1

+ b2�ij
2 �ij

2 + 2ab�ij
1 �ij

2 � .

For the sake of simplicity it seems natural to avoid �ij
1 �ij

2

and �ij
2 �ij

2 terms. This implies that b=0 is an appropriate
choice. Hence, e1e2 term is avoided if c=−�Q /R�a and

W2 = a2Â
e1

2

2
+ d2R

e2
2

2
+ 2Na2�ij

1 �ij
1 , �4�

with Â= �A− �Q2 /R��. All choices of a and d are mathemati-
cally equivalent. The adequate choice is a=1, so that u1

=us and d=�−1 in order to limit the influence of porosity on
the model. The new generalized coordinates are now totally
determined and the strain decoupled formulation is called
�us ,uW�, with

uW = ��u f +
Q

R
us� , �5�

W2 = Â
e2

2
+ Keq

�2

2
+ 2N�ij

s �ij
s , � = � · uW, Keq =

R

�2 .

�6�

Keq corresponds to the compressibility of the equivalent fluid
model; it is now introduced in order to condensate the ex-
pression of the equations directly from now. The stress-strain
relations for �us ,uW� formulation read

�̂ij
s = 2N�ij

s + Âe�ij, pf = − Keq� . �7�

Unlike the solid partial stress tensor �ij
s , which is a func-

tion of both solid and fluid phase displacements, �̂ij
s only

depends on the motion of the solid phase; this tensor �̂ij
s is

called jacketed stress tensor of the solid phase by analogy to

Biot and Willis’ second experiment. This tensor was pro-

Dazel et al.: Variations on a Biot’s theme



posed by Atalla et al.17 and called in vacuo stress tensor.
Hence, the strain energy is the sum of two terms �and not
three as for W0 and W1�. The stresses appearing in �us ,uW�
formulation are the jacketed stresses of the solid phase and
the pressure. A first remark is that each stress is associated
with its corresponding displacement then avoiding coupling
terms. A second remark is that the pressure pf can be ex-
pressed as the divergence of only uW in �7�. In the case of a
motionless solid, one has uW=�u f. Hence, uW corresponds
to the average of the microscopic fluid displacement on the
total volume of the porous medium.

It is also interesting to express the total stress tensor of
the porous medium which defines an interesting coefficient,

�ij = �̂ij − ��pf, �� = ��1 +
Q

R
� . �8�

Hence, it is important to notice that �̂ corresponds to the
effective stress tensor �� defined by Biot in a 1962 paper if
and only if ��=1. This coefficient plays a central role in the
following and in particular for the expression of kinetic en-
ergies which is now considered.

C. Kinetic energy and equations of motion

The preceding subsection was only concerned with
strain energies. In order to obtain the equations of motion, it
is necessary to also express the kinetic energies. Biot’s defi-
nitions of densities are

	1 = �1 − ��	m, 	2 = �	 f, 	12 = − �	 f�
� − 1� , �9a�

	11 = 	1 − 	12, 	22 = 	2 − 	12, 	eq =
	22

�2 . �9b�

	m is the density of the matter constituting the solid phase
and 	 f is the density of the fluid saturating the pores. 	12 is an
inertial coupling coefficient linked to the geometric tortuos-
ity 
�. 	eq corresponds to the density of the equivalent fluid
model and, analogously to Keq, is now defined in order to
simplify the expressions.

The equations of motion in �us ,uW� formulation are now
obtained. The first step consists of substituting in T the ex-
pression of u f as a linear combination of us and uW. One has

T2 =
	s

2
u̇s2

+
	eq

2
u̇W2

+ 	eq�u̇su̇W, �10�

with

� = ��	12

	22
−

Q

R
�, 	s = 	1 + 	2�Q

R
�2

− 	12
��2

�2 . �11�

The equations of motion in the �us ,uW� formulation read

� · �̂�us� = 	sü
s + 	eq�üW, �12a�

Keq�� = 	eq�üs + 	eqü
W. �12b�

These equations are equivalent to those proposed by
Biot. Unlike the original ones, there is no stress coupling
terms in them, and each stress tensor is a function of only the

corresponding displacement. The symmetry is also preserved
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for inertial terms. It is shown in the following sections that
the classical results of Biot’s theory can easily be retrieved
from the present formulation with the advantage of simpler
expressions.

III. ADAPTATION OF CLASSICAL BIOT’S RESULTS

A. Biot and Willis experiments

Biot and Willis18 presented three thought experiments
which provide expressions for the elastic coefficient appear-
ing in Biot’s original model: A, N Q, and R. In the case of the
strain decoupled formulation it is shown that the thought
experiments provide the three elastic coefficients for the

model Â, N, and Keq and an expression of ��. Biot and Willis
experiments assume quasistatic deformation. In a recent con-
tribution, Lafarge16 shows that this assumption is not restric-
tive and that these experiments can be extended to harmonic
excitations.

The first thought experiment is a measure of the shear
modulus N of the material and consequently the shear modu-
lus of the frame, since the fluid does not contribute to the
shear force.

In the second thought experiment �called jacketed ex-
periment�, the material is surrounded by a flexible jacket that
is subjected to a pressure pjac. The fluid inside the jacket
remains at the ambient pressure. It follows that pf =0 and
�̂ij =−pjac. The deformation of the solid phase is denoted by
ejac. The stress-strain relation �7� implies that

− pjac = �Â +
2N

3
�ejac. �13�

This last relation must be linked to the definition of the bulk
modulus Kb of the frame at constant pressure in the air Kb

=−�pjac /ejac�, and one obtains

Â = Kb −
2N

3
. �14�

The last thought experiment is called an unjacketed ex-
periment and provides two additional equations. The material
is subjected to an increase of pressure pu in the fluid inducing
a total stress equal to �ij =−pu�ij. The divergence of the us

�respectively, u f and uW� is called eu �respectively, �u and
�u�. Concerning this experiment, Biot introduced two coeffi-
cients,

Kf = −
pu

�u
, Ks = −

pu

eu
. �15�

The stress-strain relations �7� and �8� are now expressed

− pu = Kbeu − ��pu, Keq = −
pu

�u
. �16�

The first equation of �16� enables an expression of �� as a
function of Ks and Kb,

�� = 1 −
Kb

Ks
. �17�

This last result is linked to the second equation of �16�

and the expression for Keq is provided,
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Keq =
Kf

� + �1 − ��
Kf

Ks
−

KbKf

Ks
2

. �18�

Biot and Willis results for A, N, Q, and R can rigorously

be obtained from the expressions of Â, N, ��, and Keq. Nev-
ertheless, the expressions of the latter are simpler. In particu-

lar, it is interesting to notice that Â does not depend on Kf,
unlike the constitutive coefficient A of Biot’s original formu-
lation.

A second and fundamental remark is that �� is indepen-
dent of the compressibility of the fluid through �17�, and it is
possible to express uW as

�19�

ut is called the total displacement of the porous material.
It is shown here that uW is independent of porosity. It is the
a posteriori justification of the particular choice d=�−1 con-
sidered in the preceding section.

B. Wave numbers of the Biot’s waves

This section deals with the rewriting of the wave num-
bers of the three Biot’s waves. The methodology is the same
that the one proposed in Ref. 11. The two compressional
waves are first studied. Two scalar potentials �s and �W are
defined for the compressional waves. Hence, equations of
motion of the strain decoupled formulation �12� are written
as

− 
2���	 �s

�W
 = �K��2	 �s

�W
 , �20�

where ��� and �K� are, respectively,

��� = � 	s 	eq�

	eq� 	eq
�, �K� = �P̂ 0

0 Keq
� , �21�

with P̂= Â+2N. Let �1
2 and �2

2 be the eigenvalues of the prob-
lem associated with matrices ��� and �K�. An elementary
algebraic calculation gives

�i
2 =

��s2
2 + �eq

2 � ± 
��s2
2 + �eq

2 �2 − 4�eq
2 �s1

2

2
, �22�

with

�eq = 

 	eq

Keq
, �s1 = 

 	

P̂
, �s2 = 

	s

P̂
,

	 = 	s − �2	eq. �23�

These expressions are equivalent to the classical expressions
of these two wave numbers which can be found in Ref. 11. It
is quite evident that the proposed expressions are more con-
densed than the classical ones. The main reason is that defi-
nitions �22� are expressed only through the three intrinsic
wave numbers defined in �23�. This analytical simplification

19
was used particularly by Dazel and Pilon in order to define
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new types of decoupling criteria between the two compres-
sional waves.

The following symmetric relations exist between the
wave numbers:

�1
2�2

2 = �s1
2 �eq

2 , �1
2 + �2

2 = �s2
2 + �eq

2 . �24�

�eq is the wave number of the equivalent fluid model i.e.,
when the solid phase is immobile; more details will be found
in Sec. IV. Symmetrically to the equivalent fluid model
which assumes that us=0, an equivalent solid model can be
considered, for which it is postulated that uW=0. In this
model only one compressional wave propagates whose wave
number is �s2. Even if there is a perfect mathematical sym-
metry between these two cases, the first one is physically
realistic �and has been often used in the past� while the sec-
ond is not. �s1 is the wave number of the wave propagating
in the solid if the porous medium is in vacuum �and not
saturated by air�.

The eigenvectors are determined by the ratio �i
W of the

uW component on the us one. Two possible and equivalent
expressions for this ratio are

�i
W = �

��i
2 − �s2

2 �
�s2

2 − �s1
2 = �

�eq
2

�i
2 − �eq

2 . �25�

As symmetric relations �24� were obtained for the wave
numbers, orthogonality relations can be obtained on �i

W,

P̂ + Keq�1
W�2

W = 0, �26a�

	s + 	eq���1
W + �2

W� + 	eq�1
W�2

W = 0. �26b�

It is also interesting to introduce the following ratios:

�i� =
�i

W

�i
W − � j

W =
� j

2 − �eq
2

� j
2 − �i

2 , with �i, j� � �1,2� . �27�

The shear wave is now considered by using a vector
potential,

us = � ∧ � so uW = �3
W� ∧ � . �28�

Substituting these expressions in the motion Eqs. �12�, one
obtains

�3 = 

 	

N
and �3

W = − � . �29�

IV. EQUIVALENT FLUID AND LIMP MODELS

The equivalent fluid model corresponds to a motionless
solid phase �us=0�. Equation �12b� becomes

Keq�
2uW = 	eqü

W. �30�

It is straightforward to find that the wave number of the
equivalent fluid model is �eq. The characteristic impedance
of the equivalent fluid in the strain decoupled formulation is
defined as

Zeq =
pf

W = 
	eqKeq. �31�

�v �
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Let us now consider the limp model which also exhibits
one compressional wave. Unlike the equivalent fluid model,
the solid is not motionless and this model takes into account
the inertia of the fluid phase. It is associated with materials
whose rigidity is negligible �light mineral wools, cotton…�.
The jacketed strain energy of the solid phase is negligible
compared to those of the other mechanisms of the propaga-

tion so that Â�0�N. Hence, the compressional term � · �̂
can be neglected in �12a�, which gives a relation between üs

and üW,

	sü
s = − 	eq�üW. �32�

This relation is now inserted in �12b� and a propagation
equation on uW is obtained as

Keq�� = 	eq�1 −
	eq�

2

	s
�üW. �33�

The limp model is a one-compression wave model whose
difference with the equivalent fluid is the definition of the
density,

	limp = 	eq��s1

�s2
�2

. �34�

The wave number of the limp model can now be ex-
pressed as a function of the three intrinsic wave numbers
�23� of the porous medium,

�limp = 

	limp

Keq
= �eq

�s1

�s2
. �35�

The characteristic impedance of the limp model is

Zlimp =
pf

�vW�
= 
	limpKeq. �36�

Two one-compressional wave models were presented in this
section. It has been shown that the �us ,uW� formulation is
well fitted to these two types of model.

V. STRAIN DECOUPLED FORMULATION WITH
DISSIPATION

This section deals with the introduction of dissipative
effects in the formulation. It is shown that the symmetry of
Eq. �12� is preserved even if dissipation is considered. The
dissipation is taken into account for harmonic excitation by
modifying the constitutive and inertial coefficients of the
model.

Viscous dissipation was introduced by Biot in 1956,1

with the assumption that the flow of the fluid relative to the
solid through the pores is of Poiseuille type. In order to in-
tegrate this dissipation in the Lagrangian formulation, a dis-
sipation function D was defined as a homogeneous quadratic
form with the six generalized velocities. This function is first
rewritten in term of the generalized coordinates of our pro-

posed approach,
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D =
��2G

2
�u̇ f − u̇s�2 =

�G

2
�u̇W − ��u̇s�2, �37�

where � is the flow resistivity of the porous sample and G is
a nondimensional correction function. This function is useful
to represent the variation of apparent viscosity versus fre-
quency. This function is first assumed to be a constant, and
its dependence versus frequency is considered at the end of
this section. The Euler Lagrange equations read

� · �̂�us� = 	sü
s + 	eq�üW + �G���2u̇s − ��u̇W� , �38a�

Keq�� = 	eq�üs + 	eqü
W + �G�u̇W − ��u̇s� . �38b�

The right-hand sides of these two equations are rewritten by
using �11�, and one obtains

� · �̂�us� = �	1 + 	2�Q

R
�2�üs +

	2�� − ���
�2 üW

−
��2

�2 V�us� +
��

�2V�uW� , �39a�

Keq�� =
	2

�2 �� − ���üs +
	2

�2 üW +
��

�2V�us� −
1

�2V�uW� ,

�39b�

with the time differential operator V defined by the func-
tional relation,

V�u� = 	12ü − �2�Gu̇ . �40�

The function G is actually frequency dependent.9–13 In
the case of harmonic excitation at circular frequency 
, the
complex notation is used �ej
t dependence�. One obtains

V�u� = − 
2	̃12u, 	̃12 = 	12 −
�2�G�
�

j

. �41�

It is then possible to define the complex dissipative exten-
sions of the coefficients introduced in the preceding sections,

	̃22 = 	2 − 	̃12, 	̃11 = 	1 − 	̃12, 
̃ =
	̃22

	2
, �̃ =

�


̃
− ��.

�42�

The frequency equations associated with the viscous dis-
sipating problem are

� · �̂�us� = − 
2	̃su
s − 
2	̃eq�̃uW, �43a�

Keq�� = − 
2	̃eq�̃us − 
2	̃equ
W. �43b�

Various models of viscosity of air saturating an immo-
bile porous solid �i.e., of G�
�� have been proposed in the
past9,10 which can be used for this formulation without re-
striction. Even if Eqs. �43a� is expressed for harmonic mo-
tions, it can be noticed that it directly corresponds to �12�
with the time-independent coefficients replaced by
frequency-dependent ones.

The structural dissipation in the skeleton is taken into
account by modifying the elastic coefficients of the jacketed

stress tensor. As a temporal dependence is assumed, complex
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frequency-dependent extensions K˜s, K˜b, and N˜ can be used in
the experiments instead of the constant and real parameters
used in Sec. III A. Hence, frequency-dependent coefficients

for Â and N can be used in order to take into account the
structural dissipation. This exhibits an advantage of the use
of this tensor instead of the partial stress tensor of the solid
phase whose parameters depends on both structural and ther-
mal dissipation.

The thermal effects are taken in account by modifying
Kf, which is now

K˜f =
Ka

��
�
, �44�

with Ka the adiabatic compressibility coefficient of air and
��
� the thermal dynamic susceptibility. This modification
acts only on Keq. Like the viscous function G, various mod-
els have been proposed in order to explicit this function; the
reader can refer to these models11,13 which can be used for
�us ,uW� formulation without restriction.

VI. ADVANTAGE OF ˆus ,uW
‰ FORMULATION

FOR SOUND-ABSORBING MATERIALS

This section is devoted to porous materials with a very
stiff skeleton. Usual sound-absorbing materials are in this
category. This assumption induces additional simplifications
which are now detailed.

A. Introduction of the total displacement

The high stiffness of the solid matter means that

�K˜b

K˜s

�� 1, �K˜f

K˜s

�� 1. �45�

This assumption implies simplifications in both expressions
of �� �17� and uW �19�,

�� � 1, uW � ut. �46�

Hence, uW corresponds to the total displacement. This is an
interesting result: first, it gives a direct physical interpreta-
tion of uW and second, it greatly simplifies the continuity
relations. In the following part of the paper, and in order to
indicate that the approximation �45� is considered, all the W
superscripts are replaced by t superscripts denoting the total
displacement.

It is also possible to simplify R˜ and K˜eq in �18�,

R˜ = �K˜f, K˜eq =
K˜f

�
. �47�

The continuity relations are now considered. The normal
of the interface between the porous medium and the other
media is noted n and any tangential vector to the connecting
surface is noted t.

The coupling with an elastic medium �superscript e� in-
volves

ue · n = ut · n, ue · t = us · t , �48a�

e ˆ s e ˆ s
� · n = �� · n − pfn�, � · t = � · t . �48b�
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Concerning the interface with a fluid �superscript a� me-
dium, the continuity relations are

ua · n = ut · n , �48c�

pa = pf, �̂s · n = 0 . �48d�

The new formulation is also interesting for the interface be-
tween two porous media,

u1
s = u2

s , u1
t · n = u2

t · n .

pf ,1 = pf ,2, �̂1
s = �̂2

s . �48e�

It can be seen from �48� that the use of us and ut as general
coordinates is well adapted to describe the continuity rela-
tions between two porous media. This simplification con-
cerns both displacements and associated stresses.

B. Surface impedance of a porous material

This section is devoted to a new expression of the nor-
mal incidence surface impedance of a porous layer bonded
on a rigid impervious wall. This example is inspired by an
application presented in Ref. 11 �Sec. 6.6, p. 138�. With the
proposed formulation, the simplification of the boundary
conditions allows a simplification of the final expression of
the impedance.

At the surface of the porous material, three continuity
conditions �48� need to be written. The first �respectively,
second� one is the continuity of the pressure �respectively,
total displacement�. The last one is the nullity of the jacketed
normal stress. The proposed set of fields is naturally adapted
to these boundary conditions, while the classical �us ,u f� im-
plies mixture laws to obtain the total stress tensor of the
porous and the total normal displacement. Hence, a determi-
nant is obtained and the final expression of the impedance
reads

Z =
K˜eq

j

�

1

�2�

�2
tan��2l� +

�1�

�1
tan��1 l�

, �49�

with �i� defined in Eq. �27�. This expression is simpler and
equivalent to the classical one provided in Ref. 11. The Ap-
pendix presents alternative and simpler expressions for the
reflection and transmission coefficient. A numerical example
is provided in Fig. 1, where expression �49� of the normal
incidence surface impedance is compared with the result pro-
vided by an industrial software MAINE 3A©,20 developed by
CTTM �based on transfer matrix method methodology for
porous material.21� The application case is based on the ex-
ample of Ref. 11. The parameters of the considered porous
material are given in table 6.1 of the previous reference and
the thickness of the porous layer is 5.6 cm. Figure 1 shows
the perfect agreement between the original and the proposed
approach.

VII. CONCLUSION

A new displacement formulation of Biot’s linear equa-

tions of poroelasticity has been proposed in this paper. It
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allows for a simpler expression of the different parameters of
Biot’s model. It is based on a choice of generalized coordi-
nates which allows a decoupling of the strain energy of the
porous medium. It is then possible to avoid the stress cou-
pling terms in the equations of motion. The two correspond-
ing generalized coordinates are the solid displacement and
the apparent displacement for the pressure of the fluid phase
taking into account the motion of the solid phase. They are
associated with conjugated stresses which are the jacketed
stress tensor of the solid phase and the pressure. It has also
been shown that the classical Biot’s results are naturally
transposed to this formulation. The expressions of the con-
stitutive coefficients, wave numbers, are equivalent and sim-
pler in the case of the proposed approach. This formulation is

FIG. 1. Normalized surface impedance; comparison between the analytical
proposed approach ��� and the numerical Maine 3A solution �continuous�.
also well fitted to the definition of equivalent fluid and limp
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model. It has been shown that the dissipation can be intro-
duced without losing the symmetry of the problem, and the
different mechanisms of dissipation can be taken into ac-
count separately. Additional simplifications were also ob-
tained for sound-absorbing materials. Classical acoustic indi-
cators as surface impedance, transmission, and reflection
coefficients �both presented in the Appendix� have then been
rewritten in a simpler form, and the expressions have been
validated by a comparison to a transfer matrix method code.

The introduction of this formulation is a first step to-
wards the simplification of numerical methods for poroelas-
tic materials. It has been seen that for analytical results, the
use of such a formulation presents great advantages com-
pared to the classical ones. A detailed study of the discreti-
zation of these formulation is a natural perspective of this
work. Another perspective of this work is the extension of
the formalism to the case of inhomogeneous porous materi-
als.
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APPENDIX: REFLECTION AND TRANSMISSION
COEFFICIENTS

In this Appendix are presented two simplified expres-
sions of the reflection and transmission coefficient of a po-
rous media of thickness l. The considered porous media is
laterally infinite and is exited by a normal incidence plane
wave. The transmission �respectively, reflection� coefficient
is defined as the ratio of the transmitted �respectively, re-
flected� pressure over the incident one as presented in Ref.
22.
The expressions of these coefficients read
T =
− 2i���2��1��1 + �1��2��2�

�1�2��1��2��
2 +

�1�
2�2�

2 + �2�
2�1�

2

�1��2�
� + 2�1��2��1 − �2�1� − 2i���1��2��1�2 + �2��1��2�1�

, �A1�

R =

�1�2��1��2��
2 −

�1�
2�2�

2 + �2�
2�1�

2

�1��2�
� − 2�1��2��1 − �1�2�

�1�2��1��2��
2 +

�1�
2�2�

2 + �2�
2�1�

2

�1��2�
� + 2�1��2��1 − �2�1� − 2i���

�
1�2��1�2 + �2��1��2�1�

, �A2�

with the following notations: �=K˜eq/K0, �i�=�i /�0, and �i=cos��il�, �i=sin��il�. The proposed expressions, available on the
overall spectrum, of the reflection and transmission coefficients have been compared to the high-frequency expressions given
by Fellah et al.22 in order to point out the simplifications induced by our proposed formalism.
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