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Wave propagation in macroscopically inhomogeneous porous materials has received much

attention in recent years. For planar configurations, the wave equation, derived from the alternative

formulation of Biot’s theory of 1962, was reduced and solved recently: first in the case of

rigid frame inhomogeneous porous materials and then in the case of inhomogeneous poroelastic

materials in the framework of Biot’s theory. This paper focuses on the solution of the full wave

equation in cylindrical coordinates for poroelastic tubes in which the acoustic and elastic properties

of the poroelastic tube vary in the radial direction. The reflection coefficient is obtained numerically

using the state vector (or the so-called Stroh) formalism and Peano series. This coefficient can then

be used to straightforwardly calculate the scattered field. To validate the method of resolution,

results obtained by the present method are compared to those calculated by the classical transfer

matrix method in the case of a two-layer poroelastic tube. As an example, a long bone excited in the

sagittal plane is considered. Finally, a discussion is given of ultrasonic time domain scattered field

for various inhomogeneity profiles, which could lead to the prospect of long bone characterization.

[http://dx.doi.org/10.1121/1.4725763]
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I. INTRODUCTION

Propagation of acoustic waves in macroscopically inho-

mogeneous porous materials has received much attention in

the last few years. It was initially motivated by (i) the design

of sound absorbing porous materials with optimal material

and geometrical property profiles1 and (ii) the retrieval of

the spatially varying material parameters of porous materi-

als, mainly industrial foams.2 These, and other inverse prob-

lems, are of great importance in connection with the

characterization of the mechanical properties of naturally

occurring macroscopically inhomogeneous porous materials

such as bones or rocks. The wave equation in macroscopi-

cally inhomogeneous porous media was derived from the al-

ternative formulation of Biot’s theory3 in De Ryck et al.4

and solved in the case of rigid frame inhomogeneous porous

materials via the Wave Splitting method and “transmission”

Green’s functions approach or via an iterative Born approxi-

mation procedure based on the specific Green’s function of

the configuration.5 The recovery of several profiles of spa-

tially varying material parameters by means of an optimiza-

tion approach, was then achieved in Ref. 2 still in the rigid

frame approximation. Recently, the full wave equation in

macroscopically inhomogeneous poroelastic media was

solved in a planar configuration, by use of the state vector

formalism together with a Peano series.6

The present article focuses on circular cylindrical

shaped configurations that can be encountered in sonic crys-

tals or array of circular scatterers,7 geophysics for the inter-

pretation of borehole logs,8 composites,9 or appendicular

human bones. An example is proposed on appendicular

human bones, but the developed formulation is general and

can be adapted in the contexts of geophysics or sonic crys-

tals. Effectively, being saturated by a heavy fluid, appendicu-

lar bone application is suitable to clearly emphasis the

skeleton effect, which is obviously important in this context.

To solve the full wave equation in macroscopically in-

homogeneous poroelastic media in cylindrical coordinates,

the state vector formalism together with Peano series are

employed. The latter methods have been largely used and

developed for surface waves or propagation of acoustic

waves in inhomogeneous anisotropic elastic plates10 or in

radially inhomogeneous anisotropic elastic cylinders.11 In

this article, radially inhomogeneous bone-like tubes are con-

sidered. Problems encountered with such methods in cases

of full radially inhomogeneous circular cylinders related to

the intrinsic singularity at the central point are not consid-

ered and also avoided.12

Bone is a live tissue, which is constantly resorbed and

formed during the remodeling process. There exist two

forms of bone: cortical (or compact) and cancellous (or
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trabecular or spongy). Cortical bone predominates in the

appendicular portion and cancellous bone in the axial por-

tion, notably the spine. Cortical bone occupies the exterior

portion of the long bones, and is arranged as bundles of

osteons packed tightly together to resist bending forces. The

porosity of cortical bones varies from 0.1 to 0.5. A three-

dimensional cortical bone is usually modeled as an

anisotropic (transversally isotropic) elastic material.13–15

Nevertheless, when excited by an acoustic wave that strikes

the long bone perpendicular to its axis, a two-dimensional

approximation can be made in the sagittal plane: the cortical

bone can be modeled by an isotropic elastic material or a

poroelastic material. Cancellous bone is lighter and more po-

rous (porosity from 0.6 up to 0.9) and structured to resist

compressive forces. Cancellous bone occupies the inner por-

tion of long bones. By cutting a long bone in transverse man-

ner, one can distinguish, from the center towards the

periphery: the marrow within the medullary cavity, the

spongy bone, and the cortical bone. Recently, ultrasonic

bone characterization16,17 of spongy bones has received

much attention in order to develop comprehensive theoreti-

cal models, which will be helpful in solving the inverse

problem, i.e., in extracting structural and mechanical proper-

ties of the bone from ultrasonic measurements. Bone param-

eters determined in Ref. 17 will be used in the following.

The bone will be modeled as a macroscopically inhomoge-

neous poroelastic tube of circular cross-section, saturated

with water. The macroscopically inhomogeneous poroelastic

material is assumed isotropic and the inhomogeneity is ra-

dial. The incident wave strikes the tube perpendicularly to

the tube axis. The marrow and surrounding flesh are also

modeled as water. The marrow viscosity is higher than that

of water, but it is often assumed to be the same.14,15

First, the constitutive linear stress-strain relations and

the momentum conservation law in the absence of body

forces are recalled for an inhomogeneous poroelastic mate-

rial. These equations are then solved for a radially macro-

scopically inhomogeneous poroelastic tube via the state

vector formalism or the so-called Stroh formalism18 together

with Peano series.19,20 Numerical results obtained with this

method are compared to calculations of the classical transfer

matrix method for a known two-layer porous tube considered

as a single inhomogeneous tube. Finally, simple applications

for the diagnosis of osteoporosis are proposed, by comparing

the time domain diffracted fields by circular cylindrical tube

with various radially inhomogeneity profiles that are either

continuous or discontinuous. In particular, the numerical

results exhibit some differences in these time domain

responses from one configuration to another that could be

interpreted and used to characterize bones.

II. EQUATIONS OF MACROSCOPICALLY
INHOMOGENEOUS POROUS MATERIALS

As pointed out by several authors,3,21,22 the generalized

formulation of the Biot theory3 is suitable for modeling sound

propagation in macroscopically inhomogeneous porous media

and also to account for anisotropic and viscoelastic frames.

Recently, another formulation was proposed in Ref. 23 that is

also suitable to macroscopically inhomogeneous porous

media. This article focuses on the alternative Biot formula-

tion, which is largely employed in acoustics and geophysics.

Rather than dealing directly with the arbitrary field

�sðx; tÞ [with x ¼ ðr; hÞ], we prefer to deal with the sðx;xÞ,
related to �sðx; tÞ by the Fourier transform �sðx; tÞ
¼
Ð1
�1 sðx;xÞeixtdx, wherein x ¼ 2p� is the angular fre-

quency, with � the frequency. Henceforth, we drop the x in

sðx;xÞ so that it is written sðxÞ.
The stress-strain relations in an initially stress-free, stat-

istically isotropic poroelastic material take the form

rij ¼ 2leij þ ðkch� aMfÞdij;

p ¼ Mðf� ahÞ;

�
(1)

where dij denotes the Kronecker symbol. The components of

the total stress tensor are rij, the fluid pressure in the pores

is p, and the components of the strain tensor are

eij ¼ 1=2ðui;j þ uj;iÞ, with the solid displacement u, h ¼ ui;i,

and f ¼ �wi;i with the fluid/solid relative displacement

w ¼ /ðU� uÞ (U being the fluid displacement and / the

porosity). The Einstein summation notation is implicit in the

expressions of h and f. The material properties are the bulk

modulus of the closed porosity system, i.e., in which the

pore volume is sealed, kc ¼ kb þ a2M, the Lamé coefficients

of the porous skeleton kb and l, an additional elastic para-

meter M, and an elastic coupling coefficient a.24

These mechanical coefficients are related to the P, Q,

and R coefficients more commonly used in acoustics25,26

through

a ¼ /ðQþ RÞ=R; M ¼ R=/2;

kc ¼ P� Q2=R� 2lþ a2M: (2)

The expressions of P, Q, and R are25

P ¼ 4l=3þ
ð1� /Þð1� /� Kb=KsÞKs þ /KbKs= ~K

f

1� /� Kb=Ks þ /Ks= ~K
f

;

Q ¼ ð1� /� Kb=KsÞ/Ks

1� /� Kb=Ks þ /Ks= ~K
f

;

R ¼ /2Ks

1� /� Kb=Ks þ /Ks= ~K
f

; ð3Þ

where the bulk modulus of the skeleton is

Kb ¼ Eb=3ð1� 2�bÞ, the bulk modulus of the elastic frame

is Ks ¼ Es=3ð1� 2�sÞ, the shear modulus of the skeleton is

l ¼ Eb=2ð1þ �bÞ, with �b and �s the Poisson coefficients,

respectively, of the skeleton and of the elastic frame, Eb and

Es the Young moduli, respectively, of the skeleton and of the

elastic frame, and

~Kf ¼
Kf

c� ðc� 1Þ 1þ i
x0c

Prx
GðPrxÞ

� ��1
;

(4)

where Kf and qf are the bulk modulus and density of the sat-

urating fluid, c is the specific heat ratio, Pr is the Prandtl
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number, and x0c ¼ R0t/=qf s1 with s1 the tortuosity and R0t
the “thermal resistivity.” The correction function GðPrxÞ,
introduced in Ref. 27 to account for the thermal losses, is

GðPrxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� igqf Prx

2s1
R0t/K0

� �2
s

; (5)

with g the viscosity of the saturating fluid and K0 the thermal

characteristic length. The “thermal resistivity” is related to

the thermal characteristic length27 through R0t ¼ 8s1g=/K02.

The thermal losses are usually neglected in water because

the thermal diffusivity is ten times lower than the kinematic

viscosity. Here, we nevertheless account for them and fix

K0 ¼ 2K, where K is the viscous characteristic length. Ther-

mal losses were considered relevant for modeling ultrasonic

response of bones by some authors.28,29

In the absence of body forces, the conservation of mo-

mentum and the generalized Darcy’s law lead to the follow-

ing equations:

x2qf wþ x2qu ¼ �r � r;
x2qf uþ x2~qeqw ¼ rp;

�
(6)

where q is the bulk density of the porous medium, such that

q ¼ ð1� /Þqs þ /qf , in which qs is the density of the solid

frame, and ~qeq is a mass parameter3,30

~qeq ¼
qf s1

/
1þ i

xc

x
FðxÞ

� �
; (7)

where xc ¼ Rf /=qf s1 is the Biot frequency with Rf the

flow resistivity. The correction function FðxÞ (Ref. 30) is

given by

FðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� igqf x

2s1
Rf /K

� �2
s

: (8)

The mass parameter ~qeq is the complex frequency dependent

equivalent density used in the rigid frame approximation,

while the complex frequency dependent equivalent bulk

modulus ~Keq used in this approximation is related to ~Kf

through ~Kf ¼ / ~Keq.

In the previous equations, l, Eb, Es, �b, �s, kc, a, M, /,

s1, K0, K, R0t, Rf are x dependent.

III. NUMERICAL EVALUATION OF THE SCATTERED
PRESSURE FIELD

A. Description of the configuration

Both the incident plane acoustic wave and the tube are

assumed to be invariant with respect to the x3-coordinate,

i.e., the tube axis. A cross-sectional x1 � x2 plane view of

the 2D scattering problem is shown in Fig. 1.

The external and internal circular boundaries of the tube,

whose radial coordinates are rext and rint, are designated by

Cext and Cint. The porous material M½1� occupies the domain

X½1�. The inhomogeneity occurs along the r direction, i.e., l,

Eb, Es, �b, �s, kc, a, M, /, s1, K0, K, R0t, Rf are r dependent.

Isotropic macroscopically inhomogeneous porous materials

are considered. The material can be viewed either as function-

ally graded material or as a multilayer when the properties are

piecewise constants. The ambient and saturating fluid is water

[the density qf ¼998kg m�3, the bulk modulus Kf ¼ð1480Þ2
�qf Pa, the viscosity g¼ð1:0�10�6Þ�qf kg m�1 s�1, and

Prandtl number Pr¼6;6].

We denote the total pressure, wavenumber, and wave

speed by the generic symbols p, k, and c, respectively, with

p ¼ p½j�, k ¼ k½j� ¼ x=c½j� in X½j�, j ¼ 0; 2.

The wavevector ki of the incident plane wave lies in the

sagittal plane and the angle of incidence is hi measured

counterclockwise from the positive x1 axis. The incident

wave propagates in X½0� and is expressed by piðxÞ
¼ Ai

P
n2Z ð�iÞnJnðk½0�rÞeinðh�hiÞ, wherein Jn is the nth order

Bessel function and Ai ¼ AiðxÞ is the signal spectrum.

The uniqueness of the solution to the forward-scattering

problem is ensured by the radiation condition

p½0�ðxÞ � piðxÞ � eik½0� �x=
ffiffiffiffiffiffi
jxj

p
; jxj ! 1: (9)

B. The state vector formalism

We first introduce the Hankel like transform bsðr; nÞ of

sðxÞ. The latter can be simply written in the form

sðxÞ ¼
X

n2Z bsðr; nÞeinh. The geometry of the configuration

being circular, the fields components that are continuous

along the inhomogeneity and the boundary conditions apply

either to sðxÞ or to bsðr; nÞ.
Inside the domain X½1�, the normal components of the

total stress tensor r½1�rr and r½1�rh , the pressure p½1�, the solid dis-

placement u
½1�
r and u

½1�
h , and the normal component of the

solid/fluid relative displacement w
½1�
r are continuous fields. It

could seem natural to choose these six parameters as compo-

nents of the state vector. Nevertheless, in order to simplify

algebraic manipulations it seems better to adapt these com-

ponents to the considered boundary problem. At both interfa-

ces Cext and Cint, the stress tensor (r½1�rh ¼ 0, r½1�rr ¼ �p½j�,
j ¼ 0; 2), the pressure (p½1� ¼ p½j�, j ¼ 0; 2), and normal com-

ponent of the velocity [�ixðw½1�r þ u
½1�
r Þ ¼ V

½j�
r , with V

½j�
r the

FIG. 1. Cross-sectional plane view of the configuration.
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radial component of the velocity in X½j�, j ¼ 0; 2], are contin-

uous. Because u
½1�
r and w

½1�
r are continuous at any r in X½1�,

�ixðw½1�r þ u
½1�
r Þ is also continuous. The radial component of

the solid/fluid relative displacement w
½1�
r is also replaced by

V
½1�
r ¼ �ixðw½1�r þ u

½1�
r Þ in Eqs. (1) and (6). This parameter is

preferred to w
½1�
r to define the wave vector. Moreover, after

Hankel like transform of Eqs. (1) and (6), rbr½1�rr ¼ bs½1�rr and

rbr½1�rh ¼ bs½1�rh , appear more suitable than br½1�rr and br½1�rh to cor-

rectly cast the equations that have to be solved.

After this transform, these equations split into two sys-

tems of equations: one set of six first order differential equa-

tions only depending on the components of the column state

vector cWðr;nÞ ¼ hcsrr
½1�ðr;nÞ;bs½1�rh ðr;nÞ;bp½1�ðr;nÞ;bu½1�r ðr;nÞ;bu½1�h ðr;nÞ; bV ½1�r ðr;nÞi, and one set of two equations that linked

the two last unknowns bs½1�hhðr;nÞ or, alternatively, br½1�hhðr;nÞ
and bw½1�h ðr;nÞ, to the components of the state vector. The

problem also reduces to the solution of the first order differ-

ential matrix system composed of the first six first order dif-

ferential equations:

@

@r
cWðr; nÞ � Aðr; nÞcWðr; nÞ ¼ 0; (10)

with Aðr; nÞ ¼ �Bðr; nÞ�1
Dðr; nÞ=r, where

B ¼

1 0 0 �kc þ aM 0 �iaM

x

0 1 0 in ðkc � aMÞ 0
�naM

x

0 0 1 0 0 0

0 0 0 Mða� 1Þ 0
iM

x

0 0 0 kc þ 2l� aM 0
iaM

x

0 0 0 0 l 0

266666666666664

377777777777775
(11)

and

D¼

0 in
n2aM

~qeqx2r
�2l�kcþaMþx2r2ðq�qf Þ in �2l�kcþ

aMqf

~qeq

� �
i

x
ðqf x

2r2�aMÞ

0 1
in

~qeq

qf r�
n2aM

x2r

� �
inð2lþkc�aMÞ n2 �2l�kcþ

qf

~qeq

aM

� �
þx2r2 q� q2

f

~qeq

� �
�naM

x

0 0 0 ð~qeq�qf Þx2r 0 �i~qeqxr

0 0 r� n2M

~qeqx2r
Mða�1Þ inM a� qf

~qeq

� �
iM

x

�1 0
�n2aM

~qeqx2r
kc�aM in kc�

aMqf

~qeq

� �
iaM

x

0 �1 0 inl �l 0

2666666666666664

3777777777777775
:

(12)

In practice, the matrix B is composed of the coefficients that

appear in front of the first order dirivative of the components

of cWðr; nÞ, while the matrix D is composed of the coeffi-

cients that appear in front of the components of cWðr; nÞ in

the first set of first order differential equations.

The matrices B and D are r-dependent, because kcðrÞ,
aðrÞ, MðrÞ, lðrÞ, ~qeqðrÞ, and qðrÞ are r-dependent. This de-

pendence is not written in Eqs. (11) and (12) for conciseness.

The expression of the matrix A clearly exhibits the intrinsic

singularity on the cylinder axis. Here, tubes are considered,

i.e., rint > 0, which greatly simplifies the solution of the

mathematical problem. In the case of full inhomogeneous

circular cylinder, a method like the one proposed in Ref. 12

can be used and adapted to deal with this singularity.

The solution of system (10) takes the form

cWðrext; nÞ ¼ MðnÞcWðrint; nÞ; (13)

where M is the so-called matricant,20 which relates the

value of the state vector cWðrint; nÞ, at r ¼ rint, to the value

of the state vector cWðrext; nÞ, at r ¼ rext. Since A is r de-

pendent, i.e., the tube is not homogeneous or piecewise

constant, and A does not commute for different values of

r, i.e., ½AðrÞ;Aðr0Þ� ¼ AðrÞAðr0Þ � Aðr0ÞAðrÞ 6¼ 0, 8ðr; r0Þ
2 ½rint; rext�2, r 6¼ r0, the matricant M does not contain ma-

trix exponentials or multiplications of matrix exponentials.

The matricant is rather defined by the so-called multiplica-

tive integral satisfying the Peano expansion.19,20,31 This

avoids any problem related to lack of discretization when

the continuously varying material is approximated by a

piecewise constant material. The Peano series reads as

MðnÞ ¼ Iþ
ðrext

rint

Aðr; nÞdr

þ
ðrext

rint

Aðr; nÞ
� ðr

rint

Aðf; nÞdf
�

dr þ � � � (14)

and the evaluation of M(n) is performed via the iterative

scheme

MðnÞf0g ¼ I;

MðnÞfmg ¼ Iþ
Ð rext

rint Aðr; nÞMðr; nÞfm�1g
dr;

(
(15)

such that
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lim
m!1

MðnÞfmg ¼MðnÞ:

C. The boundary problem

The application of the boundary conditions at both inter-

faces Cint and Cext [bs½1�rh ¼ 0, bs½1�rr ¼ �rbp½t�, bp½1� ¼ bp½t�, andbV ½1�r ¼ bV ½t�r ¼ �i=xqð@bp½t�=@rÞ, with t ¼ 0; 2] yields the state

vectors cWðrext; nÞ and cWðrint; nÞ, which are required to solve

the problem. Separation of variables, the radiation condi-

tions, and Hankel-like transform lead to the representations

bp½0�ðr; nÞ ¼ Jnðk½0�rÞð�iÞne�inhi þ RnHð1Þn ðk½0�rÞ;bp½2�ðr; nÞ ¼ TnJnðk½2�rÞ: (16)

The application of the boundary conditions at the inter-

face Cext and Cint leads to

cWðn; rextÞ ¼ LextðnÞ
Rnbu½1�r ðrext; nÞbu½1�h ðrext; nÞ

264
375þ SðnÞ and

cWðn; rintÞ ¼ LintðnÞ
Tnbu½1�r ðrint; nÞbu½1�h ðrint; nÞ

264
375; (17)

with

LextðnÞ ¼

�rextHð1Þn ðk½0�rextÞ 0 0

0 0 0

Hð1Þn ðk½0�rextÞ 0 0

0 1 0

0 0 1

�ik½0� _H
ð1Þ
n ðk½0�rextÞ

xq½0�
0 0

2666666666664

3777777777775
;

LintðnÞ ¼

�rintJnðk½2�rintÞ 0 0

0 0 0

Jnðk½2�rintÞ 0 0

0 1 0

0 0 1

�ik½2� _Jnðk½2�rintÞ
xq½2�

0 0

266666666664

377777777775
; (18)

where _v ¼ @v=@r, v ¼ Jn, or v ¼ Hð1Þn , and

SðnÞ ¼

�rextJnðk½0�rextÞð�iÞne�inhi

0

Jnðk½0�rextÞð�iÞne�inhi

0

0
�ik½0� _Jnðk½0�rextÞð�iÞne�inhi

xq½0�

266666664

377777775: (19)

The excitation of the system by the incident plane wave

is accounted for in S, Lext relates the unknowns Rn,

bu½1�r ðrext; nÞ and bu½1�h ðrext; nÞ to the state vector cWðrext; nÞ, and

Lint relates the unknowns Tn, bu½1�r ðrint; nÞ and bu½1�h ðrint; nÞ to

the state vector cWðrint; nÞ.
Finally, introducing Eq. (17) in (13), the final system of

equations for the solution in terms of Rn and Tn can be cast

in the form

½½Lext�½�MLint��

Rnbu½1�r ðrext; nÞbu½1�h ðrext; nÞ
Tnbu½1�r ðrint; nÞbu½1�h ðrint; nÞ

266666666664

377777777775
¼ �SðnÞ:

This system is solved for each frequency and each order

n and directly provides the reflection and transmission coef-

ficients associated with the incident wave of indice n. The

pressure fields in X½0� and X½2� can be calculated through

p½0�ðxÞ ¼ Ai
X
n2Z

½Jnðk½0�rÞð�iÞne�inhi þ RnHð1Þn ðk½0�rÞ� einh;

p½2�ðxÞ ¼ Ai
X
n2Z

TnJnðk½0�rÞeinh: ð20Þ

The pressure field in X½0� can be split into the incident and

the scattered fields.

IV. VALIDATION ON A MULTILAYERED POROUS
MEDIUM

In order to validate the present method, calculations are

performed for a known two-layer poroelastic medium config-

uration considered as a single poroelastic tube. Each layer of

the tube is a porous material saturated by water. Materials

M½0� and M½2� are also water. The characteristic properties of

each layer have been given in Refs. 16 and 17 and are recalled

in Table I. The layer L2 is supposed to model cancellous

bone, while layer L1 is supposed to model cortial bone. The

geometrical parameters are close to those of a human femur.

The values of cancellous bone are those recovered in Ref. 17,

while those of the cortical bone have been chosen in accord-

ance with those of the solid frame. Effectively, cortical bone

has mainly been modeled, for instance, as an elastic mate-

rial,32,33 because it has a porosity around 0:1. Therefore, only

a few poroelastic parameters of cortical bone are available in

the literature. The solid frame is bone elastic material. The

Young modulus Es and Poisson ratio �s are also identical for

both cortical and cancellous bone. The Young’s modulus and

Poisson’s ratio of the skeleton, which can be seen as the appa-

rent solid part of the porous material itself, are also closer to

Es and �s, because osteons are packed tightly in cortical

bones. Both characteristic lengths are geometrical parameters

of the pore-size distribution inside the porous sample. The

thermal characteristic length represents a measure of the aver-

age pore size, while the viscous characteristic length corre-

sponds to the average size of the “constrictions” in the porous

medium, i.e., the average distance between pore walls in the
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narrower areas of the pore volume. Both characteristic

lengths are smaller in cortical bones than in cancellous bones.

Moreover, the flow resistivity, which is related to the porosity,

should be much higher in cortical than in cancellous bone.

The tortuosity is kept at unity. The elastic damping d is

accounted for through complex shear moduli and there-

fore complex Young moduli of both the solid frame and

skeleton. The shear moduli are evaluated through l ¼ Eð1
� idÞ=2ð1þ �Þ from the knowledge of E and �. This elastic

damping is fixed at d ¼ 0:05 for both the solid frame and

skeleton.

The choice of this configuration is motivated by the fact

that the results of the present method can be compared with

known results from the classical transfer matrix method

(TMM), or domain separation, based on the initial formula-

tion of Biot 1956,25 which can be easily derived from vari-

ous publications,9 and is briefly summarized in the

Appendix.

To consider the bilayer tube as a single inhomogeneous

tube, the jump discontinuity in the two-layered system is

smoothed by using the following analytical continuous and

continuously differentiable function

IðrÞ ¼ 1þ C

2
1þ erf

r � rj

s

� �� 	
; (21)

where C is the step value, which is different for each param-

eter in Table I, erf is the error function, rj is the position of

the jump, and s corresponds to the steepness of the continu-

ous jump such that the smaller s is, the steeper the jump is.

The number of iterations required for the correct evalua-

tion of the matricant increases with frequency. A change of

variable like the one proposed in Refs. 34 and 35 seems inac-

curate, because the characteristic parameters are frequency

dependent for porous materials. Moreover, a large number of

iterations is required for the correct evaluation, because

poroelastic materials are highly dissipative.

The configuration is discretized with 3000 points and

the number of iterations for the evaluation of the Peano se-

ries is 300. These values were not optimized, but it was

found that the spatial discretization along the inhomo-

geneity should be small compared to the wavelength

inside the porous material for the method to correctly model

the response. The jump position and its slope are fixed to rj

¼ ðrext � rintÞ=2 ¼ 10 mm and s ¼ 10�6, while rint ¼ 5 mm

and rext ¼ 15 mm. The infinite sum
P

m2Z over the indices

of the modal representation of the diffracted field by a cylin-

der is truncated36 as RM
m¼�M such that M ¼ intðReð4:05

�ðk½1�RÞ1=3þ k½1�RÞÞ þ 10.

Figure 2 depicts a comparison between the pressure field

scattered by the inhomogeneous poroelastic tube, supposed

to model an appendicular human bone, calculated with the

classical TMM and the present method at hmes ¼ hi and

rmes ¼ 50 mm. Both curves coincide.

V. NUMERICAL EXAMPLE ON DIFFERENT
INHOMOGENEITY PROFILES

Osteoporosis is characterized by a decrease of the corti-

cal bone thickness and an increase of the porosity of the can-

cellous bone. As an example of variation of the parameters,

the profile of flow resistivity Rf is plotted on the same figure

as the time domain response of the corresponding configura-

tion in Fig. 3. The other parameters vary with an identical

profile. Figure 3(a) depicts the time domain scattered field

by the previous two-layer configuration, when a Ricker like

pulse centered at �0 ¼ 50 kHz impinges the tube (at hi ¼ 0),

at 90 measurement points around the tube running from

hmes � hi ¼ 0 to hmes � hi ¼ 2p for a fixed radius

rmes ¼ 50 mm. The Ricker-like pulse spectrum is given by

Ai ¼ x2

4
ffiffiffi
p
p
ðp�0Þ3

eiðx=�0Þ�x2=ð2p�0Þ2 : (22)

TABLE I. Properties of the two-layer medium studied.

/ s1 K (lm) K0 (lm)

Rf

(N s m�4)

L2 0.64 1 10 20 10 000

L1 0.1 1 1 2 100 000

qs

(kg m�3) Eb (Pa) �b Es (Pa) �s

Th

(mm)

L2 1990 4.49�109 0.28 1.3�1010 0.3 5

L1 1990 1.29�1010 0.29 1.3�1010 0.3 5

FIG. 2. Real (a) and imaginary (b) parts of the scattered pressure field by the two-layered tube calculated with the classical TMM (—) and with the present

method (– – –) at hmes ¼ hi and rmes ¼ 50 mm.
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Most of the previous studies, mainly based on axial

transmission,14,15 employed excitations between 500 kHz to

3 MHz. In order for the wave to strongly and deeply interact

with the bone structure, the frequency of the chosen excita-

tion stands in the low frequency ultrasonic regime at

�0 ¼ 50 kHz. Moreover a low frequency ultrasonic excita-

tion renders the hypothesis of a circular cross-section more

valid, because a long bone is obviously not of perfectly cir-

cular cross-section. The scattered field pref ðtÞ is also sym-

metric with respect to hmes � hi ¼ p. This configuration is

then considered as the reference configuration.

Most of the methods that are used to solve inverse prob-

lems of material characterization are based on the comparison

of the response of a reference configuration with the response

of the configuration that has to be characterized. The compari-

son of these responses can then be interpreted by use of an inte-

gral formulation involving the specific dyadic Green’s function

of the configuration. The closer the reference configuration is

to the to-be-characterized configuration, the easier is the solu-

tion of the inverse problem. Nevertheless, the amplitude of the

differences has to be sufficiently large to be measured, i.e., to

overcome signal to noise problems, and interpreted. Figures

3(b), 3(c), and 3(d) depict the differences of the time domain

scattered fields by the reference configuration pref ðtÞ and by

various configurations psðtÞ that could be encountered in case

of bone degradation due to osteoporosis. The amplitude scale

of the four subfigures of Fig. 3 are identical.

Figure 3(b) depicts the difference between the time do-

main scattered field by the reference configuration

(s ¼ 10�6) and a smoother jump from the value of L1 to L2

configuration, with s ¼ 10�3. The differences are not partic-

ularly noticeable. The amplitude of pref ðtÞ � psðtÞ is in this

case relatively small. A smoother jump could be difficult to

be determined or interpreted.

Figure 3(c) depicts the difference between the time do-

main scattered field by the reference configuration (with

rj ¼ 10 mm) and by a thinner cortical bone configuration

(with rj ¼ 12 mm). The amplitude of pref ðtÞ � psðtÞ is this

time of the same order of magnitude as the scattered field by

the reference configuration. This means that the scattered ul-

trasonic field is sensitive to the cortical thickness.

To go further on, the properties are supposed to vary lin-

early between rint and rj ¼ 12 mm from the value of Lin

Table II to those of Table I at rj. The porosity of the inner

poroelastic material is larger. The solid frame is the bone

elastic material. The Young modulus Es and Poisson ratio �s

are also identical. The Young’s modulus and Poisson’s ratio

of the skeleton are smaller than Eb and �b of L2. Both char-

acteristic lengths are also larger in Lin than in L2. It should

be noted that some bones exhibit visible heterogeneity,

which would indicate higher values for these lengths. More-

over, the flow resistivity, which is related to the porosity,

should be smaller in Lin than L2. The tortuosity is kept

around unity. Figure 3(d) depicts the difference of the time

domain response of the reference configuration with the thin-

ner cortical bone and a linear variation of the parameters

along the cancellous bone thickness. The amplitude of

pref ðtÞ � psðtÞ is once again of the same order of magnitude

as the scattered field by the reference configuration. This

FIG. 3. Time domain scattered fields by the reference configuration (a), and differences of the time domain scattered fields by the reference configuration and

by configurations with various inhomogeneity profiles (b), (c), and (d). The profile of the flow resistivity Rf is plotted as an example of variation of the

parameters.

TABLE II. Properties of the inner part of the tube.

/ s1 K (lm) K0 (lm) Rf (N s m�4)

Lin 0.8 1.1 30 60 5000

qs (kg m�3) Eb (Pa) �b Es (Pa) �s

Lin 1990 2:49� 109 0.28 1:3� 1010 0.3
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means that the scattered ultrasonic field is sensitive to the

cortical thickness and cancellous bone parameter variations.

To emphasize the sensitivity to the parameter variation of

the cancellous bone, Fig. 4 depicts the difference of the time

domain response of the thinner cortical bone configuration

(rj ¼ 12 mm) with the previous configuration, i.e., with the

one of the linear variation of the spongy bone parameters.

The scattered field is also sensitive to the variation of the

cancellous bone parameters.

VI. CONCLUSION

A model of the acoustic response of macroscopically in-

homogeneous elastic frame porous materials derived from

the alternative Biot’s theory of 1962 was solved. A stable

numerical method, derived from the state vector formalism

together with Peano series was developed to solve the mac-

roscopically inhomogeneous poroelastic wave equations. To

our knowledge, these equations are solved and these meth-

ods are derived for the first time for poroelastic materials in

a cylindrical configuration. A validation of this method was

made using the example of a two-layer tube supposed to

model a long bone excited in the sagittal plane, by compari-

son to the exact solution obtained by the transfer matrix

method. In the numerical procedure, the jump of properties

between the layers was accounted for in the form of a single

continuous function. This result validates the present proce-

dure. Finally, examples of the time domain response are

given for various property profiles. These examples illustrate

the possibility of modeling long bones as macroscopically

inhomogeneous poroelastic tubes, which can be therefore

used for the osteoporosis diagnose. This last point requires

further investigation, notably the development of a three-

dimensional macroscopically inhomogeneous poroelastic

tube model that accounts for the anisotropy of the cortical

bone. Another important improvement yields in the account-

ing for marrow parameters and particularly for the marrow

viscosity. This could be accounted for in our calculation by

considering various saturating fluids, without loss of general-

ity of the method. As pointed out in the Introduction, other

applications, mainly related to varying property poroelastic

materials offering better sound absorption than homogene-

ous ones can be investigated by use of the described method.
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APPENDIX: TRANSFER MATRIX METHOD FOR THE
TWO-LAYER TUBE

Separation of variables and the radiation condition leads

to the representations in Eq. (20) of X½0� and X½2�. The initial

Biot formulation25 is used to model the acoustic wave

propagation in the two homogeneous layers. In both layers,

the two scalar, /½Li�
1 and /½Li�

2 , and vector, w½Li� ¼ w½Li�i3,

potentials related to the solid displacement u½Li� through u½Li�

¼r /½Li�
1 þ/½Li�

2

� �
þr�w½Li� and to the fluid displacement

U½Li�¼$ðl½Li�
1 /½Li�

1 þl½Li�
2 /½Li�

2 Þþr�l½Li�
3 w½Li� take the forms

/½Li�
1 ¼

X
n2Z

�
C½Li�

n Hð1Þn ðk
½Li�
1 rÞþD½Li�

n Jnðk½Li�
1 rÞ

�
einh;

/½Li�
2 ¼

X
n2Z

�
E½Li�

n Hð1Þn ðk
½Li�
2 rÞþF½Li�

n Jnðk½Li�
2 rÞ

�
einh;

w½Li� ¼
X
n2Z

�
G½Li�

n Hð1Þn ðk
½Li�
3 rÞþ I½Li�

n Jnðk½Li�
3 rÞ

�
einh; (A1)

i ¼ 1; 2. In these potential expressions, k
½Li�
j , i ¼ 1; 2,

j ¼ 1; 2; 3, are the wave numbers respectively associated with

the so-called fast, slow and shear waves. The expressions of

k
½Li�
j as well as those of the amplitude ratio (the so-called com-

patibility coefficients) l½Li�
j , i ¼ 1; 2, j ¼ 1; 2; 3, can be found

in Ref. 26. The unknows C½Li�
n , E½Li�

n , and G½Li�
n , are associated

with the in-going waves, while the unknowns D½Li�
n , F½Li�

n , and

I½Li�
n , are associated with the out-going waves in layer Li,

i ¼ 1; 2. The constitutive relations in both layers read as

rs½Lm�
ij ¼ P½Lm� �2N½Lm�

� �
e½Lm�

ii þQ½Lm�e
½Lm�
ii

h i
dij

þ2N½Lm�e½Lm�
ij

¼ a
½Lm�
1 k

½Lm�
1

� �2

/½Lm�
1 þa

½Lm�
2 k

½Lm�
2

� �2

/½Lm�
2

� 	
dij

þ2N½Lm�e
½Lm�
ij ;

rf ½Lm�
ij ¼ Q½Lm�e½Lm�

ii þR½Lm�e
½Lm�
ii

h i
dij¼�/½Lm�p½Lm�dij

¼� b
½Lm�
1 k

½Lm�
1

� �2

/½Lm�
1 þb

½Lm�
2 k

½Lm�
2

� �2

/½Lm�
2

� 	
dij;

(A2)

where the components of the stress tensor of the solid and

fluid phases are rs½Lm�
ij and rf ½Lm�

ij , a
½Lm�
i ¼ 2N½Lm� � P½Lm�

�Q½Lm�l½Lm�
i , and b

½Lm�
i ¼ Q½Lm� þ R½Lm�l½Lm�

i , i ¼ 1; 2, and

e
½Lm�
ij ¼ 1=2ðU½Lm�

i;j þ U
½Lm�
j;i Þ, m ¼ 1; 2. The expression of the

coefficients P, Q, R are given in Eq. (3).

At the interfaces Cext between X½0� and the layer L1 and

Cint between the layer L2 and X½2�, the total stress, pressure,

and normal component of the displacement are continuous, i.e.,

FIG. 4. Difference between the time domain response scattered pressure

field by the thinner cortical bone configuration (rj ¼ 12 mm) and a thinner

cortical bone with a linear variation of the parameters calculated with the

present method at rmes ¼ 50 mm for hmes 2 ½0; 2p�.
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rs½L1�
rr þ rf ½L1�

rr þ p½0� ¼ 0; rs½L2�
rr þ rf ½L2�

rr þ p½2� ¼ 0;

rs½L1�
rh ¼ 0; rs½L1�

rh ¼ 0;

rf ½L1�
rr =/L1 þ p½0� ¼ 0; rf ½L2�

rr =/L2 þ p½2� ¼ 0;

/L1U
½L1�
r þ ð1� /L1Þu½L1�

r � U
½0�
r ¼ 0; /½L2�U

½L2�
r þ ð1� /½L2�Þu½L2�

r � U
½2�
r ¼ 0;

(A3)

where U
½i�
r ¼ ð1=q½i�x2Þð@p½i�=@rÞ, i ¼ 0; 2. At the interface between the two layers L1 and L2, the total stress, pressure, solid

displacement and normal component of the solid/fluid displacement are continuous, i.e.,

rs½L1�
rr þ rf ½L1�

rr � rs½L2�
rr � rf ½L2�

rr ¼ 0; rs½L1�
rh � rs½L2�

rh ¼ 0;

rf ½L1�
rr =/L1 � rf ½L1�

rr =/L1 ¼ 0; u
½L1�
r � u

½L2�
r ¼ 0;

u
½L1�
h � u

½L2�
h ¼ 0; /½L1�ðU½L1�

r þ u
½L1�
r Þ � /½L2�ðU½L2�

r þ u
½L2�
r Þ ¼ 0:

(A4)

Introducing the potential expressions Eq. (A1) in Eqs. (A3)

and (A4) leads, after projection on
Ð 2p

0
e�ilhdh and making

use of the orthogonality relation
Ð 2p

0
eiðn�lÞhdh ¼ 2pdln, to a

14� 14 linear system of equations for the solution of the

mathematical problem, in particular in terms of Rn and Tn.

This system is solved for each frequency and for each n.

Once solved, the scattered field by the two layer tube can be

evaluated through Eq. (20).
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