

Acoustics of porous media Lecture 1: Overview

Olivier Dazel^{*}, B. Brouard^{*}and P. Göransson[®]

 Laboratoire d'Acoustique de l'Université du Maine UMR CNRS 6613, France
 Markus Wallenberg Laboratory KTH, Stockholm, Sweden

olivier.dazel@univ-lemans.fr

Context of sound absorbing materials

- Interesting properties for sound absorption
- A complex physics due to a complex microstructure
- At the intersection of Theoretical/Applied science/ Engineering

Fields of applications

- Automative
- Aeronautics
- Building
- Geophysics
- Medical (bones)

lomoac Proximal epiphysis pongy bone (containing red marro Compact Diaphysis odulla cavity Dist

What are porous materials ?

A solid skeleton saturated by a fluid

Melamine foam (Anechoic chamber LAUM)

PhD R. Guastavino (MWL 2007)

Two separate continua

Skeleton

- ✓ Cellular foam
- ✓ Fibrous material
- ✓ Recycled / hemp ...

Saturating fluid √ Air (viscothermal fluid) √ Water

PhD C. Perrot (GAUS-INSA Lyon 2006)

Superposition of 2 continua

For sound absorbing materials

Superposition of 2 continua

 $\begin{array}{l} \textbf{Porosity} \\ \phi = \frac{V(\Omega_f)}{V(\Omega)} \end{array}$

For sound absorbing materials

Superposition of 2 continua

 $\begin{array}{l} \textbf{Porosity} \\ \phi = \frac{V(\Omega_f)}{V(\Omega)} \end{array}$

Only open porosity is considered

For sound absorbing materials

Complexity at microscopical scale

Low frequency

High frequency range

http://ciks.cbt.nist.gov/~garbocz/paper32/

Homogenization

skeleton saturating fluid

Homogenization of REV

The scale separation hypothesis

Microstructure typical length

The scale separation hypothesis

The scale separation hypothesis

Three scales

- Macroscopical : Excitation / Sample
- Mesoscopical : REV / Particle
- Microscopical : Pore/ Heterogeneities

Uniform solid displacement at local scale

Consequences

Uniform solid displacement at local scale

Consequences

•Conservation of the fluid volume at micro scale

Uniform solid displacement at local scale

Consequences

Conservation of the fluid volume at micro scale
Incompressible fluid at micro scale

Uniform solid displacement at local scale

Consequences

- Conservation of the fluid volume at micro scale
 Incompressible fluid at micro scale
- •At macro scale: No shear stress in the fluid

Models= Systems of PDE + boundary conditions

Class	Solid phase	Fluid phase
In-vacuo		
Equivalent fluid		
Limp Model	Motion without deformation energy	
Biot model		

Starting point : fields of representation

Homogenized quantities

Homogenized quantities

- Assumption of statistic homogeneity
- Which averaging volume?
 - Skeleton
 - Pore
 - Total volume
- Several methods (but same value !)
- For our models
 - Displacements
 - Stresses

Homogenized displacements

Solid displacement

$$\mathbf{u}^s = \left\langle u^s_\mu \right\rangle_{\Omega_s}$$

Fluid displacement

$$\mathbf{u}^f = \left\langle u^f_\mu \right\rangle_{\Omega_f}$$

Homogenized displacements

Solid displacement

$$\mathbf{u}^s = \left\langle u^s_\mu \right\rangle_{\Omega_s}$$

Fluid displacement

$$\mathbf{u}^f = \left\langle u^f_\mu \right\rangle_{\Omega_f}$$

Total displacement

$$\mathbf{u}^t = \left\langle u^s_\mu \right\rangle_\Omega + \left\langle u^f_\mu \right\rangle_\Omega = (1 - \phi)\mathbf{u}^s + \phi \mathbf{u}^f$$

Homogenized displacements

Solid displacement

$$\mathbf{u}^s = \left\langle u^s_\mu \right\rangle_{\Omega_s}$$

Fluid displacement

$$\mathbf{u}^f = \left\langle u^f_\mu \right\rangle_{\Omega_f}$$

Total displacement

$$\mathbf{u}^{t} = \left\langle u_{\mu}^{s} \right\rangle_{\Omega} + \left\langle u_{\mu}^{f} \right\rangle_{\Omega} = (1 - \phi)\mathbf{u}^{s} + \phi\mathbf{u}^{f}$$

Flow of the fluid /solid per unit area of bulk medium.

$$\mathbf{w} = \left\langle u_{\mu}^{f} - \mathbf{u}^{s} \right\rangle_{\Omega} = \phi(\mathbf{u}^{f} - \mathbf{u}^{s})$$

Solid displacement

$$\mathbf{u}^s = \left\langle u^s_\mu \right\rangle_{\Omega_s}$$

Fluid displacement

$$\mathbf{u}^f = \left\langle u^f_\mu \right\rangle_{\Omega_f}$$

Total displacement

$$\mathbf{u}^{t} = \left\langle u_{\mu}^{s} \right\rangle_{\Omega} + \left\langle u_{\mu}^{f} \right\rangle_{\Omega} = (1 - \phi)\mathbf{u}^{s} + \phi \mathbf{u}^{f}$$

Flow of the fluid /solid per unit area of bulk medium.

$$\mathbf{w} = \left\langle u_{\mu}^{f} - \mathbf{u}^{s} \right\rangle_{\Omega} = \phi(\mathbf{u}^{f} - \mathbf{u}^{s})$$

Case of equivalent fluid models

$$\mathbf{u}^s = \mathbf{0} \implies \mathbf{w} = \mathbf{u}^t = \mathbf{u}^{eq}$$

Average force per unit area of a surface

Solid partial stress tensor

$$oldsymbol{\sigma}^s = < oldsymbol{\sigma}^s_\mu >_\Omega$$

Fluid partial stress tensor

$$oldsymbol{\sigma}^f = < oldsymbol{\sigma}^f_\mu >_\Omega$$

Average force per unit area of a surface

Solid partial stress tensor

 $\boldsymbol{\sigma}^s = < \boldsymbol{\sigma}^s_{\mu} >_{\Omega}$

Fluid partial stress tensor

$$oldsymbol{\sigma}^f = < oldsymbol{\sigma}^f_\mu >_\Omega$$

For the fluid phase, no shear force can be restored at macroscopic scale

$$oldsymbol{\sigma}^f_\mu = -p_\mu oldsymbol{\delta} + oldsymbol{\sigma}^{f'}_\mu \ < oldsymbol{\sigma}^{f'}_\mu >_{\Omega_f} pprox 0$$

$${oldsymbol \sigma}^f = -\phi p \, {oldsymbol \delta}$$

 $\leq p_{\mu} > \Omega_{f}$

Macroscopic (or interstitial) pressure

Average force per unit area of a surface

Solid partial stress tensor

 $\sigma^s = <\sigma^s_u>_\Omega$

Fluid partial stress tensor

$$oldsymbol{\sigma}^f = < oldsymbol{\sigma}^f_\mu >_\Omega$$

 $p = < p_{\mu} > \Omega_f$

For the fluid phase, no shear force can be restored at macroscopic scale

$$oldsymbol{\sigma}^f_\mu = -p_\mu oldsymbol{\delta} + oldsymbol{\sigma}^{f'}_\mu \ < oldsymbol{\sigma}^{f'}_\mu >_{\Omega_f} pprox 0$$

$$oldsymbol{\sigma}^f = -\phi p \, oldsymbol{\delta}$$

Macroscopic (or interstitial) pressure

$$oldsymbol{\sigma}^t = oldsymbol{\sigma}^s + oldsymbol{\sigma}^f$$
 Total stress tensor

Model (PDE)

Modelling porous materials

Modelling porous materials

Modelling porous materials

- 1949: Zwikker and Kösten (Cylindrical tubes)
- 1956: Biot theory (Motion of the solid phase)
- 1987: Johnson (Viscous effects)
- 1991: Stinson / Champoux / Allard (Thermal effects)
- 199-: Caracterization of acoustical parameters
- 200-: Caracterization of mechanical parameters
- 1989: Analytical and first numerical methods
- 2000: Advanced numerical techniques