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This paper presents an analytical approach of the propagation of an
acoustic wave through a normally distributed disordered lattice
made up of Helmholtz resonators connected to a cylindrical duct.
This approach allows to determine analytically the exact transmis-
sion coefficient of a weakly disordered lattice. Analytical results are
compared to a well-known numerical method based on a matrix
product. Furthermore, this approach gives an analytical expression
of the localization length apart from the Bragg stopband which
depends only on the standard deviation of the normal distribution
disorder. This expression permits to study on one hand the locali-
zation length as a function of both disorder strength and frequency,
and on the other hand, the propagation characteristics on the edges
of two sorts of stopbands (Bragg and Helmholtz stopbands). Lastly,
the value of the localization length inside the Helmholtz stopband
is compared to the localization length in the Bragg stopband.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Since 1958 and the work of P.W. Anderson on the localization of wave in a random media [1], the
propagation of waves in complex media has been at the center of many works. Number of them have
been undertaken on the effect of disorder on the wave propagation and many research fields have
been concerned. The first studies appeared in solid state physics [2,3] and in the propagation of EM
waves in random medium [4,5]. The propagation of classical waves in disordered media [6–8] and
the localization of elastic waves [9–11] have been also dealt with theoretical and experimental studies
and the applications, for example in acoustics [12–15] or in geophysics [16,17] are numerous. In the
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same time, number of works have proposed experimental results in 1D [6,13,18,12], 2D [19,20] and 3D
media [21,22].

Among these numerous references, only a few analytical studies of Anderson localization have
been published. First of all, Kholer et al. studied, in the 70’s, the wave propagation in a one-dimen-
sional medium with random index of refraction or a transmission line with random capacitance per
unit length using the radiative transport theory [23]. In this study, the ‘‘disorder” is measured by a
time-invariant refractive index field. The frequency dependence of the localization length for acoustic
and electromagnetic waves in a one-dimensional randomly layered media is also studied analytically
[24]. An analytical theory of a pulse propagating in a one-dimensional layered media [25] is also estab-
lished by using asymptotic methods for stochastic differential equations [26] and a low frequency
limit is considered to study the localization of elastic waves in a plane-stratified media [27].

Secondly, the problem of pulse backscattering from a randomly stratified media is considered where
the wave speed fluctuations depend on time and on the range coordinate. The disorder is measured by a
time-varying refractive index field and the time variation is parametric [28]. Radiation transport equa-
tions are used to describe the propagation and the wave localization in time domain [29].

In the same way, some works present analytical results by using approximate methods like the
coherent potential approximation [5,6], in the case of small amount of impurities [2,30], for the low
frequency case [31] or for asymptotic behavior [32].

Nevertheless, the transfer matrix method [6,13] is generally used to simulate the wave propagation
in a random lattice [33].

The present paper proposes a new analytical approach to study the propagation of acoustic waves
in a 1D random media. This method is based on a recursive relation describing the wave propagation.
It uses the properties of the normal distribution disorder to propose an analytical expression for the
transmission coefficient depending on the standard deviation of the disorder distribution and on
the number of lattice cells.

Section 2 presents a general study of the wave propagation in a 1D disordered lattice made up of
Helmholtz resonators connected to a main waveguide. The disorder is introduced through the elemen-
tary cell length. An exact expression of the transmission coefficient of the lattice is established in the
form of a recursive relation. Thanks to the properties of the normal distributed disorder, an analytical
expression of the transmission coefficient modulus and of the localization length is proposed. In
Section 3, the results of this analytical model are compared with the results of Monte Carlo simula-
tions based on the transfer matrix method and a discussion is held.

2. Propagation of acoustic waves in a weakly normally distributed disordered one-dimensional
lattice

2.1. General study

A one-dimensional lattice is considered made up of an infinitely long cylindrical waveguide (with
section S) connected to an array of Helmholtz resonators at position zn (Fig. 1). The Helmholtz resona-
Fig. 1. Schematic representation of the Helmholtz resonator lattice made up of a cylindrical waveguide with section S
connected to an array of Helmholtz resonators.
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tors are connected to the cylindrical duct through a pinpoint connection, the radius r of the throat’s
cross sectional area s of the resonators being assumed to be small compared with the wavelength k
of the acoustic wave

ffiffiffiffiffiffiffi
r=k

p
� 1

� �
.

2.1.1. Model of Helmholtz resonator
The Helmholtz resonators are made up of a neck with section s and length ‘ connected to a volume

V0 (Fig. 2). A simple model of the Helmholtz resonator requires the following assumptions: (i) the
pressure inside the volume V0 is spatially uniform, (ii) the fluid in the neck moves like a solid piston.
In this case, the air enclosed in the resonator acts as a spring for the lumped mass of air moving within
the neck. We can furthermore consider the loss in the volume V0 by means of a dashpot. In these con-
ditions, the relative change of the pressure pðtÞ ¼ pejxt in the volume V0 due to a small displacement
xðtÞ of the air in the neck induces a restoring force FðtÞ
FðtÞ ¼ pðtÞs ¼ �qc2s2

V0
xðtÞ; ð1Þ
where q is the air density and c the sound velocity [14]. The spring-dashpot force is considered here as
linear. For a monochromatic wave (with angular frequency x), the displacement xðtÞ ¼ xejxt of the air
is related to the acoustic velocity in the neck vHðtÞ ¼ ve jxt by the relation vHðtÞ ¼ jxxðtÞ and the Euler
relation applied to the air mass m ¼ q‘es (where ‘e is the effective neck length) submitted to the har-
monic force p=ðq‘eÞe jxt gives
jxvþ avþx2
0

jx
v ¼ p=ðq‘eÞ; ð2Þ
where x0 ¼ c
ffiffiffiffiffiffiffi

s
V0‘e

q
is the eigenfrequency of the Helmholtz resonator and a represents the loss in the

resonator.

2.1.2. Equation propagation in the Helmholtz resonators lattice
For a monochromatic acoustic wave with a frequency below the cut-off frequency of the wave-

guide, the acoustic pressure and velocity along the waveguide are, respectively, written
pðz; tÞ ¼ pðzÞejxt and vðz; tÞ ¼ vðzÞejxt . The amplitude pðzÞ and vðzÞ are related by an impedance relation.
At each connection between the waveguide and a resonator, the wave impedance and the acoustic
velocity are discontinuous. For zn�1 < z < zn (Fig. 1), the pressure and the acoustic velocity are denoted
Fig. 2. Elementary cell n made up of an Helmholtz resonator and a part of the waveguide.
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by pnðzÞ and vnðzÞ and for zn < z < znþ1, the pressure and the acoustic velocity are denoted by pnþ1ðzÞ
and vnþ1ðzÞ. The acoustic pressure is written as a linear combination of forward and backward waves
(Fig. 2) as
pnðzÞ ¼ pþn e jkðz�znÞ þ p�n e�jkðz�znÞ; ð3Þ
where k is the wave number defined as k ¼ x=c. The continuity of the acoustic pressure at z ¼ zn yields
pþn þ p�n ¼ pþnþ1 þ p�nþ1 ¼ p: ð4Þ
Moreover, the conservation of the mass flux at z ¼ zn leads to
sv ¼ S
qc

�
pþnþ1 � p�nþ1 þ p�n � pþn

�
: ð5Þ
Using Eqs. (2), (4) and (5), a relation between the amplitude of waves across the junction zn can be
written with a matrix formalism:
pþnþ1

p�nþ1

 !
1�w �w

w 1þw

� �
¼

pþn
p�n

� �
; ð6Þ
where b ¼ cs
2leS and w ¼ bjx

x2
0�x2ð Þþajx

.

We consider here the nth cell (Fig. 2) made up of a resonator connected to the middle of a pipe of
length dn and we set Pþnþ1, Pþn , P�nþ1 and P�n the amplitudes of forward and backward waves at the two
open ends of the nth cell. Then, the relation between the pressure at z ¼ zn þ dn=2 and the pressure at
z ¼ zn � dn=2 can be expressed as
Pþnþ1

P�nþ1

 !
¼

hnð1�wÞ �w

w 1
hn
ð1þwÞ

 !
Pþn
P�n

 !
¼ Mn

Pþn
P�n

 !
; ð7Þ
where hn ¼ e�jkdn .
The 1D lattice is made up of N elementary cells embedded in an infinite waveguide. The amplitude

of the incident wave on the lattice is noted Pi, the amplitude of the reflected wave, Pr , and the ampli-
tude of the transmitted wave Pt . Using the symmetry of the lattice, the relation describing the prop-
agation of a monochromatic acoustic wave through the lattice is consequently written as
Pr

Pi

� �
¼ M1M2 . . . Mn . . . MN

0
Pt

� �
: ð8Þ
According to the Furstenberg’s theorem [34] concerning the product of random matrix, Eq. (8)
describes the propagation in a random media (each matrix Mn is different) showing localization phe-
nomenon [35].

2.2. Recursive relation for the transmission coefficient

The reflexion coefficient of the lattice RN and transmission coefficient TN being defined by
RN ¼
Pr

Pi
and TN ¼

Pt

Pi
; ð9Þ
the relation (8) is now written
RN
TN

1
TN

 !
¼ M1M2 . . . MN

0
1

 !
: ð10Þ
Then, if we define the matrix M as
M ¼ M1M2 . . . MN�2 ¼
m1 m2

m3 m4

� �
; ð11Þ
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the relation
RN�2
TN�2

1
TN�2

 !
¼M

0
1

� �
ð12Þ
and the Eq. (10) lead to m4 ¼ 1
TN�2

. As a consequence, the relation
RN�1
TN�1

1
TN�1

 !
¼MMN�1

0
1

� �
; ð13Þ
allows us to express m3 as
m3 ¼ w
1

hN�1
ð1þwÞ 1

TN�2
� 1

TN�1

� �
: ð14Þ
Finally, using
RN
TN

1
TN

 !
¼MMN�1MN

0
1

� �
; ð15Þ
a recursive relation between TN , TN�1 and TN�2 can be written
1
TN
¼ hN�1ð1�wÞ þ 1

hN
ð1þwÞ

� �
1

TN�1
� 1

TN�2
: ð16Þ
Thus, the transmission coefficient TN can be calculated from T0 ¼ 1 and T1 ¼ h1
1þw. In the following, re-

sults of a numerical simulation of Eq. (16) are considered as ‘‘reference results”.

2.3. Analytical expression for the transmission coefficient

We now consider a weakly normally distributed disordered lattice with the following probability
density function of the cell length dn
PdnðxÞ ¼
1

r
ffiffiffiffiffiffiffi
2p
p e�

ðx�dÞ2

2r2 ; ð17Þ
where d is the mean value of the cell length and r2 is the variance. Regarding the values of d and r
used in the simulation in Section 3, we consider here that Pdn ðx 2� �1; 0�Þ ’ 0. If we set
uN ¼
h1h2 . . . hN

TN
; ð18Þ
the discrete recursive relation (16) can then be rewritten as
uN ¼ ½hN�1hNð1�wÞ þ ð1þwÞ�uN�1 � ½hN�1hN�uN�2; ð19Þ
with u0 ¼ 1 and u1 ¼ 1þw.
The value of uN can then be calculated using Eq. (19). Defining h ¼ e�jkd and using hhNi ¼ he�

r2k2
2 and

hh2
Ni ¼ h2e�2r2k2

, the mean value of uN and hNuN are
huNi ¼ he�
r2k2

2 ð1�wÞhhN�1uN�1i þ ð1þwÞhuN�1i � h2e�r2k2
huN�2i; ð20Þ
and
hhNuNi ¼ h2e�2r2k2
ð1�wÞhhN�1uN�1i þ he�

r2k2
2 ð1þwÞhuN�1i � h3e�

5r2k2
2 huN�2i: ð21Þ
Finally, rewriting Eq. (21) as follows,
hhNuNi ¼ he�
3r2k2

2 huNi � he�
r2k2

2 ð1þwÞðe�r2k2
� 1ÞhuN�1i; ð22Þ
leads to a recursive relation concerning the mean value of uN as
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huNi ¼ h2e�2r2k2
ð1�wÞ þ ð1þwÞ

h i
huN�1i � h2e�2r2k2

1þ ðer2k2
� 1Þw2

h i
huN�2i: ð23Þ
The solution of this second order recurrence equation can be obtained from the roots r1 and r2 of the
associated quadratic equation by the form below
huNi ¼ C1rN
1 þ C2rN

2 ; ð24Þ
where
r1 ¼ h Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B

p� �
; ð25Þ

r2 ¼ h A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B

p� �
; ð26Þ

C1 ¼
ð1þwÞ � r2

r1 � r2
; ð27Þ

C2 ¼
ð1þwÞ � r1

r2 � r1
; ð28Þ
with
A ¼ 1
2

hð1�wÞe�2r2k2
þ 1

h
ð1þwÞ

� �
; ð29Þ

B ¼ e�2r2k2
1þ ðer2k2

� 1Þw2
h i

: ð30Þ
Finally, the value of jTNj can be calculated from the expected value of uN (in the case of a weak Gauss-
ian disorder)
hjTNji ’
1

j huNi j
¼ 1
j C1rN

1 þ C2rN
2 j
: ð31Þ
Eq. (31) is, in a weak disorder approximation, an analytical solution for the transmission coefficient
modulus of a disordered 1D lattice depending directly on the ‘‘strength” of the disorder r and on
the number of cells N.

2.4. Analytical expression for the localization length

In this section, the acoustic attenuation in the Helmholtz resonator is neglected, so that a ¼ 0 and
w ¼ bjx

x2
o�x2. We furthermore suppose that x0 6

pc
d which means that the Helmholtz resonance fre-

quency is smaller than the Bragg frequency fB ¼ pc=d.
Defining g ¼ bx

x2
o�x2 and d ¼ 1

2 ðe�2r2k2 � 1Þ, Eqs. (29) and (30) become
A ¼ C1 þ ðC1 � jC2Þd; ð32Þ
B ¼ 1þ ð2þ g2Þd; ð33Þ
where
C1 ¼ cosðkdÞ � g sinðkdÞ; ð34Þ
and
C2 ¼ sinðkdÞ þ g cosðkdÞ: ð35Þ
A first order expansion in d gives for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B

p
’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC2

1 � 1Þ þ 2C2
1 � 2� g2 � 2jC1C2

� �
d

r
: ð36Þ
Outside the stopbands of the ordered case, C2
1 � 1 < 0, and Eq. (36) may be approximated by
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B

p
’ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

1

q� �
þ
�C1C2 þ j 1� C2

1 þ
g2

2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

1

q
0
B@

1
CAd: ð37Þ
Lastly, this expression leads to the modulus of the roots r1 and r2 as
jr1;2j ’ 1þ 1þ g2

2
� C2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� C2
1

q
0
B@

1
CAd: ð38Þ
Because the modulus of one of the roots is less than 1, it can be neglected and, finally, the expression
for the value of the transmission coefficient outside the stopbands of the ordered case is
hjTN ji ’ exp �dN 1þ g2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

1� C2
1

s !" #
: ð39Þ
A comparison between Eq. (39) and the relation
hj T ji ¼ e�L=n; ð40Þ
giving the transmission coefficient of a disordered lattice as a function of the localization length n and
the lattice length L [36], leads to the asymptotical expression of the adimensional localization length:
n=d ¼ lim
N!þ1

�N
ln j TN j

¼ 1
d

1þ g2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

1� C2
1

s !�1

: ð41Þ
On one hand, the localization length is independent of the lattice length. On the other hand, conversely
to the use of a Monte Carlo simulation, the calculation of the localization length n, may be easily
achieved with a low computational cost thank to Eq. (41).

3. Results and discussion

By using the recursive relation (16), the propagation of an acoustic wave through a lattice made up
of N Helmholtz resonators connected to an infinite cylindrical waveguide with surface area S is sim-
ulated. Each cell of the lattice has a mean length d. An Helmholtz resonator consists of a cylindrical
volume V0 associated to a neck made up of a cylindrical tube of length ‘ and of surface area s.

3.1. Transmission coefficient of a weakly normally distributed disordered 1D lattice

Fig. 3 shows the well-known dispersion relation of the ordered lattice described above, where all
the cells have the same length d. The relation dispersion is given by [14]
cosðqdÞ ¼ cosðkdÞ � 1
2

SqDq
1
kd

1

1� k2
0=k2 sinðkdÞ; ð42Þ
where q is called the Bloch wave number, Sq ¼ s=S, Dq ¼ d=‘e and k0 is defined by k0 ¼ xO=c. In the fol-
lowing, the lattice characteristics are chosen as Sq ¼ 7:84� 10�2, Dq ¼ 5 and k0d ¼ 0:62.

The dispersion relation exhibits the peculiar characteristic of filters marked by forbidden frequen-
cies or gaps or stopbands (marked in gray on Fig. 3) and passbands in the frequency domain which
result from the resonances and the periodic arrangements of the medium. When the relation
j cosðqdÞ j6 1 is satisfied, the waves are within a passband and travel freely in the duct. On the con-
trary, when j cosðqdÞ j> 1, the waves are in a forbidden band and are spatially damped (i.e., evanescent
waves). In the lattice described above, two kinds of stopband appear in the band structure: one is due
to the resonance of the scatterers (Helmholtz resonators), called resonance stopband or Helmholtz
stopband (marked by (a) in Fig. 3) and the other is due to the periodicity of the lattice called Bragg
stopband (marked by (b) in Fig. 3).
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Fig. 3. Dispersion relation of the ordered lattice (Eq. (42)). The gray regions show the stopbands of the lattice: resonance
stopband (a) and Bragg stopband (b).
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In Figs. 4 and 5, the moduli of the transmission coefficient of a disordered lattice, determined by a
Monte Carlo simulation (based on the Eq. (16)) and by the analytical model (from Eq. (31)), are com-
pared. The normally distributed sequence used to built the disordered lattice is characterized by a
standard deviation r ¼ d=50 for Fig. 4 and r ¼ d=20 for Fig. 5, where d is the mean cell length. The
Monte Carlo simulation of the transmission coefficient is the result of 1000 realizations and is com-
puted for a lattice made up of 200 cells. Assuming that dn form an ergodic sequence, the transmission
coefficient is also ergodic [9]. As a consequence, estimating the transmission coefficient of a lattice
made up of N elementary cells with 1000 realizations is asymptotically equivalent to estimating the
transmission coefficient of a lattice made up of 1000 N elementary cells. The comparison of these
two results shows a very good agreement whatever the disorder intensity.

Firstly, the location in the frequency domain of the stopbands determined with the numerical and
analytical methods is in good agreement with the ordered case result. The widths of the stopband in
the disordered cases (defined for jTj close to zero) are increasing with the disorder intensity and, as
expected, the disorder on the cell length clearly acts on the Bragg stopbands width [37]. Around
the Helmholtz stopband (for 0:3 < kd < 1:1) and for r ¼ d=50 the maximum of the difference between
Fig. 4. Modulus of the transmission coefficient of a weakly normally distributed disordered lattice for r ¼ d=50: –, analytical
calculus (from Eq. (31)); h, simulation (from Eq. (16)).



Fig. 5. Modulus of the transmission coefficient of a weakly normally distributed disordered lattice for r ¼ d=20: –, analytical
calculus (from Eq. (31)); h, simulation (from Eq. (16)).
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the transmission coefficient modulus estimated by Monte Carlo simulation and calculated with the
analytical model is 3� 10�4. For r ¼ d=20, the maximum of this difference is 1:6� 10�3.

Secondly, around the Bragg stopband, the analytical method describes very well the propagation of
the wave in the lattice whatever the disorder intensity. Indeed, the comparison between both curves,
for Figs. 4 and 5, reveals only a weak difference for the Bragg stopband with r ¼ d=20 (Fig. 5). Fig. 6
shows a zoom around the Bragg stopband (for 2:7 < kd < 3:6) of the transmission coefficient for two
different disorder intensities (r ¼ d=50 and r ¼ d=20). For the low disorder case ðr ¼ d=50Þ, the dif-
ference between the analytical method and the simulation results for the transmission coefficient is
always smaller than 0.02. Nevertheless, with the increase of the disorder strength (for r ¼ d=20),
the comparison of the two methods shows the validity limit of the analytical model since the maxi-
mum of the difference between modulus of analytical transmission coefficient and simulated one
reaches 0.05.

According to Eq. (31), the modulus of the transmission coefficient of a weakly normally distributed
disorder lattice can then be easily estimated from a simple relation depending on the number of the
cells, on the physical properties of the lattice and on the standard deviation of the disorder. The com-
putational cost is very low for this new method, since this calculation does not require any matrix
product which avoids any divergence problem [37].
Fig. 6. (a) Modulus of the transmission coefficient of a weakly normally distributed disordered lattice for r ¼ d=50 and for
2:7 < kd < 3:6: –, analytical calculus (from Eq. (31)); h, simulation (from Eq. (16)). (b) Modulus of the transmission coefficient
of a weakly normally distributed disordered lattice for r ¼ d=20 and for 2:7 < kd < 3:6: –, analytical calculus (from Eq. (31)); h,
simulation (from Eq. (16)).
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3.2. Determination of the localization length

The analytical model presented in Section 2 is used to estimate the localization length of a disor-
dered lattice using Eq. (41) for different disorder intensities and for different frequencies. The lattice
under consideration in this study consists of 2000 cells with a mean length d. The relevant adimen-
sional parameter m is considered here for measuring the level of disorder, such that
Fig. 7.
kd ¼ 0:
frequen
help of
with 50
localiza
web ve
m ¼ 6r
d
:

As a consequence, a disorder level corresponding to m ¼ 0:5 leads to about 50% of error on the lattice
cell length.

First, the analytical expression of the localization length (Eq. (41)) is compared to Monte Carlo sim-
ulation results (from Eq. (16)) and to the analytical results of Eq. (31). For this, the modulus of the
transmission coefficient is calculated using Eqs. (16) and (31) and the localization length is estimated
using Eq. (40).
(a) Adimensional localization length of a normally distributed disordered 1D lattice vs. disorder intensity for a frequency
856. (b) Adimensional localization length of a normally distributed disordered 1D lattice vs. disorder intensity for a
cy kd ¼ 3:01. The blue line corresponds to the analytical calculus (from the transmission coefficient calculated with the
Eq. (31)), the black line to the Monte Carlo simulation results (from the transmission coefficient estimated by Eq. (16))

realizations for kd ¼ 3:01 and 10 realizations for kd ¼ 0:856 and the green line to the analytical calculus of the
tion length (from Eq. (41)). (For interpretation of the references to color in this figure legend, the reader is referred to the
rsion of this article.)



Fig. 8. Adimensional localization length of a normally distributed disordered 1D lattice vs. disorder intensity for an
adimensional frequency: (a) kd ¼ 2:83, (b) kd ¼ 2:92, (c) kd ¼ 3:01, (d) kd ¼ 3:03, (e) kd ¼ 3:041 and (f) kd ¼ 3:043.
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Fig. 7(a) and (b) shows this comparison for two different frequencies: (a) kd ¼ 3:01, i.e., in the low
edge of the Bragg stopband, (b) kd ¼ 0:856, i.e., in the Helmholtz stopband. For each case, two lattices
are tested corresponding to N ¼ 500 and to N ¼ 2000 cells for kd ¼ 3:01 and to N ¼ 2000 and to
N ¼ 5000 cells for kd ¼ 0:856. For each frequency, the condition C2

1 � 1 < 0 is verified.
For kd ¼ 0:856 the agreement between the different results may be considered as very good. For

N ¼ 5000 and N ¼ 2000, the Monte Carlo simulation and the calculation of the localization length with
the help of the Eq. (31) give the same results. The asymptotic limit (for N ! þ1) of these two methods
corresponds to the analytical curve of the localization length (41).

For kd ¼ 3:01, the same remark can be made. The agreement between the different results is also
very good. The effect of the number of lattice cells on the localization length estimation is clearly
shown by comparing the cases N ¼ 500 and N ¼ 2000, the case N ¼ 2000 joining the asymptotic limit
(derived from Eq. (41)) for a lower value of disorder intensity than the case of N ¼ 500.

Then, Eq. (41) can be used to characterize the propagation in a disordered lattice through the local-
ization length. Fig. 8 shows the results of such a calculation for kd = 2.83, 2.92, 3.01, 3.03, 3.041 and
3.043. All the frequencies are in the low edge of the first Bragg stopband which is most influenced
by the disorder [37].
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Fig. 9. Adimensional localization length of a normally distributed disordered 1D lattice in function of the adimensional
frequency kd for some different values of the disorder level: (a) 6r=d ¼ 0:05, (b) 6r=d ¼ 0:066, (c) 6r=d ¼ 0:08, (d) 6r=d ¼ 0:1,
(e) 6r=d ¼ 0:13, (f) 6r=d ¼ 0:2 and (g) 6r=d ¼ 0:4. The frequency range is include in the first stopband due to Helmholtz
resonance.
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Fig. 8 illustrates, in a ½log; log� representation, the adimensional localization length as a function of
the disorder strength. The influence of the disorder on the localization length is shown. The more dis-
ordered the lattice, the smaller the localization length is, whatever the frequency. Regarding the fre-
quencies, the closer they are to the center of the stopband (for kd increasing in Fig. 8), the smaller the
localization length is.

From the analytical model, it is consequently possible to evaluate the propagation characteristics of
the disordered lattice. On one hand, if the lattice length is smaller than the localization length, the
wave is localized inside the lattice and the medium is considered as opaque. In the present case, for
a disorder level m > 0:3, all the waves are localized whatever the frequencies. On the contrary, for
m 6 0:025, all the waves propagate through the lattice.

Fig. 9 presents the adimensional localization length as a function of the adimensional frequency kd
for different disorder levels in the Helmholtz stopband of the ordered case. Contrary to above, the fre-
quencies are chosen inside the stopband in the disordered lattice case (but outside the stopband of the
ordered case where the condition C2

1 � 1 < 0 is verified). The localization lengths in this case are com-
parable with the Bragg stopband case (where the frequencies are in the low edge of the stopband)
which demonstrates that the Anderson localization can be different, depending on the stopband char-
acteristics. The influence of the disorder level is much more important for frequencies near the Bragg
stopband than for frequencies in the Helmholtz stopband. As a consequence, the modulus of the trans-
mission coefficient is not sufficient for studying the propagation wave through a disordered lattice and
the analysis of the localization length can bring some precisions about the localization phenomenon.

4. Conclusion

In the present paper, a new method to study analytically the wave propagation in a weakly nor-
mally distributed disordered 1D lattice is proposed. The transmission coefficient of the disordered lat-
tice is calculated analytically. The results are in very good agreement with the Monte Carlo simulation
results based on a recursive relation applied to the transmission coefficient. Thanks to the analytical
formulation, an expression of the localization length independent of the lattice length is also found.
The localization length in two kinds of stopband is then characterized and we show that the influence
of disorder on the wave propagation is more important near the Bragg stopband than near the Helm-
holtz stopband.
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