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A new approach for estimating the acoustic pressure in the near field of a microphone based on non-
intrusive direct measurement of acoustic particle velocity is proposed.

This method enables the estimation of the acoustic pressure inside a domain located in front of the
microphone membrane. The acoustic pressure is calculated using the acoustic particle velocity on the
frontiers of this domain and a physical model based on the Green function of the system.

Results are obtained using the acoustic velocity measured with Particle Image Velocimetry (PIV) in
front of a microphone excited with a plane wave inside a rectangular waveguide. They show that the dif-
fraction of the plane wave by the microphone leads to an increase of the acoustic pressure on the micro-
phone edge in the order of magnitude of 0.1 dB.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction On the one hand, authors consider that the impedance of the
Over the years, several methods have been developed for micro-
phone calibration (for a review see [1]). These methods can be clas-
sified into two sorts: (i) relative calibration which provides an
estimate of the sensitivity of a microphone as a function of a refer-
ence sensitivity and (ii) absolute calibration [2] which leads to an
estimation of the sensitivity without any reference microphone.

For absolute calibration, the reciprocity technique is usually
used which provides a typical precision of around 0.05 dB in an en-
closed field configuration. In a free field configuration, this tech-
nique has been adapted [3,4] and standardized [5]. Nevertheless,
free field absolute calibration suffers from numerous problems
which are not resolved at present: the location of the acoustic cen-
ter of the microphone is crucially important [6], the generation of
standing waves between the different microphones perturbs the
measurements and, generally, external reflections disturb the
acoustic field in the vicinity of the microphone.

Microphone calibration using non-intrusive optical techniques
such as laser Doppler Velocimetry is proposed by some authors.
These studies are mainly conducted in enclosed field conditions,
more precisely in waveguides excited with plane waves. Two ap-
proaches are used.
ll rights reserved.
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medium is known and measure the acoustic velocity at a single
point. This supposes that the boundary conditions of the medium
are perfectly known. We call it the ”global approach”. In this case,
the acoustic pressure can be estimated at the measurement point
thanks to the impedance. Acoustic pressure can also be estimated
elsewhere using a propagation model of the system under study.
Taylor [7], MacGillivray [8,9] and Koukoulas et al. [10] use this ap-
proach. First results are encouraging: Taylor [7] shows that this
method is accurate within ± 0.03 dB at 500 Hz, MacGillivray et al.
[8,9] reach an accuracy of around 0.1 dB and Koukoulas et al.
[10] propose an accuracy of 0.2 dB at 170 Hz.

On the other hand, authors consider a volume of fluid and mea-
sure the acoustic velocity on the volume boundaries. A propagating
model of the fluid enables the estimation of the acoustic pressure
everywhere in the volume. We call this the ”local approach”. For
plane waves a slice of fluid is considered and the acoustic velocity
measured at two points to estimate the acoustic pressure in the
middle of the slice. Degroot et al. [11] use this approach and show
that using a (u–u) probe with two LDV measurements provides a
minimum uncertainty on the pressure estimation of 0.013 dB for
frequencies of 1360 Hz and 680 Hz.

The approaches described above for enclosed field calibration
could be used in a free field. The first (global) approach only re-
quires the measurement of the acoustic velocity at a single point
but also requires that the impedance of the fluid for free field
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conditions is known. This can only be the case if the boundary con-
ditions of the system are perfectly known, for example in a semi-
infinite domain which can be reproduced with a semi anechoïc
chamber. The second (local) approach does not require the bound-
ary conditions of the system under study to be known but instead
the acoustic velocity must be measured at a number of locations
near the microphone membrane, in order to estimate the acoustic
pressure on the membrane.

The local approach requires the characterization of the acoustic
nearfield of a structure by LDV or other non-intrusive techniques.
Previous work has been done by Gazengel et al. [12], who measure
the acoustic particle velocity in front of a loudspeaker to character-
ize its acoustic radiation in a free field using the LDV technique.
Schedin et al. [13] propose measuring the acoustic particle velocity
in the vicinity of a plate using two-reference-beam double-pulsed
holographic interferometry and Moreau et al. characterize the
acoustic field in a waveguide boundary layer using LDV and PIV
techniques [14].

In this paper, we propose a preliminary study for calibrating
microphones in free field conditions using a non-intrusive mea-
surement technique and the local approach described above. Sec-
tion 2 presents the general method used for estimating the
acoustic pressure on the microphone membrane using the acoustic
velocity measured at many locations near the membrane. Section 3
presents the experimental study of the acoustic field in the close
vicinity of a microphone. In this section, the acoustic particle veloc-
ity is measured using a PIV technique. In the fourth section, a 2D
model of the acoustic field near the microphone in derived using
the Green function of the volume under study. Finally, the acoustic
pressure field is estimated in front of the microphone membrane
using the measured acoustic velocity and some discussion is given.
2. General formulation of the acoustic pressure field in the
vicinity of a microphone membrane

In this section, a microphone excited with a plane wave is stud-
ied. An analytical development of the pressure field is proposed,
considering a fluid domain (air) located in front of the microphone
membrane (see Fig. 1). Acoustic pressure inside this volume can be
estimated at the position ðr; h; zÞ ¼ ð~w; zÞ by means of measure-
ment of normal velocity on the volume boundaries with an integral
formulation.
Fig. 1. Studied volume in front of the microphone.
The system under study (see Fig. 1) is an air fluid column with
length L and a circular section of radius ra. The circular sections
ðS1; S2Þ and the surface of the fluid column S3 are subjected respec-
tively to the normal acoustic velocities vn1 ;vn2 and vn3 . As de-
scribed in Fig. 1 and according to experimental results presented
in Section 3, the normal acoustic velocities vn1 and vn2 are chosen
to be uniform on the circular section and vn3 is considered to vary
on the section S3.

A general integral formulation of the acoustic pressure in the
volume V is proposed hereafter.

In the frequency domain the acoustic pressure pð~r; tÞ is written
as

pð~r; tÞ ¼ pð~rÞejxt; ð1Þ

where x is the acoustic pulsation defined by x ¼ 2pf . In the linear
acoustic approximation and in the case of a perfect fluid, the acous-
tic propagation in the air fluid column V, is given by

ðDþ k2Þpð~rÞ ¼ 0; ð2Þ

where k ¼ x=c0 is the wave number and c0 is the sound celerity.
The boundary conditions associated with Eq. (2) are written

@pð~rÞ
@n

¼ �jxqvn1 ðrÞ for r 2 ð0; raÞ; h 2 ð0;2pÞ; z ¼ 0; ð3Þ

@pð~rÞ
@n

¼ �jxqvn2 ðrÞ for r 2 ð0; raÞ; h 2 ð0;2pÞ; z ¼ L; ð4Þ

@pð~rÞ
@n

¼ �jxqvn3 ðrÞ for r ¼ ra; h 2 ð0;2pÞ; z 2 ð0; LÞ; ð5Þ

where q is the air density and @=@n ¼ @n is the normal derivative to
the surface S. The acoustic pressure field pð~rÞ in the volume V (de-
scribed by the closed surface S) is written, in this integral form,

pð~rÞ ¼
Z Z Z

V
Gð~r;~r0Þf ð~r0ÞdV0 þ

Z Z
S
½Gð~r;~r0Þ@n0pð~r0Þ

� pð~r0Þ@n0Gð~r;~r0Þ�dS0; ð6Þ

where the function f ð~r0Þ describes the sources distributed inside the
volume V and Gð~r;~r0Þ is the Green function defined by the following
equation:

ðDþ k2ÞGð~r;~r0Þ ¼ �dð~r �~r0Þ in V ; ð7Þ

and the boundary conditions on the surface S. In Eq. (7), dð~r �~r0Þ is
the Dirac distribution. The boundary conditions for the Green func-
tion are chosen as

@n0 Gð~r;~r0Þ ¼ 0 for r 2 ð0; raÞ; h 2 ð0;2pÞ; z ¼ 0; ð8Þ
@n0 Gð~r;~r0Þ ¼ 0 for r 2 ð0; raÞ; h 2 ð0;2pÞ; z ¼ L; ð9Þ
@n0 Gð~r;~r0Þ ¼ 0 for r ¼ ra; h 2 ð0;2pÞ; z 2 ð0; LÞ; ð10Þ

to allow a description of the acoustic pressure field as a function of
the acoustic velocity on the boundaries. Using Eqs. (7)–(10), Eq. (6),
without any sources ðf ð~r0Þ ¼ 0Þ, is written

pð~rÞ ¼
Z Z

S
Gð~r;~r0Þ@n0pð~r0ÞdS0: ð11Þ

Eq. (11) combined with Eqs. (3)–(5) leads to the following expres-
sion for the acoustic pressure in the volume V

pð~rÞ ¼ �jxq
Z Z

S
Gð~r;~r0Þvn0 dS0

¼ �jxq
X

i

Z Z
Si

Gð~r;~r0Þvni
dSi; ð12Þ

where i = 1, 2, and 3. Knowing the acoustic velocity on the surface
S1; S2, and S3 and the Green function of the system, the acoustic
pressure can determined in the volume V with the Eq. (12).
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Fig. 3. View of the 20 measurement phases during one acoustic period.
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3. Experimental characterization of the acoustic velocity field in
the vicinity of a microphone membrane

In this section, the acoustic velocity field is estimated experi-
mentally using Particle Image Velocimetry (PIV) inside the domain
close to the microphone membrane as shown in Fig. 1. The micro-
phone is positioned inside a waveguide. PIV has previously been
used to study acoustic flow in a waveguide [14]. The acoustic
velocity field is measured inside a plane region (laser sheet) of
dimensions 2ra� L.

3.1. Experimental set-up

3.1.1. PIV system
The PIV system uses a pulsed Cu-Laser Oxford Lasers LS20-50

with a time between pulses of 20 ls. The mean power of the laser
is 20 W and each pulse has a duration of 25–30 ns with a wave-
length of 510.6 nm (green). The beam from the laser is converted
to a light sheet for delivery to the region of interest. A CCD camera
(Sensicam Double Shutter) is used for the acquisition of the PIV
images, with a resolution 1280 � 1024 pixels. A Berkley Nucleonics
model 500 A pulse generator is used in conjunction with National
Instruments LabVIEW software to allow the capture of PIV image
pairs at any phase in the period of the acoustic cycle. Thirty mea-
surements are made at a given phase and averaged to estimate
the velocity field. Cross-correlation and post-processing are carried
out on in-house PIV software.

3.1.2. Acoustic system
The experimental set-up is made up of a JBL 2446H loudspeaker

mounted on a closed Perspex tube (with 10 mm wall thickness)
with a length L = 0.5 m and a square section S ¼ 0:1� 0:1 m2. The
first cut-off frequency is 1720 Hz (first transverse mode). In the
waveguide, a 1 in. B&K microphone is placed parallel to the guide
axis. Fig. 2 shows the acoustic set-up and the PIV system.

A stationary plane wave with a frequency f = 680 Hz is estab-
lished in the waveguide. The microphone membrane is located be-
tween a node and an antinode of acoustic velocity to measure a
sufficient acoustic velocity amplitude for PIV. The light sheet posi-
tion is adjusted so as to graze the microphone membrane, in a
plane corresponding to the diameter of the membrane. The wave-
guide is ”seeded” using a SAFEX fog machine. The seeding is intro-
duced during 3–5 s and 10–15 min are required before doing the
measurement. The CCD Camera is positioned perpendicular to
the light sheet and focused on the illuminated fog particles. The
Fig. 2. Experimental set-up.
observation window corresponds to a rectangular section of the
volume under study (dimensions 2ra � L). Measurements are real-
ized for 20 equally spaced phase steps in the acoustic period (see
Fig. 3).

3.2. Experimental results

3.2.1. General analysis
The acoustic velocity field measured for the phase 3 of the

acoustic period is shown on the Fig. 4. The z-axis is the guide axis.
The dimensions of the PIV image are 0:02� 0:024 m2. This PIV im-
age highlights the evolution of the acoustic velocity field stream-
lines at the vicinity of the microphone membrane. In this
representation, the velocity vectors go toward the membrane for
a positive velocity amplitude. The shape of the field lines are
approximately symmetrical around the microphone axis.

3.2.2. Longitudinal acoustic velocity
Fig. 5 shows the longitudinal acoustic velocity vz as a function

of r for z = 0 m and for z = 0.015 m. In this figure, the microphone
membrane is located at z = 0.015 m. This figure shows that the lon-
gitudinal velocity amplitude is almost constant for z = 0. The acous-
tic wave can therefore be considered to be plane at this position
(corresponding to surface S1, see Fig. 1) in the domain under study.
However, velocity vn1 shows a variation of �5:10�3 m s�1 around
the mean value ð5:10�2 m s�1Þ, which introduces an uncertainty
in the pressure estimation.

In the very closed vicinity of the microphone (the region defined
by r 2 ½�0:004; 0:004�m and z 2 ½0:013; 0:015�mÞ, the acoustic
Fig. 4. View of experimental acoustic velocity field in the vicinity of the
microphone for phase 3.
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velocity field vanishes due to the membrane stiffness. For r = 0,
the amplitude of the acoustic velocity vz decreases from
0:045 m s�1ðz ¼ 0 mÞ to 2:10�3 m s�1ðz ¼ 0:015 mÞ. Assuming the
membrane velocity equals the acoustic velocity at z = 0.015 m, this
result shows that the membrane velocity is very small compared
with the acoustic velocity (ratio ’ 1/22) measured at z = 0
(15 mm from the membrane). This result should be confirmed by
complementary direct measurements of the membrane velocity.
In further works, the microphone membrane velocity should be
measured by means of a Laser Vibrometer in order to confirm this
hypothesis.
3.2.3. Radial acoustic velocity
Fig. 6A shows the radial acoustic velocity amplitude v r as a

function of r for z = 0 m and z = 0.015 m. In the very close vicinity
of the membrane, the acoustic velocity amplitude v r increases with
r. At z = 0.015 m and for r = 0 m, the radial acoustic velocity ampli-
tude is vr ¼ 1:10�4 m s�1 and for r = 0.011 m, v r ¼ 0:45 m s�1. v r is
maximum for r = 0.012 m which illustrates the acoustic leakage at
the edge of the microphone. In the vicinity of the microphone, the
distribution of the radial velocity amplitude is not exactly symmet-
ric (Fig. 6A). This asymmetry can be due to microphone misalign-
ment, error in the velocity estimation with PIV or a weak air
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Fig. 6. (A) Radial acoustic velocity amplitude v r as a function of r for z = 0 m (a) and
z = 0.0136 m (. . .), (b) z = 0.0139 m (– –), (c) z = 0.0142 m (*), and (d) z = 0.0145 (+).
current caused by thermal effects. For greater distance from the
microphone (z < 0.015 m), the radial velocity amplitude becomes
symmetric as shown on Fig. 6B.

Finally, Fig. 7 illustrates the radial acoustic velocity amplitude
vr as a function of z for r = 0 m and r = 0.012 m corresponding to
surface S3 shown in Fig. 1. The radial acoustic velocity amplitude
increases from zero (r = 0 m) to 0:033 m s�1 (r = 0.012 m).

This phenomenon illustrates again the presence of acoustic
leakage on the edge of the microphone and has to be taken into ac-
count in Eq. (12).

Taking these experimental results into account, we consider in
the following that the longitudinal velocity vn1 is constant, that
the membrane velocity vn2 can be neglected ðvn2 ¼ 0Þ and that
the radial velocity vn3 depends on the z coordinate. The profile of
vn3 as a function of z is estimated analytically in the following (Sec-
tion 5).
4. Analytical model of the acoustic pressure field in the vicinity
of a microphone membrane

In this section, we derive a specific expression of acoustic pres-
sure in volume V using the normal velocity profiles vn1 and vn3

estimated from experimental results (Section 3). We assume an
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z = 0.015 (b). (B) Radial acoustic velocity amplitude v r as a function of r for (a)
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axial symmetry of the system, which allows the derivation of a 2D
model of the acoustic field.

4.1. Green function of the system

The Green function Gð~r;~r0Þ solution of the problem described by
Eq. (7), can be presented as

ðD~w þ dz þ k2ÞGð~w; z;~w0; z0Þ ¼ �dð~w� ~w0Þdðz� z0Þ in V ; ð13Þ

where D~w ¼ ð1=rÞ@rðr@rÞ þ ð1=r2Þ@h2. The boundary conditions (Eqs.
(8)–(10)) are expressed as following:

@n0 Gð~r;~r0Þ ¼ @z0 Gð~w; z; ~w0; z0Þ ¼ 0 for z ¼ 0; ð14Þ
@n0 Gð~r;~r0Þ ¼ @z0 Gð~w; z; ~w0; z0Þ ¼ 0 for z ¼ L; ð15Þ
@n0 Gð~r;~r0Þ ¼ @r0 Gð~w; z; ~w0; z0Þ ¼ 0 for r ¼ ra: ð16Þ

The Green function Gð~w; z; ~w0; z0Þ can be written as a discrete sum of
eigenfunctions Wlmð~wÞ of the cylinder V under the form

Gð~w; z;~w0; z0Þ ¼
X1
l;m¼0

glmðz; z0ÞWlmð~w0Wlmð~wÞ; ð17Þ

where gl;mðz; z0Þ are dependent on the position z and Wlmð~wÞ are
solutions of the following problem:

ðD~w þ k2
wlmÞWlmð~wÞ ¼ �dð~w� ~w0Þ8r 2 ð0; raÞ

and 8h 2 ð0;2pÞ; ð18Þ
@nWlmð~wÞ ¼ 0 for r ¼ ra and 8h 2 ð0;2pÞ: ð19Þ

The eigenfunctions Wlmð~wÞ ¼ Wlmðr; hÞ take the following form

Wlmðr; hÞ ¼ Alm cosðlhÞJlðkwlmrÞ; ð20Þ

where Jl is the Bessel function and the eigenvalues kwlm are given by

kwlm ¼
clm

ra
; with J0lðclmÞ ¼ 0: ð21Þ

The coefficients Alm are found using the orthogonality of the eigen-
functions and are expressed as

Alm ¼
2

ð1þ dl0Þpra2 1� l2
clm2

� �
J2lðclmÞ

: ð22Þ

Using Eqs. (13), (17) and (18), the coefficients glmðz; z0Þ are solutions
of the following relation

ðd2
z þ k2

zlmÞglmðz; z0Þ ¼ dðz� z0Þ for z 2 ð0; LÞ ð23Þ

with k2zlm ¼ k2� kwlm2. The boundary conditions are given by

@zglmðz; z0Þ ¼ 0 for z ¼ 0; ð24Þ
@zglmðz; z0Þ ¼ 0 for z ¼ L; ð25Þ

and the solution is written

glmðz; z0Þ ¼ �
cosðkzlmzÞ cos½kzlmðz0 � LÞ�

kzlm sinðkzlmLÞ if z < z0; ð26Þ

glmðz; z0Þ ¼ �
cosðkzlmz0Þ cos½kzlmðz� LÞ�

kzlm sinðkzlmLÞ if z > z0: ð27Þ
4.2. General formulation of acoustic pressure in the volume V

The acoustic pressure in the volume V can now be determined
by means of the Green function of the system and the normal
acoustic velocity on the surface S. Using Eq. (17) in Eq. (12), the
pressure is written as

pð~rÞ ¼ �jxq
X

i

Z Z
Si

X1
l;m¼0

glmðz; z0ÞWlmð~w0ÞWlmð~wÞvni
dSi; ð28Þ
for i = 1, 2, and 3 corresponding, respectively, to the surface Si and
the normal velocities vni

. Setting

piðr; h; zÞ ¼ �jxq
X1
l;m¼0

Z Z
Si

glmðz; z0ÞWlmð~w0ÞWlmð~wÞvni
dSi ð29Þ

the total pressure in the volume V is written as

pðr; h; zÞ ¼
X3

i¼1

piðr; h; zÞ ð30Þ

where i indicates the considered surface of the volume. The pres-
sure due to the different surfaces can now be calculated separately
to show the influence of each surface area.

4.2.1. Calculation of the pressure field p1ðr; h; zÞ
Using Eqs. (20) and (21) in Eq. (29), the pressure field p1ðr; h; zÞ

is expressed as

p1ðr; h; zÞ ¼ �jxq
X1
l;m¼0

glmðz;0ÞA2lm cosðlhÞJl
clm

ra
r

� �
2pdm0

�
Z ra

0
vn1 ðr0ÞJl

clm

ra
r0

� �
r0dr0dh0 ð31Þ

where vn1 ðr0Þ, the normal acoustic velocity field for x ¼ 0, is inde-
pendent of h. Taking into account the cylindrical symmetry of the
system, the acoustic pressure field p1 is also independent of h
(which implies that l ¼ 0) and is written as

p1ðr; zÞ ¼ �jxq
X1
m¼0

g0mðz;0ÞA2
0mJ0

c0m

ra
r

� �
2p
Z ra

0
vn1 ðr0ÞJ0

c0m

ra
r0

� �

� r0dr0dh0; ð32Þ

with

g0mðz;0Þ ¼ �
cosðkz0mðz� LÞÞ
kz0m sinðkz0mLÞ for z > 0; ð33Þ

and

A20m ¼ �
1

ra2pJ0ðc0mÞ
: ð34Þ
4.2.2. Calculation of the pressure field p2ðr; h; zÞ
The acoustic pressure field p2ðr; h; zÞ, considered as independent

of h (due to the cylindrical symmetry), can be expressed as

p2ðr; zÞ ¼ �jxq
X1
m¼0

g0mðz; LÞA2
0mJ0

c0m
ra

r
� �

2p
Z ra

0
vn2 ðr0ÞJ0

c0m
ra

r0

� �

� r0dr0dh0; ð35Þ

with

g0mðz; LÞ ¼ �
cosðkz0mzÞ

kz0m sinðkz0mLÞ for z < L; ð36Þ

and A2
0m defined by Eq. (34).

4.2.3. Calculation of the pressure field p3ðr; h; zÞ
The normal acoustic velocity vn3 on the surface S3, considered as

independent of r and h (due to the cylindrical symmetry), depends
only on the z coordinate. The acoustic pressure field p3ðr; h; zÞ, con-
sidered as independent of h (due to the cylindrical symmetry), is
expressed as a function of the normal acoustic velocity vn3 ðzÞ on
the surface S3 in using Eqs. (20) and (21)
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Fig. 9. Calculation of acoustic pressure amplitude in the vicinity of the microphone
using Eq. (40) with m ¼ 2.

Fig. 10. Calculation of acoustic pressure amplitude in the vicinity of the micro-
phone using Eq. (40) with m ¼ 90.
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p3ðr; zÞ ¼ �jxq
X1
m¼0

A2
0mJ0ðc0mÞJ0

c0m
ra

r
� �

2pra

�
Z L

0
vn3 ðz0Þg0mðz; z0Þdz0: ð37Þ

The expression for g0mðz; z0Þ depends on the acoustic velocity profile
vn3 ðzÞ on the surface S3.

4.3. Calculation of acoustic pressure in the volume V

Using Eqs. (30), (32), (35) and (37) and, as shown by the exper-
imental results (Section 3.2), considering a incident plane wave on
the surface S1 and vn2 ðrÞ ¼ 0 on the surface S2, the total pressure
field in the volume V can be written as

pðr; zÞ ¼ jxq
cos½kðz� LÞ�

k sin kL
vn1

þ j
2xq

ra

X1
m¼0

J0
c0m
ra

r
� �

J0ðc0mÞ
1

kz0m sinðkz0mLÞ

0
@

� cos½kz0mðz� LÞ�
Z z

0
vn3 ðz0Þ cos½kz0mz0�dz0 þ cos½kz0mz�

�

�
Z L

z
vn3 ðz0Þ cos½kz0mðz0 � LÞ�dz0

��
; ð38Þ

where A2
0m and g0mðz; z0Þ have been substituted by their expressions

given by Eqs. (34), (24) and (25).
To express the total pressure field in the volume V, the acoustic

velocity profile vn3 ðzÞ on the surface S3 must be determined. The
experimental results (Section 3.2) suggest that this profile can be
modeled by a parabolic curve defined as

vn3 ðzÞ ¼ �gz2 for z 2 ½0; L� and g > 0: ð39Þ

Finally, the calculation of the integral function in Eq. (38) using Eq.
(39) leads to the following result for the total pressure in the vol-
ume V

pðr; zÞ ¼ jxq
cos½kðz� LÞ�

k sin kL
vn1

� j
2xq

ra

X1
m¼0

J0
c0m
ra

r
� �

J0ðc0mÞ
g

k2
z0m sinðkz0mLÞ

�
�

z2 sinðkz0mLÞ

0
@

þ 2
kz0m

� 1
kz0m

sinðkz0mLÞ þ L cosðkz0mzÞ
� 	��

; ð40Þ

where k ¼ kz00.
Now, the characterization of the acoustic pressure field in the

vicinity of the microphone (volume V) can be made with the
knowledge of the normal acoustic velocities on the volume
boundaries.

5. Results and discussion

The calculation the acoustic pressure in front of the microphone
requires the determination of the coefficient of the parabolic curve
describing the variation of the normal acoustic velocity on the sur-
face S3. This coefficient g defined in Eq. (39) is determined by a
minimization method. Fig. 8 shows a comparison between the
experimental data and the model (defined by Eq. (39)) with
g ¼ 135 m�1 s�1. PIV measurements of the acoustic velocity ampli-
tude normal to S3 have been obtained for the phase 3 of the acous-
tic period (see Fig. 3).

Figs. 9 and 10 show the calculation of the pressure amplitude in
the volume V for m ¼ 2 modes and for m ¼ 90 modes, respectively
(m > 0 corresponds to radial modes defined in Eq. (40)). The influ-
ence of the number of modes on the calculation of the acoustic
pressure is clearly shown by comparing these two figures. The dif-
fraction effects on the acoustic wave due to the microphone are
visible even with 2 modes but this phenomenon is described more
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precisely when the modes number increases. According to the
experimental results, the presence of the microphone distorts the
velocity field streamlines allowing an acoustic leak on the border
of the microphone (Fig. 4). This phenomenon leads to an increase
of the acoustic pressure amplitude on the edge of the microphone.
The acoustic pressure amplitude is not constant along the micro-
phone membrane, varying from 126.65 dB at the microphone cen-
ter to 126.8 dB at the microphone border. Due to the volume
dimension and to the acoustic frequency (f = 680 Hz), only the
plane mode is propagative and all the higher modes are evanes-
cent. The result of the calculation shows that the microphone edge
creates diffraction of the plane wave which leads to the redistribu-
tion of the acoustic energy of all the modes and consequently to
the excitation of higher modes.
6. Conclusion

A microphone subjected to a plane wave has been studied.
Using a propagation model in a fluid domain located close to the
microphone membrane and measuring the acoustic velocities on
the boundary on the domain provides an estimate of the acoustic
pressure on the microphone membrane. This model assumes that
the normal acoustic velocity on the microphone membrane is uni-
formly zero and considers the incident wave as plane.

This preliminary study of the acoustic pressure field in the very
close vicinity of a microphone highlights an acoustic pressure gra-
dient along the microphone membrane in order of magnitude of
0.1 dB. This acoustic pressure difference existing between the cen-
ter and the edge of the membrane can be very problematic when
microphone calibration requires an uncertainty less than 0.1 dB.
The hypothesis used in this work (incident plane wave, parabolic
profile of radial velocity and motionless membrane) tend to mini-
mize this pressure gradient value. A numerical calculation of inte-
grals (Green formulation) would enable to ignore these hypothesis
and could lead to a more realistic pressure estimation.

This preliminary study opens new horizons in microphone cal-
ibration research, especially in free field conditions. These first re-
sults on the acoustic pressure field in the very close vicinity set an
important question: what is measured by the microphone since
the acoustic pressure is not uniform along the membrane?
In the future, these results should be validated by measuring
the acoustic pressure field in the very close vicinity of the micro-
phone using, for instance, a small probe to not perturb the acoustic
field. The proposed model can be improved by taking into account
the membrane motion which could be estimated using laser probe
measurements.
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