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Abstract—This paper presents a least-mean-square (LMS) algo-
rithm for the joint estimation of acoustic and mean flow velocities
from laser Doppler velocimetry (LDV) measurements. The usual
algorithms used for measuring with LDV purely acoustic velocity
or mean flow velocity may not be used when the acoustic field is
disturbed by a mean flow component. The LMS-based algorithm
allows accurate estimations of both acoustic and mean flow veloc-
ities. The Cramér–Rao bound (CRB) of the associated problem
is determined. The variance of the estimators of both acoustic
and mean flow velocities is also given. Simulation results of this
algorithm are compared with the CRB, and the comparison leads
us to validate this estimator.

Index Terms—Acoustic velocity, Cramér–Rao bound (CRB),
laser Doppler velocimetry (LDV), least-mean-square (LMS)
method, mean flow velocity.

I. INTRODUCTION

THE LASER doppler velocimeter (LDV) is an optical
technique allowing direct measurement of local and in-

stantaneous fluid velocity. This method is nonintrusive and
is based on optical interferometry for estimating the velocity
of scatterers suspended in a fluid by means of the frequency
analysis of the light scattered by the seeding particles [1].

For fluid mechanics measurements, the particle velocity
can be considered as constant during the transit time of the
seeding particle through the measurement volume (defined by
the interferometry fringe volume), and the frequency of the
LDV signal is constant during this period [2]. Typical orders
of magnitude of mean flow velocities are from a few meters
per second up to higher than the acoustic celerity (supersonic
flow). The data processing consists then to estimate the power
spectral density (PSD) of the velocity signal from Poisson-
based randomly distributed samples. PSD may be estimated by
interpolating the randomly distributed samples, by resampling
the interpolating signal, and by compensating the effect of
interpolation in the Fourier domain [3], [4]. The autocorrelation
function (ACF) may also be reconstructed from the randomly
distributed samples, and the Fourier transform of the estimated
ACF gives an estimation of the PSD [5]. Finally, Kalman
filtering may be used to estimate the PSD [6].
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For sine acoustic excitation, the particle velocity is no longer
constant, and the LDV signal is frequency modulated [7], [8].
To estimate the particle velocity from these signals, specific
signal processing techniques are used, such as spectral analysis
[9]–[11], photon correlation [12], or frequency demodulation
associated with postprocessing methods [13]–[15]. Typical
orders of magnitude of mean flow velocities are from a few
micrometers per second up to 100 mm/s for frequencies from
10 to 4000 Hz.

On one hand, for most acoustic measurements, the particle
velocity can be considered as the sum of an ac component due
to acoustic excitation and a weak dc contribution due to flow.
When the particle oscillates in the measurement volume during
some acoustic periods, the effect of the flow can be reduced,
and usual postprocessing methods may be used [13]–[16].

On the other hand, the dc-flow component in many cases
prevents the use of the postprocessing methods given in
[13]–[15] because the signal time length is less or largely less
than one acoustic period. The aim of this paper is to estimate
both the dc (flow) and ac (acoustic) components from such LDV
signals.

Lazreq and Ville [17] measured the acoustic velocity in the
presence of mean flow by means of a probe consisting of a hot
wire and a microphone. Their results showed a good agreement
between the theory and the experiment, but this probe cannot
be considered as nonintrusive. LDV has also been used by
adapting the slotting technique to estimate the acoustic particle
velocity in a turbulent flow [18] with a 2-D LDV velocimeter.
The acoustic impedance was estimated by means of an LDV
probe and with a microphone probe, and the different results
were compared. Finally, Boucheron et al. [19] have developed
a new method of signal processing, called “perio-correlation,”
to estimate sine acoustic velocity in strong mean flow by LDV.

In this paper, the sine acoustic excitation is supposed to
be perfectly known, and a frequency demodulation technique
[15] is performed to estimate the particle velocity from the
LDV signal. In this paper, we propose a new method to jointly
estimate the acoustic particle velocity (amplitude and phase)
and the mean flow velocity from the velocity signal. This
method is based on the least-mean-square (LMS) algorithm.
The mean flow velocity and the amplitude and phase of acoustic
particle velocity are estimated for each seeding particle cross-
ing the measurement volume. Furthermore, the Cramér–Rao
bound (CRB) of the associated problem is calculated. The
CRB gives the lowest variance of any unbiased estimator and,
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Fig. 1. Optical setup of an LDV system. When the particle q crosses the
measurement volume, the light is scattered in all directions, and the burst signal
sq(t) is collected by the photodetector. Data processing of sq(t) allows us then
to estimate the mean flow and particle acoustic velocities.

consequently, theoretically yields the minimum uncertainties
linked to the velocity estimations (acoustic and mean flow
velocities). Finally, simulated data are processed to validate the
LMS-based algorithm and to compare the variance of the results
with the CRB.

Section II deals with the LDV principles, including the
velocity signal modeling and the associated signal processing
for acoustic applications. In Section III, data processing based
on the LMS algorithm is explained, and the CRBs of both the
mean flow and acoustic velocities are determined. Finally, the
results of the Monte Carlo simulation are shown and compared
to the CRBs in Section IV for acoustic frequencies from 125 to
4000 Hz, for acoustic velocities from 0.05 to 50 mm · s−1, and
for mean flow velocities from 0.05 to 5000 mm · s−1.

II. FUNDAMENTALS OF LDV

In this section, we consider time-varying signals such that
t ∈ [tq − Tq/2, tq + Tq/2], with tq being the central time of the
signal, Tq being a time of flight, and q associated with a given
seeding particle.

A. LDV Principle

In the differential mode, two coherent laser beams are
crossed and focused to generate an ellipsoidal probe volume, in
which the electromagnetic interferences lead to apparent dark
and bright fringes [1].

The velocity vq(t) of the seeding particle, which is denoted
q, is related to the scattered optical field due to the Doppler
effect. The light intensity scattered by the particle crossing the
probe volume is modulated in amplitude and frequency. The
frequency of modulation Fq(t) is called the Doppler frequency
and is given by

Fq(t) =
vq(t)

i
=

2vq(t)
λL

sin(θ/2) (1)

where vq(t) is the velocity of the particle along the x-axis, and
i is the fringe spacing expressed as a function of the angle θ
between the incoming laser beams and their optical wavelength
λL (Fig. 1).

The diffused light is collected by a receiving optics and is
converted into an electrical signal by a photomultiplier (PM).
This signal can then be modeled as [15]

sq(t) = Aq(t) (M + cos φq(t)) (2)

where M takes into account the positive sign of the CRB of the
light intensity. In (2), the amplitude modulation linked to the
normally distributed light intensity across the beam section is
written as

Aq(t) = Kqe
−(βdq(t))2 (3)

where Kq is related to the laser beam, the PM sensitivity,
the electronic amplification, the observation direction, and the
scattering efficiency of particle q. Furthermore, β is related to
the probe geometry, and dq(t) is the projection of the time-
varying particle displacement along the x-axis in the probe
volume. Similarly, the phase modulation in (2) is described by

φq(t) = 2π
dq(t)

i
+ φ0 (4)

where φ0 is the initial phase due to the optical setup. Further-
more, we denote xq(t) as the signal such that

xq(t) = sq(t) + w(t) (5)

where w(t) is the additive noise [13].
To avoid any ambiguity on the sign of the velocity, a Bragg

cell tuned to frequency FB = 40 MHz is used to shift the
frequency of one of the lasers. The signal sq(t) is consequently
written as

sq(t) = Aq(t) (M + cos(2πFBt + 2πdq(t)/i + φ0)) . (6)

The offset component M is then canceled by a high-pass
filtering, and the signal sq(t) is downshifted to zero thanks to
a quadrature demodulation technique [20]. The actual signal,
which is called burst signal, can finally be written as

sq(t) = Aq(t) cos (2πdq(t)/i + φ0) . (7)

B. Doppler Signal Modeling in Acoustics

Considering only pure sine acoustic waves and supposing
that the mean flow velocity is constant inside the probe volume,
the projection along the x-axis of the velocity of a particle q
jointly subjected to the sine acoustic wave and the mean flow
field can be expressed as

vq(t) = vc,q + Vac cos(2πFact + φac) (8)

where vc,q is the mean flow velocity of particle q, Vac and φac

are the amplitude and phase of the acoustic particle velocity,
respectively, and Fac is the known frequency of the pure sine
acoustic excitation. The amplitude modulation of the burst
signal (3) associated with the particle q may be written as

Aq(t)=Kq exp

[
−β

(
vc,q(t−tq)+

Vac

2πFac
sin(2πFact+φac)

)2
]
.

(9)

Similarly, the phase modulation (4) of the burst signal asso-
ciated to the particle q is

φq(t) =
2π

i
vc,q(t − tq) +

Vac

2πiFac
sin(2πFact + φac). (10)
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Fig. 2. (a) Example of a Doppler signal. (b) Associated velocity signal. Burst 1 is associated with a low mean flow velocity corresponding to Nper acoustic
periods largely higher than 1. Burst 2 is associated with a high mean flow velocity corresponding to Nper acoustic period largely lower than 1. Burst 3 is associated
with a mean flow velocity corresponding to Nper � 1 acoustic period.

We note that the flow velocity vc,q can change from one
particle q to another, whereas the acoustic parameters Vac and
φac are independent of q. Thus, when the acoustic wave is
disturbed by a mean flow, assuming that the particles q cross
the measurement volume at different random central times
tq, without time overlapping between bursts q and q + 1, the
Doppler signal can be written as

s(t) =
∑

q

sq(t) = AD(t) cos [φD(t)] (11)

where the amplitude and phase, respectively, are expressed as

AD(t) =
{

Aq(t), t ∈ [tq − Tq/2, tq + Tq/2]
0, otherwise

(12)

φD(t) =
{

φq(t), t ∈ [tq − Tq/2, tq + Tq/2]
0, otherwise.

(13)

Furthermore, the time of flight of the particle q is defined
as [21]

Tq =
√

2Dx

vc,q
(14)

where Dx is the length of the probe volume in the x-axis, and
the associated number of acoustic periods is

Nper =
√

2Dx

vc,q
Fac. (15)

As expected, the faster the particle crosses the probe volume,
the lower the time of flight and the number of acoustic periods.
An example of a typical Doppler signal is shown in Fig. 2(a),
where the different particle times of flight are associated with
different mean flow velocities.

C. Doppler Signal Processing

The aim of the signal processing developed after sam-
pling the Doppler signal is to estimate jointly and burst
by burst the acoustic particle velocity (amplitude Vac and
phase φac) and the mean flow velocity vc,q. This procedure
is usually split into two stages. First, after a detection pro-
cedure [21], a frequency demodulation of the Doppler signal
s(t) is performed using a time–frequency transform to esti-
mate the instantaneous frequency Fq(t) [or, equivalently, (1)]
and the velocity signal vq(t), burst by burst [14]. Note that
the detector only selects bursts corresponding to one tracer
in the measurement volume. Second, the data processing of
the estimated velocity signal v̂q(t) allows us to obtain both
components of the acoustic and mean flow velocities for each
burst. This first stage is described in this section, whereas
the second stage (data LMS-based processing) is explained
in Section IV.

According to (1), the velocity signal associated with the
particle q is expressed as

vq(t) = iFq(t) (16)

where i is the fringe spacing. Thus, the problem consists of
estimating the mean value v̂c,q, the amplitude V̂ac, and the
phase φ̂ac of the estimated velocity signal associated with each
burst q from the actual noisy burst signal xq(t). Fig. 2(a) and (b)
shows an example of a noiseless simulated Doppler signal and
the associated velocity signal for three nonoverlapping bursts,
respectively.

In Section III, the CRB of the problem is calculated. Then, a
method based on an LMS algorithm is presented in Section IV
and is applied to simulated velocity signals vq(t) in Section V.
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III. CRB CALCULATION

We recall that the CRB gives the lowest bound of the variance
an unbiased estimator may reach (if it exists) [22]. As explained
in [22], the CRB alerts us to the physical impossibility of
finding an unbiased estimator whose variance is less than the
bound. In the case of single-tone signals, the CRBs were
calculated by Rife and Boorstyn [23] in 1974. The CRBs of
LDV signals were also studied in the case of fluid mechanics
[24], [25]. In the case of sine acoustic excitation, the CRBs of
LDV signals were also studied by Le Duff et al. [20].

We focus here on the problem of calculating the CRB of
the following problem. The velocity data are assumed to be
such that

u[n] = v[n; θ] + w[n] (17)

for n ∈ [n0, n1], where w[n] is the white Gaussian noise,
w[n] ∼ N (0, σ2), the data being modeled according to

v[n; θ] = vc + Vac cos(2πfacn + φac) (18)

where fac = Fac/Fs, Fs being the sampling frequency,
vc ≡ vc,q, and where the unknown parameters are gathered in

θ = [ vc Vac φac ]T . (19)

We furthermore suppose that fac �= 0 and that fac �= 1/2.

A. CRB for One Burst

The CRB is given by the inverse of the Fisher information
matrix J(θ), CRB(θ) = J(θ)−1, where the Fisher information
matrix is given by [22]

J(θ)kl =
1
σ2

n1∑
n=n0

∂v[n; θ]
∂θk

∂v[n; θ]
∂θl

(20)

for k, l ∈ [1, 3], for θ = [ vc Vac φac ]T . The derivatives in
(20), according to (18), lead to (21), shown at the bottom of
the page, where N = n1 − n0 + 1, and where

γ =πfac (22)

β = 2πfacn0 + πfac(N − 1) + φac. (23)

We define the linear signal-to-noise ratio (SNR) of the veloc-
ity signal as

SNR =
V 2

ac

2σ2
(24)

and we then have, upon inversion, (25)–(27), shown at the
bottom of the page.

B. CRB for Nb Bursts

We now assume that the algorithm developed in
Section III-A is used to estimate the unknown parameters
θ = [ vc Vac φac ]T , in the case of Nb bursts. The main
difference between this problem and the problem developed
above is that the index n0 is no longer a constant but might be
modeled as a discrete random variable, uniformly distributed
in [0, nac], where Nac = nint[Fs/Fac], nint[] being the nearest
integer. As a consequence, the discrete random variable β
given in (23), which appears in (26) and (27), is uniformly
distributed in [π(N − 1)fac + φac, π(N − 1)fac + φac + 2π].
Averaging the terms linked to β in (26) and (27) consequently
leads to

〈cos(2β)〉 = 〈sin(2β)〉 = 0 (28)

〈
cos2(β)

〉
=

〈
sin2(β)

〉
=

1
2
. (29)

J(θ) =
1
σ2




N cos(β) sin(γN)
sin(γ) −Vac sin(β) sin(γN)

sin(γ)
cos(β) sin(γN)

sin(γ)
N
2 + cos(2β) sin(2γN)

2 sin(2γ) −Vac sin(2β) sin(2γN)
2 sin(2γ)

−Vac sin(β) sin(γN)
sin(γ) −Vac sin(2β) sin(2γN)

2 sin(2γ)
NV 2

ac
2 − V 2

ac cos(2β) sin(2γN)
2 sin(2γ)


 (21)

var(vc) ≥ CRB(vc) =
V 2

ac

4SNR

N2 −
(

sin(2γN)
sin(2γ)

)2

N3

2 − N
2

(
sin(2γN)
sin(2γ)

)2

− N
(

sin(γN)
sin(γ)

)2

+ sin(2γN)
sin(2γ)

(
sin(γN)
sin(γ)

)2 (25)

var(Vac) ≥ CRB(Vac) =
V 2

ac

2SNR

N2 − N cos(2β) sin(2γN)
sin(2γ) − 2 sin2(β)

(
sin(γN)
sin(γ)

)2

N3

2 − N
2

(
sin(2γN)
sin(2γ)

)2

− N
(

sin(γN)
sin(γ)

)2

+ sin(2γN)
sin(2γ)

(
sin(γN)
sin(γ)

)2 (26)

var(φac) ≥ CRB(φac) =
1

2SNR

N2 + N cos(2β) sin(2γN)
sin(2γ) − 2 cos2(β)

(
sin(γN)
sin(γ)

)2

N3

2 − N
2

(
sin(2γN)
sin(2γ)

)2

− N
(

sin(γN)
sin(γ)

)2

+ sin(2γN)
sin(2γ)

(
sin(γN)
sin(γ)

)2 (27)
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This finally yields (30) and (31), shown at the bottom of
the page.

In the following, we use (25) for vc and (30) for Vac to
study the CRB of the problem. We recall that N depends on
vc (36). As a consequence, the CRBs of vc (25) and Vac (30)
both depend on vc and Vac, whereas the CRB of φac (31) is
independent of Vac.

C. Asymptotic Behavior of the CRB

In Appendix A, we give the expressions of the asymptotic
CRB of θ, for both cases 2γN 	 1 (Nper 	 1/(2π)) and
2γN 
 1 (Nper 
 1/(2π)).

In the asymptotic case 2γN 	 1, we prove [see (63) and
(64)] that the relative variances of vc and Vac are

var(vc)
v2

c

≥ CRB(vc)
v2

c

=
1

SNR
45

π427/2

1
D5

xFs

v3
cV 2

ac

F 4
ac

(32)

var(Vac)
V 2

ac

≥ CRB(Vac)
V 2

ac

=
1

SNR
45

π429/2

1
D5

xFs

v5
c

F 4
ac

. (33)

Both CRBs of vc and Vac are proportional to v5
cV 2

ac and
inversely proportional to F 4

ac. Consequently, doubling the mean
flow velocity yields a 15-dB increase of the variance of both
vc and Vac. Similarly, doubling the amplitude of the acoustic
particle velocity Vac leads to a 6-dB increase of the variance of
both vc and Vac. Finally, doubling the frequency of the pure sine
acoustic wave leads to a 12-dB decrease of the variance of both
vc and Vac. We also note that doubling the length of the probe
volume Dx yields a 15-dB decrease of the variance of both vc

and Vac.
In the asymptotic case 2γN 
 1, we prove that [see (72)

and (73)]

var(vc) ≥
1

SNR
1

23/2DxFs
vcV

2
ac (34)

var(Vac) ≥
1

SNR
1√

2DxFs

vcV
2
ac. (35)

Due to the exact [see (25), (30), and (31)] and asymptotic
(32)–(35) expressions of the CRB, the minimum uncertainties
linked to the velocity estimations (acoustic and mean flow
velocities) are completely known. In Section IV, the LMS-

based algorithm is introduced. It is then applied in Section V
to simulated data to be compared with the CRB.

IV. LMS ALGORITHM

From a practical point of view, the actual velocity signal is
uniformly sampled. Consequently, the number of samples Nq

associated with the particle q is derived from (14) as

Nq =
√

2DxFs

vc,q
(36)

and the associated number of acoustic periods (15) is now
defined as

Nper =
√

2Dx

vc,q
Fac. (37)

The sine-wave fit is then solved by minimizing the cost
function V (θ)

V (θ) =
1
N

n1∑
n=n0

(u[n] − v[n; θ])2 (38)

with respect to the unknown parameters θ (19), where u[n] and
v[n; θ] are given by (17) and (18), respectively, and where N =
n1 − n0 + 1. In Appendix A, (50)–(52), respectively, give the
expression of vc, aac = Vac cos(φac) and bac = Vac sin(φac) as
a function of u and fac. Once aac and bac are estimated, the
unknown acoustical parameters of θ are expressed as


V̂ac =

√
â2
ac + b̂2

ac

φ̂ac = atan
b̂ac

âac
.

(39)

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we compare the CRB with the LMS-based
algorithm developed in Section IV. According to the values
of the acoustic and mean flow velocities to be analyzed, the
following values for Fac and Vac are chosen:

Fac ∈ [ 125 250 500 1000 2000 4000 ] Hz (40)

Vac ∈ [ 0.05 1.58 50 ] mm · s−1. (41)

var(Vac) ≥CRB(Vac) =
V 2

ac

2SNR

N2 −
(

sin(γN)
sin(γ)

)2

N3

2 − N
2

(
sin(2γN)
sin(2γ)

)2

− N
(

sin(γN)
sin(γ)

)2

+ sin(2γN)
sin(2γ)

(
sin(γN)
sin(γ)

)2 (30)

var(φac) ≥CRB(φac) =
1

2SNR

N2 −
(

sin(γN)
sin(γ)

)2

N3

2 − N
2

(
sin(2γN)
sin(2γ)

)2

− N
(

sin(γN)
sin(γ)

)2

+ sin(2γN)
sin(2γ)

(
sin(γN)
sin(γ)

)2 (31)
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Fig. 3. Comparison of the relative variances of (a) vc and (b) Vac estimated by an LMS algorithm (continuous) with the theoretical CRB (dashed) for
Fac = 125 Hz. Bursts (1–3) refer to Fig. 2. Burst 1: Vac = 1.58 mm · s−1, αv = 0.1, and vc = 15.8 mm · s−1. Burst 2: Vac = 50 mm · s−1, αv = 0.1,
and vc = 500 mm · s−1. Burst 3: Vac = 50 mm · s−1, αv = 1, and vc = 50 mm · s−1.

Fig. 4. Comparison of the relative variances of (a) vc and (b) Vac estimated by an LMS algorithm (continuous) with the theoretical CRB (dashed) for
Fac = 500 Hz. Bursts (1–3) refer to Fig. 2. Burst 1: Vac = 50 mm · s−1, αv = 1, and vc = 50 mm · s−1. Burst 2: Vac = 50 mm · s−1, αv = 0.05, and
vc = 1000 mm · s−1. Burst 3: Vac = 1.58 mm · s−1, αv = 0.1, and vc = 15.8 mm · s−1.

Fig. 5. Comparison of the relative variances of (a) vc and (b) Vac estimated by an LMS algorithm (continuous) with the theoretical CRB (dashed) for
Fac = 4000 Hz. Bursts (1–3) refer to Fig. 2. Burst 1: Vac = 50 mm · s−1, αv = 0.1, and vc = 500 mm · s−1. Burst 2: Vac = 50 mm · s−1, αv = 0.01,
and vc = 5000 mm · s−1. Burst 3: Vac = 50 mm · s−1, α = 0.05, and vc = 1000 mm · s−1.

The phase φac is supposed to be equal to π/4, and we use an
adimensional parameter αv for the value of vc, such that

αv =
Vac

vc
∈ [ 0.01 0.05 0.1 0.5 1 ] . (42)

For each numerical simulation, the sampling frequency is
Fs = 350 kHz, the probe volume length along the x-axis is
Dx = 0.1 mm, and 10 000 bursts are analyzed. The simulator
is performed by MATLAB.

Figs. 3–5 show typical results of the relative variances (a)
var(vc)/v2

c and (b) var(Vac)/V 2
ac, for the different values of Fac

in comparison to the theoretical CRBs of vc (25) and Vac (26).
Each figure is related to a given value of Fac. Furthermore, for
each value of Fac, three sets of signals are analyzed, each set
corresponding to one of the bursts of Fig. 2, namely Nper 
 1

(Burst 1), Nper > 1 (Burst 2), and Nper � 1 (Burst 3), where
Nper is the number of acoustic periods Nper = Nfac.

First, the LMS-based estimator is near the theoretical CRB,
so that we can maintain that this estimator is efficient. More-
over, the relative variance of vc is weaker than the one of Vac

(except for αv = 1). Indeed, for values of vc and Vac such that
αv = Vac/vc ≤ 1/

√
2 as CRB(vc) � CRB(Vac)/2, we have

CRB(vc)
v2

c

≤ CRB(Vac)
V 2

ac

. (43)

Moreover, the values of the relative variances of vc and Vac

drastically depend on the values of vc, Vac, and Fac, as shown
by (25) and (30).

• For Nper > 1 (Burst 1), the relative variances of vc

and Vac, respectively, are in ranges of [−70,−42] and
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TABLE I
NUMBER OF ACOUSTIC PERIODS Nper (FOR vc AND Vac) LEADING TO AN ERROR LESS THAN E (%) FOR Fac = 125 Hz AND Vac = 50 mm · s−1

TABLE II
NUMBER OF ACOUSTIC PERIODS Nper (FOR vc AND Vac) LEADING TO AN ERROR LESS THAN E (%) FOR Fac = 500 Hz AND Vac = 1.58 mm · s−1

TABLE III
NUMBER OF ACOUSTIC PERIODS Nper (FOR vc AND Vac) LEADING TO AN ERROR LESS THAN E (%) FOR Fac = 4000 Hz AND Vac = 50 mm · s−1

[−52,−30] dB. Such estimations may consequently be
considered as very accurate.

• For Nper 	 1 (Burst 2), the relative variances of vc

and Vac, respectively, are in ranges of [−27, 1] and
[10, 20] dB. The estimation of vc is accurate enough for
low values of v3

cV 2
ac/F 4

ac (32), whereas the estimation of
Vac is clearly unacceptable, regardless of the parameters
vc, Vac, and Fac (33).

• For Nper � 1 (Burst 3), the relative variances of vc

and Vac, respectively, are in ranges of [−70,−30] and
[−30,−23] dB. Such estimations may also be considered
as very accurate.

Furthermore, for velocity signals with time length largely
lower than one acoustic period, we can use the asymptotic case
expression of the CRBs of vc and Vac. Giving a maximum value
of the relative error, namely Evc

for vc and EVac for Vac, we
consequently have

CRB(vc)
v2

c

=
1

SNR
45

π427/2

1
D5

xFs

v3
cV 2

ac

F 4
ac

≤ Evc
(44)

CRB(Vac)
V 2

ac

=
1

SNR
45

π429/2

1
DxFs

v5
c

F 4
ac

≤ EVac . (45)

As a consequence, for a given set of setup known parameters
Dx, Fs, and Fac, we may give the maximum values that v3

cV 2
ac

and v5
c should have to reach to yield an error less than Evc

and
EVac , respectively.

Finally, from the expressions of the CRBs of vc (25) and Vac

(30), we can calculate the number of acoustic periods that the
time length of the velocity signals may have to lead to an error
less than a given value E. Tables I–III give a summary of such
results. Each table corresponds to a given burst of Fig. 2.

For example, Table I may be read as follows: To obtain
a relative error for vc less than 0.1% for SNR = 10 dB, the

minimum number of acoustic periods for the velocity signal is
0.8. In the same way, to obtain a relative error for Vac less than
1% for SNR = 20 dB, the minimum number of acoustic periods
for the velocity signal is 0.5. Tables II and III give the minimum
number of acoustic periods that the velocity signal should have
to obtain relative errors less than 0.1%, 1%, and 10% for SNRs
of 10, 20, and 30 dB for 500 and 4000 Hz, respectively.

As expected, the mean flow velocity vc is estimated with a
great accuracy from a very low number of acoustic periods. For
example, to obtain a relative error of 1% for vc, the number of
acoustic periods is always less than 0.3, regardless of the SNR,
Fac, and Vac. On the contrary, the results for the estimation
of the acoustic velocity are much more contrasted. For an
SNR of 30 dB, the estimation of Vac associated with a relative
error less than 1% is possible for a number of acoustic periods
Nper > 0.9. However, when the SNR is less than 30 dB, the
number of acoustic periods associated with a relative error less
than 1% may be largely bigger than 1.

The tables also show the influence of the acoustic frequency
on the estimation of the particle acoustic velocity. The higher
the frequency, the higher the number of acoustic periods for
an accurate estimation of Vac. For a relative error of 10%,
the number of acoustic periods is the same, regardless of the
frequency. However, for a relative error of 1% or 0.1%, the
estimation of the particle acoustic velocity is easier for a low
frequency. On the contrary, the influence of the frequency on
the estimation of the mean flow velocity is the opposite. The
higher the frequency, the lower the number of acoustic periods
for an accurate estimation.

With regard to the results of this paper, a new three-step
approach can be proposed to improve the estimation of the
acoustic particle velocity in the presence of mean flow. The
first step consists of the estimation of the mean flow velocity
for each burst with the LMS algorithm. Then, the estimation
of the mean flow velocity may be subtracted from the velocity
signal. Finally, a “rotating machinery” technique associated
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with a synchronous detection allows us to estimate the acoustic
particle velocity with a great accuracy [16].

VI. CONCLUSION

A new method to jointly estimate the acoustic particle and the
mean flow velocities from an LDV signal has been presented.
It is based on the LMS algorithm and performs well in the
estimation of the velocities. The performance of the method has
been investigated by means of numerical tests, and the results
of the simulations have been compared to the CRBs of the
associated problem. It is shown that the LMS-based estimator
is near the theoretical CRB so that the estimator is efficient.

APPENDIX A
DERIVATION OF THE LMS PROBLEM

Inserting (18) into (38) leads to

V (θ)=
1
N

n1∑
n=n0

(un−(vc+aac cos(2πfacn)+bac sin(2πfacn))2

(46)

where {
aac =Vac cos(φac)

bac =Vac sin(φac).
(47)

Solving the following linear problem:




∂V (θ)
∂vc

= 0

∂V (θ)
∂Vac

= 0

∂V (θ)
∂φac

= 0

(48)

allows us to analytically write the unknown parameters. In the
following, we note that

D =
1

N2

n=n1∑
n=n0

cos2(2πfacn)
n=n1∑
n=n0

sin2(2πfacn)

− 1
N2

(
n=n1∑
n=n0

cos(2πfacn) sin(2πfacn)

)2

− 1
N3

n=n1∑
n=n0

sin2(2πfacn)
( n=n1∑

n=n0

cos(2πfacn)
)2

− 1
N3

n=n1∑
n=n0

cos2(2πfacn)
( n=n1∑

n=n0

sin(2πfacn)
)2

+
2

N3

n=n1∑
n=n0

cos(2πfacn) sin(2πfacn)

×
n=n1∑
n=n0

cos(2πfacn)
n=n1∑
n=n0

sin(2πfacn). (49)

The mean flow velocity vc may then be written as

vc =
1

N3D

(
n=n1∑
n=n0

sin(2πfacn)
n=n1∑
n=n0

cos(2πfacn) sin(2πfacn)

−
n=n1∑
n=n0

cos(2πfacn)
n=n1∑
n=n0

sin2(2πfacn)

)

×
n=n1∑
n=n0

un cos(2πfacn)

+
1

N3D

(
n=n1∑
n=n0

cos(2πfacn)
n=n1∑
n=n0

cos(2πfacn)sin(2πfacn)

−
n=n1∑
n=n0

sin(2πfacn)
n=n1∑
n=n0

cos2(2πfacn)

)

×
n=n1∑
n=n0

un sin(2πfacn)

+
1

N3D


 n=n1∑

n=n0

cos2(2πfacn)
n=n1∑
n=n0

sin2(2πfacn)

−
(

n=n1∑
n=n0

cos(2πfacn)sin(2πfacn)

)2

n=n1∑

n=n0

un.

(50)

Similarly, the acoustic parameters are expressed as

aac =
1

N3D


 n=n1∑

n=n0

sin2(2πfacn)

(
n=n1∑
n=n0

sin(2πfacn)

)2



×
n=n1∑
n=n0

un cos(2πfacn)

+
1

N3D

(
n=n1∑
n=n0

cos(2πfacn)
n=n1∑
n=n0

sin(2πfacn)

−
n=n1∑
n=n0

cos(2πfacn) sin(2πfacn)

)

×
n=n1∑
n=n0

un sin(2πfacn)

+
1

N3D

(
n=n1∑
n=n0

sin(2πfacn)

×
n=n1∑
n=n0

cos(2πfacn) sin(2πfacn)

−
n=n1∑
n=n0

cos(2πfacn) sin2(2πfacn)

)
n=n1∑
n=n0

un

(51)
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bac =
1

N3D


 n=n1∑

n=n0

cos2(2πfacn)

(
n=n1∑
n=n0

cos(2πfacn)

)2



×
n=n1∑
n=n0

un sin(2πfacn)

+
1

N3D

(
n=n1∑
n=n0

cos(2πfacn)
n=n1∑
n=n0

sin(2πfacn)

−
n=n1∑
n=n0

cos(2πfacn) sin(2πfacn)

)

×
n=n1∑
n=n0

un cos(2πfacn)

+
1

N3D

(
n=n1∑
n=n0

cos(2πfacn)

×
n=n1∑
n=n0

cos(2πfacn) sin(2πfacn)

−
n=n1∑
n=n0

sin(2πfacn) cos2(2πfacn)

)
n=n1∑
n=n0

un.

(52)

APPENDIX B
ASYMPTOTIC CRB

Here, we write the CRBs of vc (25), Vac (30), and φac (31),
respectively, in both asymptotic cases, i.e.,

2γN 	 1 (53)

2γN 
 1 (54)

where γ and N ≡ Nq are given by (22) and (36), respectively.
Using (36) and (22), we note that (53) and (54), respectively,
are equivalent to

2
√

2πDxFac 	 vc (55)

2
√

2πDxFac 
 vc. (56)

First, we suppose that 2γN 	 1 and that γ 	 1, which
means that the actual velocity signal corresponds to less than
one acoustic period. The Taylor expansion at the seventh order
of the sine functions in (25), (30), and (31), respectively,
yields

var(vc) ≥σ2 45
π4f4

ac

1
N5

(57)

var(Vac) ≥
σ2

2
45

π4f4
ac

1
N5

(58)

var(φac) ≥
σ2

2V 2
ac

45
π4f4

ac

1
N5

. (59)

Using (36) and (22), we note that (57)–(59), respectively,
may be written as

var(vc) ≥σ2 45
π425/2

1
D5

xFe

v5
c

F 4
ac

(60)

var(Vac) ≥σ2 45
π427/2

1
D5

xFe

v5
c

F 4
ac

(61)

var(φac) ≥σ2 45
π427/2

1
D5

xFe

v5
c

F 4
acV

2
ac

. (62)

Writing (24) into (60)–(62) leads to

var(vc) ≥
1

SNR
45

π427/2

1
D5

xFe

v5
cV 2

ac

F 4
ac

(63)

var(Vac) ≥
1

SNR
45

π429/2

1
D5

xFe

v5
cV 2

ac

F 4
ac

(64)

var(φac) ≥
1

SNR
45

π429/2

1
D5

xFe

v5
c

F 4
ac

. (65)

Second, we now suppose that 2γN 
 1, which means that
the actual velocity signal corresponds to greater than one
acoustic period. The asymptotic CRB is then such that

var(vc) ≥
σ2

N
(66)

var(Vac) ≥
2σ2

N
(67)

var(φac) ≥
2σ2

NV 2
ac

. (68)

Using (36), we note that (66)–(68), respectively, may be
written as

var(vc) ≥
σ2

√
2DxFe

vc (69)

var(Vac) ≥
√

2σ2

DxFe
vc (70)

var(φac) ≥
√

2σ2

DxFe

vc

V 2
ac

. (71)

Finally, inserting (24) into (69)–(71) leads to

var(vc) ≥
1

SNR
1

23/2DxFe
vcV

2
ac (72)

var(Vac) ≥
1

SNR
1√

2DxFe

vcV
2
ac (73)

var(φac) ≥
1

SNR
1√

2DxFe

vc. (74)
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