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(Received 20 January 2012; accepted 8 May 2012; published online 7 June 2012)

This paper presents an experimental and numerical study of low frequency sound propagation in

regular urban areas, under the assumption of a periodic distribution of buildings. Although the

radiation losses above the urban canyons are generally significant, our results show that the effects of

the periodicity still occur. Band diagrams are notably characterized, both numerically and

experimentally, to investigate the effect of the radiation above the periodic structure. The problem is

tackled using a coupled modal-finite elements method. The main idea is to turn the original

unbounded domain into an equivalent waveguiding structure, with PML bounding the originally open

region. The experimental study is performed in a scale model of urban area. Numerical and

experimental results on both the band diagrams and the wavefield propagating through the lattice are

in good agreement. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4725487]

I. INTRODUCTION

As a response to a growing social demand, the improve-

ment of urban sound environment has become an important

issue, arousing extensive researches in the last two decades.1

Noise maps, that are now usual to determine and visualize the

noise impact on the environment, necessitate a comprehensive

modeling of the sound propagation in urban areas. Therefore,

authors attempted to investigate the urban sound propagation,

paying attention to the complexity of such a medium: irregular

fades, interconnections with adjacent canyons, and large vari-

ety of materials and boundary conditions. Moreover, a pre-

dominant characteristic of the urban environment is the

opening to the sky and the large radiative losses it induces.

If a large part of the papers concerns the propagation in a

single urban canyon,2–4 few authors attempted to model the

wave propagation in parallel or intersecting streets,5–11 or in

larger urban areas,12–15 but often limited to 2D geometries.

In styling 3D extended distributions of buildings, the

assumption of a periodic distribution is convenient to model

the acoustic field, as much as it describes reasonably well

some real situations. Doing this, it is possible to investigate

the propagation through a large built area, while taking into

account rigorously the three-dimensional characteristics of

the problem, as the radiation above the streets.

Periodic media are known to exhibit peculiar properties

(bandgaps, strong dispersion, anisotropy, and negative

refraction) and have attracted a great deal of interest in elec-

tromagnetics and optics16,17 as, more recently, for acoustic

and elastic waves.18–23 By assuming a periodic distribution

of buildings in modeling the sound propagation in an urban

environment, one may thus expect specific properties of peri-

odic media to occur.

However, would these properties remain in the case (a

lattice of open urban cayons) where important radiative

losses are generally observed? This is the aim of the present

work to investigate the competitive effects of the periodicity

and the wave radiation.

In this paper, we investigate both experimentally and

numerically the specific properties of open periodic lattices,

in particular, the presence of bandgaps. The experimental

study is made using a 9� 26 wooden cuboids lattice, the

upper side of which is open. Using as a source a parametric

antenna24 that produces a directive plane wave in the audible

frequency range, the transfer function of the lattice is meas-

ured. The numerical characterization of the open lattice is

based on a FE-modal formulation of the wave propagation

within open waveguiding structures, recently developed for

the study of irregular canyons.25 It basically consists in a fi-

nite element (FE) discretization of the problem in the trans-

verse section of the waveguide (the street) with the open side

artificially closed by perfectly matched layers (PML

(Ref. 26)), and a multimodal formulation of the propagation

in the longitudinal direction.

The paper is organized as follows. Section II shows the

experimental device used in this work. Section III outlines

the application of the modal-FE method to the study of peri-

odic lattices. Two kinds of problems are treated: an infinite

periodic lattice along one of the horizontal directions and an

infinite periodic lattice along the two horizontal directions.

In this section, some common issues on leaky modes and

PML modes are discussed. Experimental and numerical

results are presented in Sec. IV. The effect of the opening is

evaluated by comparing the open lattice with an identical

one, closed at the top with a rigid boundary. In the sequel,

the open lattice is called OL and the closed one is called CL.

II. EXPERIMENTAL SETUP

A. Scale model of the urban area

The experimental device is shown in the Figure 1. Experi-

ments are carried out in a semi-anechoic room. Walls are

coated with a melamine foam, effective from 1 kHz onwards.

The studied lattice is composed of 9� 26 rectangular wooden

cuboids with spatial periods Dx ¼ Dy ¼ 7:5 cm and obstacles

dimensions lx � ly � h ¼ 5� 5� 15 cm. Thus, the lattice has

a total surface of 0:67� 1:95 m2 and the filling fraction is

ff ¼ 44%. A screen is placed above the first row to avoid

direct sound propagation from the source to the back of the
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lattice, which could distort the measurements. The CL is

obtained by covering the OL with a wooden board, as indi-

cated by the dashed rectangle in the Fig. 1.

B. Sound source

The lattice is excited using a parametric antenna

model HSS (HyperSound Audio System), product from the

American Technology Corporation. From an input signal at

frequency fs, the source emits separately two high amplitude

ultrasonic waves at frequencies f1 and f2, related by

f2 ¼ f1 þ fs, with f1 ¼ 47 kHz. Then, due to non-linear inter-

actions, new spectral components appear, among which are

f1 � f2; 2f1; f1 þ f2; 2f2. Because of the increase of attenuation

with frequency, the difference frequency component fs ¼
f2 � f1 is predominant far from the source, while keeping the

ultrasound properties. Thus, this device is able to deliver

ultra-directive plane waves in the audible frequency range.

Fig. 2 shows the radiated field, measured at fs ¼ 1:6 kHz.

The figure shows high frequency components in the near field,

which vanishes approximately 1 m away from the source.

Beyond this distance, only the difference frequency fs remains,

and it can be observed that wavefronts become plane.

Experiments have been performed by placing the

antenna at 1.75 m from the lattice, and the source signal is a

sweep sine from 1 to 8.3 kHz. To fix ideas, this would corre-

spond to a few tens of a Hertz at “urban” scale. For instance,

if the laboratory experiment corresponds to 1:100 scale, the

frequency range at full scale would be 10 to 83 Hz. Such low

frequency waves can be practically measured in urban envi-

ronments as being produced by either heavy industrial

machineries, intense impulse noise, or, for a part, the traffic

noise,8,27 and they may propagate on long distances, com-

pared with higher frequency waves.

C. Data acquisition

The acoustic pressure is measured using 1=2 in. micro-

phones (B&K 4190), connected to a preamplifier (B&K

2669) and a conditioning amplifier (B&K Nexus 2669).

Additionally, signals are lowpass filtered up to 20 kHz to

eliminate any remaining high frequency component emitted

by the source.

With the aim of detecting the bandgaps and passbands of

the lattice, the transfer function between the output and the

input pressures is measured. This parameter is determined by

taking the averaged value of pressure at 5 output points,

designed by M01 to M05 in Fig. 1. The input pressure is meas-

ured at the position denoted by Min in the same figure. A sin-

gle input point was found to be representative enough.

Wave field maps above the lattice have also been meas-

ured. In that case, the microphone position on a grid of mea-

surement points is accurately controlled by a 3D robotic

system. The spatial step is fixed to 20 points per wavelength.

The acquisition of the acoustic pressure is performed using a

sampling frequency fe ¼ 20fs (20 samples per period) during

FIG. 1. Experimental setup. The top figure shows a schematic representa-

tion of the experimental setup. The parametric antenna is placed perpendicu-

lar to the lattice at the distance 1.75 m. Symbols “�” represent microphones

positions. The input pressure is measured at the position denoted by Min.

The output pressure is taken at five points behind the lattice, denoted by Mo1

to Mo5, respectively. Signals are amplified and lowpass filtered to eliminate

any remaining high frequency waves radiated by the source. The bottom fig-

ure shows a picture of the experimental device. Symbol (I) indicates the

parametric antenna, (II) represents a screen permitting to avoid direct sound

transmission over the lattice, and (III) indicates the covering used to obtain

the CL.

FIG. 2. Amplitude pressure map in the ðx; yÞ plane radiated by the antenna.

114906-2 Molerón et al. J. Appl. Phys. 111, 114906 (2012)



a time length Te ¼ Ne=fe, where Ne ¼ 2000 (100 periods) is

the number of samples. The RMS value of acoustic pressure

is estimated by a least mean square method to determine the

mean value, the amplitude, and the phase of the signal.

III. MODELING OF PERIODIC LATTICES USING THE
MODAL-FE METHOD

A. The infinite periodic lattice along y

Consider the domain represented in Fig. 3(a). It consists

in a finite series of periodic rows of rectangular cuboids, dis-

posed along the y-direction. All the rows have the same spa-

tial period Dy. The obstacles size and the distance between

rows are arbitrary along the x-direction. X represents the

whole domain and C designs the boundaries (obstacles and

ground), which are assumed to be perfectly reflecting. To

our purposes, the domain is closed at the top with a PML.

Next, assuming an harmonic plane wave excitation, the

Floquet-Bloch theorem imposes the following condition to

the pressure field pðx; y; zÞ:
pðx; yþ mDy; zÞ ¼ exp

�
jmksinðhÞDy

�
pðx; y; zÞ; (1)

with m 2 Z, k the wavenumber, and h the angle of incidence

with respect to the x� axis. From Eq. (1), X can be reduced

to the equivalent domain Xe, shown in the Fig. 3(b). This do-

main can be regarded as a piecewise constant waveguide,

delimited at both sides by periodic boundaries CL and CR

and at the top by the PML. This waveguide contains Ns

straight segments with lengths LðiÞ, i ¼ 1; :::;Ns, and two dif-

ferent cross-sections S1 and S2.

The problem in Xe is written as

ðDs þ k2Þpðx; y; zÞ ¼ 0; 8ðx; y; zÞ 2 Xe;
@npðx; y; zÞ ¼ 0; 8ðx; y; zÞ 2 C;

pðx; y 2 CR; zÞ ¼ lypðx; y 2 CL; zÞ;
@npðx; y 2 CR; zÞ ¼ �ly@npðx; y 2 CL; zÞ;

8>><
>>:

(2)

where @n denotes the outward normal derivative with respect

to the boundaries, ly ¼ expðjksinðhÞDyÞ is the phase-shift

imposed by the Floquet-Bloch theorem, and Ds defined as

Ds ¼
@2

@x2
þ @2

@y2
þ 1

s
@

@z

1

s
@

@z

� �
; (3)

denotes the modified Laplacian operator which takes into

account the PML. The coefficient s of the PML is given by

s ¼ A expðjbÞ; inside the PML;
1; elsewhere;

�
(4)

with A > 0 and 0 < b < p=2. The transverse problem is dis-

cretized using the FEM, and Eq. (2) are transformed into the

matricial form

~P00ðxÞ þ ðk2 �M�1
p KpÞ~PðxÞ ¼~0; (5)

where the n-th component of ~PðxÞ is the value of pðx; y; zÞ at

the node n and at the coordinate x: PnðxÞ ¼ pðx; yn; znÞ;
n ¼ 1; 2; :::;N, N being the number of nodes. The symbol 00

represents the second derivative with respect to x, and

Kp;Mp are, respectively, the stiffness and mass matrices,

resulting from the FEM discretization of the transverse dif-

ferential operators (see Appendix A).

In each straight segment, a general solution of Eq. (5)

can be found as a function of the eigenvalues a2
n and eigen-

vectors ~Un of the matrix M�1
p Kp

~P
ðiÞðxÞ ¼ U

�
DðxÞ~C1 þ DðLðiÞ � xÞ~C2

�
; (6)

where U ¼ ½~U1; ~U2; :::; ~UN� is the eigenvectors matrix, DðxÞ
is a diagonal matrix such that Dnn ¼ expðjkxnxÞ, with kxn ¼
ðk2 � a2

nÞ
1=2

the propagation constants, and vectors ~C1, ~C2

contain the unknowns modal amplitudes for forward and

backward waves, respectively, which depend on the condi-

tions at the extremities of the segments. To find these coeffi-

cients, the mode-matching method is used. The continuity

equations for pressure and normal velocity are established at

the waveguide discontinuities. Then, an output condition is

defined by an admittance matrix Y, fulfilling ~U ¼ Y~P, with
~U the x-component of the particle velocity on the basis of

the interpolating polynomials used for the FEM computation.

Later, using the continuity equations, the input and output

admittance matrices of each straight segment are computed,

step-by-step, from the output to the input segment. Finally,

from a source condition, the wave field can be obtained at

any point within the domain.28–30

B. The infinite periodic lattice along x and y

An infinite periodic lattice along x and y is now consid-

ered. A similar process as described in Duclos et al.22 is used

to find the Bloch wavenumers kB. The application of the

FIG. 3. (a) Geometry of the periodic lattice along y (b) unit cell of the lattice.
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Floquet-Bloch theorem in both directions allows to reduce

the domain to its unit cell represented in the Fig. 4. Then,

using the mode-matching method, the scattering matrix S of

the unit cell, relating incident and scattered waves at the

extremities, is obtained as

~Cb
~Cc

� �
¼ S

~Ca
~Cd

� �
; (7)

where S takes the form

S ¼ R T

T R

� �
; (8)

T and R being the transmission and reflection matrices,

respectively. Additionally, the periodicity in the x-direction

imposes the following condition to the amplitude

coefficients:

~Cc
~Cd

� �
¼ lx

~Ca
~Cb

� �
; (9)

with lx ¼ expðjkBDxÞ. Then, the combination of Eqs. (7) and

(9) leads to the generalized eigenproblem

T R

½0� I

� �
~Ca
~Cd

� �
¼ lx

I ½0�
R T

� �
~Ca
~Cd

� �
; (10)

with ½0� the zero matrix and I the identity matrix. Finally, the

eigenvalues lx of this problem give the Floquet-Bloch wave-

numbers kB and the associated eigenvectors ð~Ca; ~CdÞ contain

the amplitude coefficients allowing to compute the wave

field for each mode.

C. Modeling of closed lattices

Using the techniques described in Secs. III A and III B,

the CL is modelled by replacing the PML termination at the

top by a rigid boundary and considering s ¼ 1 in the entire

domain to obtain the classical Helmholtz equation.

D. On leaky modes and PML modes

When considering the CL, bandgaps, and propagative

bands are represented by the solutions lx such that ImfkBg
6¼ 0 and ImfkBg ¼ 0, respectively. In contrast, for the OL,

all wavenumbers kB are complex because of the radiation

losses above the lattice. Such solutions represent the so-

called leaky modes, modes that are partly propagated

through the lattice and partly radiated towards the upper

part (the Fig. 5(b) shows an example). A criterion for

discriminate between bandgaps and propagative bands for

the leaky modes can be defined by a threshold value g0 of

the loss factor

g ¼ ImfkBg
RefkBg

				
				; (11)

from which a given solution can be considered, either propa-

gative gðkBÞ < g0 or evanescent gðkBÞ > g0.

Additionally, with the introduction of PML, arises

“PML” modes.31,32 These modes, strongly localized in the

artificial absorbing layer (Fig. 5(b)), must be deleted, since

they do not represent solutions of the original problem.

Indeed, they are unphysical solutions of the equivalent PML

problem. A useful criterion to separate PML modes and

leaky modes was proposed by Shi et al.,31 based on the ratio

E of the energy stored inside the PML volume VPML to the

energy stored in the total volume Vtot of the unit cell

E ¼
Ð

VPML
jpj2dVÐ

Vtot
jpj2dV

: (12)

FIG. 4. Unit cell of the periodic lattice along x and y. The spacial periods

are Dx and Dy. The obstacles length, width, and height are, respectively,

denoted by lx, ly, and h.

FIG. 5. (a) leaky mode, (b) PML mode, and (c) dispersion relation for the

leaky (dots) and PML modes (squares) in normal incidence. Note that PML

solutions matches the sound line k ¼ kx (dashed line).
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From Figs. 5(a) and 5(b), one should expect the ratio E to be

close to zero for the leaky modes and much more important

for the undesired PML modes.

The main drawback of such criterion is that E must be

computed for each solution of Eq. (10), which considerably

increases the computation time. However, a straightforward

way to identify the PML modes comes from the fact that

they mainly propagate in the free space above the periodic

domain. As a consequence, they are almost independent of

the geometry below them. Inversely, this does not happen

with the leaky modes, whose behaviour is strongly related to

the geometry of the periodic lattice. Then, for a given angle

of incidence h, the wavenumbers of PML modes lie close to

a line defined by k ¼ kx=cosðhÞ, called sound line and repre-

senting the dispersion relation of a plane wave propagating

in the free space. This is illustrated by Fig. 5(c), where an ar-

bitrary example of the dispersion relation of leaky and PML

modes with normal incidence ðh ¼ 0Þ is represented. It is

observed that the PML solutions matches the sound line,

while the leaky mode dispersion relation is bended, influ-

enced by the geometry of the periodic medium.

Note that the sound line is analogous to the light line for

electromagnetic waves.31,33 This line can be regarded as the

transition between evanescent and propagative leaky modes:

assuming normal incidence (ky ¼ 0) and considering only

the real part of kB, the dispersion relation is approximated by

k2 ¼ ðRefkBgÞ2 þ k2
z . From this relation, it is deduced that,

for modes above the sound line ðRefkBg < kÞ, the vertical

component kz of the wave vector is real. In other words,

these modes are directed vertically, so radiated above the lat-

tice. Modes coinciding with the sound line ðRefkBg ¼ kÞ
represent waves propagating parallel to the horizontal plane

and travelling at the speed of sound in free space. Finally,

modes bellow the sound line ðRefkBg > kÞ becomes evanes-

cent along z and propagates along the x-direction with slight

radiation losses defined by the imaginary part of kB.

IV. RESULTS

A. Evaluation of the periodicity effects: Bandgaps
in the lattice

Figs. 6(b) and 6(e) show the band structure in normal

incidence for the CL and OL, respectively. For the later case,

the threshold loss factor g0 is adjusted to g0 ¼ 0:1 to filter

the evanescent modes, and PML solutions has been

eliminated.

In these figures, labels “mode �” denote the number � of

horizontal nodal lines of the mode: “mode 0” indicates 0

nodal lines; “mode 1,” 1 nodal line, and so on. Figs. 6(c) and

6(f) show the shape of modes 0, 1, and 2 at a given frequency

for the CL and the OL, respectively (note that the shape of

this modes varies with frequency, although it keeps the same

number of horizontal nodal lines). For the CL, the cutoff fre-

quencies of these modes can be obtained by solving the 1D

Helmholtz problem along z with rigid boundary conditions.

They are given by

f ðCLÞ
� ¼ �c0

2h
:

Considering the sound speed c0 ¼ 340 m s�1, the first three

frequencies are f
ðCLÞ
0;1;2 ¼ 0 Hz, 1133 Hz, and 2267 Hz. They

are represented by the dashed lines in Fig. 6(b). For the OL,

FIG. 6. (a) and (d) measured transfer functions. Curves are normalized to 0 dB

for a more comfortable reading. Shaded zones indicates bandgaps; (b) and (e)

band diagrams. Shaded zones indicate bandgaps for the mode 0; (c) and (f)

shape of modes 0, 1, and 2 at a given frequency for the CL and OL, respectively.
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the cutoff frequencies of modes 0, 1, and 2 are determined

by the sound line, represented by the oblique dashed line in

Fig. 6(e).

Since, with the present configuration, the source

impinges uniformly on the input cross-section of the lattices,

one should expect that only the mode 0 will be excited.

For this reason, the bandgaps for this mode have been

highlighted, denoted by the shaded regions in Figs. 6(b) and

6(e). Four bandgaps are obtained in each case, defined in

½1:65� 2:39� kHz, ½3:11� 4:18� kHz, ½4:72� 5:36� kHz and

½6:80� 7:70� kHz for the CL and in ½1:70� 2:49� kHz,

½3:09� 4:23� kHz, ½4:73� 5:39� kHz, and ½6:80� 7:91� kHz

for the OL. Note that the bandgaps positions for the mode

0 are quite similar in both cases.

Simulated results are compared to the experimental

transfer functions shown in the Figs. 6(a) and 6(d). The

curves for the OL and CL are quite similar. They also show

four bandgaps, which are in good agreement with the com-

puted band structures. Nevertheless, some differences in

amplitude are visible. For instance, it can be observed that

the first 3 bandgaps are more attenuated in the OL, while the

fourth bandgap is more attenuated in the CL. This could be

the result of a weak excitation of higher order modes, which

could vary from one lattice to another. Comparing theoreti-

cal and experimental results, one observes that the measured

bandgaps are in general wider, surely due to the inherent

weak disorder and finite dimensions of the experimental lat-

tice. Other dissipative effects, as the absorption of wood,

may also play a role.

Regarding only the first mode, it can be concluded that

the main factor governing the behaviour of this mode is the

periodicity in the horizontal directions, while the condition

at the top (closed or open) seems not to be relevant. In con-

trast, this does not happen with the higher order modes. Tak-

ing them into account, the presence of propagative modes is

much more pronounced in the case of the CL. That seems

logical, since it is a lossless medium. However, an unex-

pected behaviour occurs in the frequency band 3.85�4 kHz.

The Fig. 7(b) shows a zoom in this region of the band struc-

ture. It is observed that no propagative modes exist in the

CL, while the mode 2 arises in the OL. To observe this phe-

nomenon experimentally, the setup needs to be slightly

modified. As mentioned before, with the present configura-

tion, only the plane mode is supposed to be excited. In order

to excite higher order modes, a bar of height 5 cm has been

placed in front of the lattice (see Fig. 7(a)). With this config-

uration, the excitation is not plane anymore in the vertical

direction z, so higher order modes are expected to be excited.

The transfer functions are measured again in the frequency

band 3:7� 4:3 kHz, as shown in the Fig. 7(c). The curve of

the CL shows a gap in the region 3:85� 4 kHz, while the

curve of the OL exhibits a slight bump, which agrees with

the theoretical results.

The relevant point of this result is that the opening at the

top can lead, at some frequencies, to a better propagation of

waves, rather than their mitigation.

B. Pressure fields

The wave field in the horizontal plane 1 cm above the

lattice, at 2 kHz, has been measured (Fig. 8(a)) and compared

with the numerical field (Fig. 8(b)), computed with the tech-

nique explained in Sec. III A. The field is computed for a sin-

gle period Dy, then repeated 6 times to give an overall result.

As the excitation frequency is located in the first bandgap,

fields exhibit a decay along the x-direction. Differences

between the pressure fields are observed, which surely come

from the non-uniformity of the experimental input signal,

unlike the numerical excitation that equally extends over the

y-direction. Also, the finite size and slight disorder of the ex-

perimental lattice may play a role. Despite the differences,

both results seem to describe a similar global decay along x.

FIG. 7. (a) position of the obstacle in front

of the lattice, used to activate higher order

modes; (b) Band structure in the band 3:7�
4:3 kHz for the CL (dots) and the OL

(squares). (c) Measured transfer functions

for the CL (dotted line) and the OL (conti-

nous line). Note that in the band 3:85� 4

kHz, no propagative modes exists in the CL,

while the mode 2 emerges in the OL.
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To corroborate this, the mean value of pressure along the

y-direction vs. x has been computed. Results are compared in

the Fig. 8(c). Globally, both curves show a similar behav-

iour. Discrepancies are observed before the distance 0.3 m,

where the position of the theoretical lobes is shifted and their

amplitude varies significantly with respect to the experimen-

tal curve. The agreement is better from 0.3 m onwards.

V. CONCLUDING REMARKS

Open periodic lattices, of which a numerical and experi-

mental study has been presented in this paper, can be

regarded as idealized models of regular urban areas. By com-

parison of an open, two-dimensional, lattice with a more

classical, closed, lattice, it has been shown that the band

structure for the first propagating mode remains qualitatively

the same when opening the upper part of the lattice. The

measured transfer functions also are very similar in both

cases. Thus, for a study involving only the first mode, the

problem could be simplified to a 2D geometry by eliminating

the vertical coordinate. In contrast, significant differences

between the closed and the open lattice appear when higher

order modes are included in the study. As it seems logical,

the closed lattice exhibits a more pronounced presence of

propagative modes. However, results have shown that this

behaviour can be inverted at some frequencies. Unexpect-

edly, it is possible to find propagative bands in the open lat-

tice that become evanescent in the closed one.

Compared with experiments, the modal-FE method pre-

dicts well the wave propagation in such domains. Although

the present study is limited to an idealized geometry with

normal incidence, the application to more complex and real-

istic building shapes as well as arbitrary angles of incidence

is straightforward (see Refs. 11 and 25). Thus, this method

can be used in future for a comprehensive evaluation of the

influence of the urban morphology in low frequency sound

propagation in urban areas.
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APPENDIX A: FEM COMPUTATION OF THE
TRANSVERSE PERIODIC EIGENMODES

The aim of this section is to find the eigenfunctions and

eigenvalues of the different cross-sections S1; :::; S4, shown

in Figure 9. For each section, the eigenproblem is written as

FIG. 8. (a) and (b) shows, respectively, the experimental and numerical

horizontal planes of the pressure field at 2 kHz, 1 cm above the lattice. (c)

averaged pressure in the y-direction vs. x for the measured and the numerical

fields.

FIG. 9. Meshes examples of the transverse cross-sections of the lattices

studied. Sections S1 and S2 are the cross-section of the open lattice. Sections

S3 and S4 are the cross-sections of the closed one. C are perfectly reflecting

boundaries, represented by the continuous thick lines. CL and CR are left and

right periodic boundaries, represented by dashed lines. The dashed thin line

represents the vertical axis of symmetry.
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@2

@y2
þ 1

s
@

@z

1

s
@

@z

� �
þ a2

� �
/ðy; zÞ ¼ 0; (A1)

with the set of boundary conditions

@n/ðy; zÞ ¼ 0; 8ðy; zÞ 2 C;
/ðy 2 CR; zÞ ¼ ly/ðy 2 CL; zÞ;

@n/ðy 2 CR; zÞ ¼ �ly@n/ðy 2 CL; zÞ;

8<
: (A2)

where a;C;CL, and CR respectively denotes the in-plane

wavenumber, perfectly reflecting boundaries, left and right

periodic boundaries. For sections S1 or S2, the parameter s is

defined by Eq. (4), while for sections S3 or S4, s ¼ 1 in

the entire cross-section. The problem is discretized using lin-

ear triangular elements. The mesh generated satisfies two

conditions: first, in order to fulfill the periodicity, nodes on

CR and CL must be symmetrical with respect to the vertical

axis of symmetry. Second, for a simplicity matter, the

modal-FE method imposes an identical mesh in the matching

section S1 \ S2 for the OL, or S3 \ S4 for the CL.25

Then, the field /ðy; zÞ is developed on the basis of the

interpolating polynomials wnðy; zÞ as

/ðy; zÞ ¼
XN

n¼1

Unwn¼t~w~U (A3)

and the discretized problem takes the form

ðK� a2MÞ~U ¼ ~u; (A4)

where K and M are the stiffness and mass matrix, respec-

tively, defined by

Kmn ¼
ð

Sj

1

s2

@wm

@y

@wn

@y
þ @wm

@z

@wn

@z

� �
dydz (A5)

and

Mmn ¼
ð

Sj

wmwndydz: (A6)

The vector ~u is the contribution of the normal velocity at

boundaries, which terms un is given by

un ¼
ð

Ctot

@n/wndCtot; (A7)

with Ctot ¼ C [ CL [ CR. From Eq. (A7), it is deduced that

this terms are equal to zero for all nodes except for those

belonging to the periodic boundaries,

un 6¼ 0; over CL and CR

un ¼ 0; elsewhere:

�

For the section S4, completely bounded by rigid walls, one

has ~u ¼~0 and the eigenmodes are found as the eigenvalues

and eigenvectors of the matrix M�1K (see Eq. (A4)). For the

rest, a similar technique as Allard et al.34 to satisfy the peri-

odic boundary conditions is used. To turn the notation on a

more compact form, the matrix D ¼ K� a2M is defined and

Eq. (A4) is rewritten as

D~/ ¼ ~u: (A8)

Following, the problem is arranged so that nodes belong-

ing to CL (subscript L) appear first, followed by the

internal ones (respectively I), and finally by those belong-

ing to CR (respectively R). The reordered problem is

written as

DLL DLI DLR

DIL DII DIR

DRL DRI DRR

0
@

1
A ~UL

~UI
~UR

0
@

1
A ¼

~uL
~0
~uR

0
@

1
A: (A9)

From Eqs. (A3) and (A7), the two last conditions of Eq. (A2)

can be traduced by the vectorial expressions

~UR ¼ ly
~UL

~uR ¼ �ly~uL:

�
(A10)

Next, introducing Eq. (A10) into Eq. (A9) and eliminating
~UR (or ~UL) leads to the following eigenproblem for the

remaining unknowns ~UL (or ~UR) and ~UI:

Dp

~UL
~UI

� �
¼

~0
~0

� �
; (A11)

with Dp ¼ Kp � a2Mp

¼ DLL þ lyDLR þ l�1
y DRL þ DRR DLI þ l�1

y DRI

DIL þ lyDIR DII

� �
:

The eigenmodes are given by the eigenvalues a2
n and eigen-

vectors ð~UL; ~UIÞ of the matrix M�1
p Kp. Note that eliminated

unknowns ~UR are straightforwardly given from relations

(A10).
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