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Abstract

This article deals with a method based on the fractional Fourier transform (FRFT) to estimate the parameters of linear
chirps. Appropriate 3ltering in fractional domains based on this method allows to extract linear chirps out of a multicomponent
and noisy signal. This method is used to analyse the propagation of acoustic wave in a dispersive medium (lattice made up
of Helmholtz resonators). The nonlinear e&ects due to the Helmholtz resonators are highlighted. The frequency dependance
of the nonlinear processes is shown thanks to the extraction method proposed.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Time–frequency analysis provides a major contri-
bution to the analysis of nonstationary signals. Among
time–frequency signal representations, the Wigner–
Ville distribution, denoted WVD, is suitable to the
analysis of linear chirp signals. However, due to its
nonlinear character, the WVD induces interference
terms that disturb the readability of the distribution,
in the case of multicomponent signals. Thus, there
is a need to use di&erent methods that locally em-
phasize signal concentration and improve parameter
estimation. We present here a method based on the
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fractional Fourier transform (FRFT) to extract linear
chirps out of a multicomponent and noisy signal and
estimate their parameters. The FRFT is related to other
time–frequency representations and allows perfect re-
construction of a signal. More speci3cally, its equiv-
alence to the Radon Transform shows that the FRFT
projects the time–frequency distribution of the signal
onto rotating slices.
This extraction method is applied to an exper-

imental acoustic signal. The analysed signal re-
sults from the propagation of an acoustic wave
through a lattice made up of Helmholtz resonators.
For high levels of the source, the response of the
lattice is not linear and higher harmonics are gen-
erated by interactions of acoustic wave with the
resonators. A linear FM (chirp) signal is used to
emphasize the time–frequency behaviour of the lat-
tice response. The harmonic components are sepa-
rated by 3ltering in appropriate fractional domains
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and then each wave is recovered via inverse
transform.
Section 2 recalls the de3nition and properties of the

FRFT and presents the extraction method of linear
chirps. Section 3 introduces the theory for the acous-
tic propagation in the lattice and provides a nonlinear
model of the response of the Helmholtz resonators.
The experimental setup is presented and the experi-
mental results are discussed in Section 4.

2. Linear chirp analysis with the FRFT

2.1. The fractional Fourier transform (FRFT)

The FRFT was introduced by Namias [6] in the
framework of quantum mechanics where it provides
an eFcient tool to solve some classes of di&erential
equations. Since this work, discrete algorithms were
implemented [7] and several applications of the FRFT
have been suggested and developed mostly related to
optic applications.

2.1.1. De;nition and properties
The �th order FRFT of a function denoted by

{F�x}(t�) is de3ned for �∈ [0; 4] by

{F�x}(t�) = x�(t�) =
∫ ∞

−∞
K�(t�; t)x(t) dt; (1)

where the kernel set of functions K�(t�; t) is

K�(t�; t)

=




A�ej�((t
2
�+t2)cot �−(2t�t=sin �) if � �= n�; n∈Z;

�(t − t�) if �= 2�n;

�(t + t�) if �+ �= 2�n:
(2)

with �= �(�=2), (j)2 =−1 and

A� =
exp[− j� sgn(sin�=4) + j �

2 ]√|sin�| : (3)

The kernel functions taken as functions of t� with pa-
rameter t belong to an orthonormal set and form a one

parameter group:∫ ∞

−∞
K�(t�; t)K∗

�(t�; t
′) dt� = �(t − t′); (4)

∫ ∞

−∞
K�(t�; t′)K�(t′; t) dt′ =K�+�(t�; t): (5)

Letting the superscript ∗ represent the complex con-
jugation operation, the kernel functions verify the
following properties:

K�(t�; t) =K�(t; t�);

K−�(t�; t) =K∗
�(t�; t);

K�(−t�; t) =K�(t�;−t):

The inverse transform can be derived from these
properties as

x(t) =
∫

K−�(t�; t)[{F�x}(t�)] dt�: (6)

The properties of the FRFT are directly deduced from
the kernel functions. The most important properties
are the following:

• it is linear; the 3rst order transform (� = 1) corre-
sponds to the common Fourier transform,

• continuity in �, which means that a signal can
evolve continuously from time to frequency.

• commutativity: F�1 [F�2 [S(t)]]=F�2 [F�1 [S(t)]];
• composition of transform: F�1 [F�2 [S(t)]] =
F�1+�2 [S(t)];

• it is a unitary transform, implying Parseval’s iden-
tity (perfect reconstruction).

2.1.2. Relationship with other time–frequency
transforms
The group property of the K�(t�; t) functions and

the particular cases �=0 and �=1 result in the inter-
pretation of the FRFT as the signal distribution along
a fractional domain t� between time and frequency. In
fact the FRFT is related to the Wigner distribution [1].
As it is well known, the Wigner distribution Wx(t; f)
of the function x(t) de3ned by

Wx(t; f) =
∫ ∞

−∞
e−j2�f�x

(
t +

�
2

)
x∗
(
t − �

2

)
d�

(7)
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is the time–frequency energy distribution of the sig-
nal and its projection onto the t (resp.f) axis gives
the magnitude squared of the time (resp. frequency)
domain representation:∫ ∞

−∞
Wx(t; f) df = |x(t)|2;

∫ ∞

−∞
Wx(t; f) dt = |x1(f)|2; (8)

where x1(f) is the Fourier transform of x(t). Such
a property can be extended to the fractional domains
through the relationship between the FRFT and the
Radon transform. The Radon transform operator, de-
noted R�, takes the integral projection of the function
Wx(t; f) onto an axis making angle � with the t axis.
It is de3ned by

R�[Wx(t; f)] =
∫ +∞

−∞
Wx(r cos�

− u sin�; r sin�+ u cos�) du; (9)

where r= t cos�+f sin� and u=−t sin�+f cos�.
The generalization of property (8) for any fractional

domain, shown in [3], leads to the following relation:

R�[Wx(t; f)] = |x�(t�)|2; (10)

This relationship to the radon transform emphasizes
two results about the FRFT: it acts as a rotational op-
erator according to � in the time–frequency plane and
for a given � it expands the signal on a linear chirp
basis, as the traditional Fourier transform expands a
signal on a sinusoidal basis. These results are devel-
oped in the next section.

2.2. Linear chirp FRFT

A linear chirp, denoted by C, follows the temporal
equation C(t)=ej(!0t+tan �t2). Its ideal time–frequency
distribution is a line with the slope tan�, as shown in
Fig. 1. Such a signal is fully de3ned by two parameters
being the frequency o&set at the origin !0 and �.

2.2.1. Theoretical case
According to Fig. 1, the geometrical interpretation

of the FRFT as a projection on a rotating axis in the
time–frequency plane leads to the result that the chirp
projection will provide maximal concentration for an-
gle �+�=2 corresponding to an order �+1. Analytical

Fig. 1. Linear chirp theoretical time–frequency distribution.

derivation con3rms that result. The FRFT of C at or-
der � + 1 leads to the following transform, assuming
de3nition (1):

C�+1(t�+1)

=A�+(�=2)ej� cot(�+(�=2))t2�+1

∫ +∞

−∞
ej�(!0t+tan �t2)

×ej�(t
2 cot(�+(�=2))−(2t�+1t)=(sin(�+(�=2)))) dt: (11)

As sin(�+(�=2))=cos� and cot(�+(�=2))=−tan�,
quadratic terms of the integrand cancel each other,
leading to

C�+1(t�+1) = A�+(�=2)ej� tan �t2�+1

×
∫ +∞

−∞
e2j�((!0=2)−(t�+1=cos�))t dt: (12)

Then applying the variable change t′ = t=cos� →
cos� dt′ = t leads to the following Fourier transform:

C�+1(t�+1) = A�+(�=2) cos�e−j� tan �t2�+1

×
∫ +∞

−∞
e−2j�(!0 cos�t′=2)e−2j�t�+1t′ dt′︸ ︷︷ ︸:

(13)

The underbraced integral part is the Fourier transform
of function e−2j�(!0 cos�t′=2) and is equal to �(t�+1 −
(!0 cos�=2)), so that Eq. (13) leads to the expected
result:

C�+1(t�+1) = A�+(�=2) cos�e−(j� tan �t2�+1)

×�
(
t�+1 − !0 cos�

2

)
: (14)
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Eq. (14) shows that the � + (�=2) order FRFT of a
chirp of slope � is a Dirac function whose position
depends on the frequency o&set parameter of the chirp
and whose magnitude depends on the order of the
transform.
This result is due to the orthogonality of the ker-

nel functions but also the orthogonality of domains t�
and t�+1. From Eq. (14) the linear chirp parameters
can easily be estimated. The angle of the transform
providing maximal concentration is perpendicular to
� and the Dirac position in the t�+1 domain leads to
!0 through the relation t�+1 = (!0 cos�=2).

2.2.2. Windowed case
As any application deals with 3nite length signal,

we present here the case of a windowed linear chirp.
Let W (t) denote a temporal window and CW (t) =
C(t):W (t) denote the windowed signal. The FRFT of
CW at order � + 1 follows the same derivation as in
the latter section. The result is similar to the e&ect of
a window on the Fourier transform of a signal, i.e. the
Dirac function in Eq. (14) is convolved with the FT
of the window.
As an example, we give the result of the FRFT of

CW in the case of the rectangle window with time
support [t1; t2] centred in k and denoted 1[t1 ;t2](t). The
derivation can easily be adapted to other window
types, starting from Eq. (13). In this case, the integral
related to the rectangle window is∫ +∞

−∞
e−2j�(!0 cos�t′=2) 1[t′1 ;t′2](t

′) e−2j�t�+1t′ dt′

=
[
�
(
t�+1 − !0 cos�

2

)

∗
(

sin 2�T ′t�+1

2�t�+1 e−j2�k′t�+1

)]
; (15)

where T = t2 − t1, t′1 = t1=cos�, t′2 = t2=cos�, T ′ =
T=cos�, k ′ = k=cos�.
Finally the FRFT of order � + 1 of a linear chirp

windowed by a rectangle window is

C�+1(t�+1)

=A�+(�=2) cos�
sin 2�T ′(t�+1 − (!0 cos�=2))

2�(t�+1 − (!0 cos�=2))

×e−j�(t2�+1 tan �+(t�+1−(!0 cos�)=2)2k′): (16)

Eq. (16) provides the basic result for linear chirp anal-
ysis, estimation and localization. The analysis can be
performed in three steps:

• Chirp detection: when sweeping the fractional do-
mains within range �∈ [0; 2] a chirp is detected each
time a local maxima appears (threshold method),
see Fig. 2.

• Chirp estimation: given an order � where a local
maximum is found, the slope of the detected chirp is
�− 1. The o&set is deduced from the ordinates tmax

�+1
of the maximum with the relation:!0=2tmax

�+1=cos�,
see Fig. 3.

• Chirp localization: the length of the chirp can be
estimated through the size of the main lobe, but
this requires knowing the shape of the window ap-
plied to the signal. In that case, it is also possible
to extract the central position of the window from
the maximum of the FRFT phase. For the rectan-
gle window, the main lobe size is 2 cos(�)=T and
the expected phase is parabolic with maximum
localized at t�+1 = k=sin(�). Fig. 3 illustrates the
estimation of the window parameters.

2.3. Filtering in fractional domains: chirp extraction

Thanks to the perfect reconstruction and linearity
properties, the FRFT o&ers new perspective for 3l-
tering signal and noise. It becomes possible to 3lter
di&erent components in a signal that overlap both in
the time and frequency domains but have disjoint sup-
port projections on a radial axis of the time–frequency
plane.
Table 1 shows the results in terms of normalized

mean square errors (MSE) for three kind of chirp 3l-
tering for various SNR. As these examples use simu-
lated signals, the targeted signal T is known by de3-
nition and the normalized MSE for a N -tap signal S
resulting from 3ltering is computed according to:

MSE =
∑N

k=1(T [k]− S[k])2∑N
k=1(T [k])

2
: (17)

For each case, 3ltering in an appropriate fractional do-
main is performed by keeping the coeFcients relevant
to a speci3c chirp and then returning in the temporal
domain by inverse FRFT.
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Fig. 2. FRFT of a linear chirp with parameters: slope tan(�0�=2) with �0 = 0:3 and o&set !0 = 1. � ranges [0; 2]. The maximum occurs
for � = (�0 + 1) = 1:3.
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Fig. 3. FRFT of a rectangular windowed linear chirp with parameters: slope tan(�0�=2) where �0 = 0:25 and o&set !0 = 1. � ranges [0; 2].
The Dirac occurs for � = (�0 + 1) = 1:25.

The 3rst case is a single chirp with noise, used
for reference purposes. The second case is composed
of two chirps having nonoverlapping time–frequency

distributions. In this case the 3ltering is eFcient as it
gives the same MSE as in the 3rst case. This con3rms
that it is possible to separate non overlapping signals
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Fig. 4. Spectrogram of the simulation signal.

Table 1
Normalized mean square errors for di&erent signal to noise ratios
and di&erent chirp 3ltering

Normalized mean square errors

SNR One chirp Two disjoints Two crossing
in dB (denoising) chirps (extraction+ chirps (separation+

denoising) denoising)

+∞ 0.0013 0.0013 0.0370
10 0.0173 0.0173 0.0393
3 0.0254 0.0254 0.0515
0 0.0361 0.0361 0.0672

−3 0.0579 0.0579 0.0989
−6 0.1020 0.1020 0.1631

−10 0.2374 0.2374 0.3593

Single chirp 3ltering (denoising); extraction of one chirp out of
two nonoverlapping chirps in the time–frequency plane; separation
of one of two crossing chirps in the time–frequency plane.

in the time–frequency plane,for the MSE is only de-
teriored by the addition of noise.
In the last case, chirps have crossing time–

frequency distribution so that separation cannot be
performed by the chosen 3ltering method. In this
case, the 3ltering method only minimizes the inLu-
ence of each chirp onto the other one, and the MSE
raise is due to a local error where the chirps do over-
lap. Figs. 4 and 5 present the corresponding simulated
example. Two crossing chirps are separated and de-
noised, by appropriate 3ltering in fractional Fourier
domains. Both chirps have di&erent temporal sup-
port and have been windowed at their beginning and
extinction by halves of 100-taps Hann windows.

Now, we focus on the case of linear chirp 3ltering
and extraction. Due to the concentration property of
the chirp transform, it is possible to separate linear
chirps from signal or noise. Modern characterization
technics use linear chirp analysis as a tool to empha-
size nonlinear properties of a system [8]. The use of
the FRFT as post-processing in such analysis presents
a particular interest in the sense that it allows to sepa-
rate and analyse individually and more accurately each
component of the system response.

3. Propagation in a one-dimensional discrete
medium

3.1. Lattice description

A one-dimensional lattice made up of an in3nitely
long cylindrical waveguide (afterwards refered as
pipe) connected to an array of Helmholtz resonators
numbered by n is considered. The resonators are con-
nected to the pipe through a pinpoint connection, the
radius of the throat’s cross sectional area sn of the nth
resonator being assumed to be small compared to the
wave length of the acoustic wave (

√
sn=� � 1). Each

connection is located along the axis of the pipe by
its coordinate zn with spacing dn for two consecutive
points as shown in Fig. 6.

3.2. General case

In a section of the pipe between two consecutive
connection points, the acoustic wave described by the



G. Gonon et al. / Signal Processing 83 (2003) 2469–2480 2475

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5
Filtered FRFT modulus, α = 0.75 

A
m

pl
itu

de

used part
eliminated part

0 5 10 15 20 25 30
-1

-0.5

0

0.5

1
Filtered signal

time (s)

A
m

pl
itu

de

0 5 10 15 20 25 30
0

1

2

3

4
Filtered FRFT modulus, α = 0.85 

used part
eliminated part

0 5 10 15 20 25 30
-1

-0.5

0

0.5

1
Filtered signal

time (s)

A
m

pl
itu

de

Time (s)

F
re

qu
en

cy
 (

H
z)

Spectrogram of the filtered first chirp

0 5 10 15 20 25
0

5

10

15

time (s)

fr
eq

ue
nc

y 
(H

z)
Spectrogram of the filtered second chirp

0 5 10 15 20 25
0

5

10

15

Fig. 5. Chirp extraction and synthesis. Filtering in fractional domains, left column: �= 0:75, right column: �= 0:85; top) FRFT modulus;
middle) time waveforms of the 3ltered chirp; bottom) spectrograms of the synthesized chirps, same colorscale as in Fig. 4.

pressure p(z; t) and the acoustic velocity v(z; t) is the
solution of the wave equation:

@2p(z; t)
@z2

− 1
c2

@2p(z; t)
@t2

= 0; (18)

where c is the sound speed in free space.
At each connection point (Fig. 6), the boundary

conditions require the conservation of acoustic Low
and continuity of acoustic pressure:

v(z; t)|z+n − v(z; t)|z−n =− sn
S

vt(zn; t) and

p(z; t)|z+n = p(z; t)|z−n ; (19)

where vt(zn; t) is the acoustic velocity in the throat of
the (n+1)th resonator. Eqs. (18) and (19) lead to the
inhomogeneous wave equation [5]:

@2p(z; t)
@z2

− 1
c2

@2p(z; t)
@t2

=
∑
n

�(z − zn)
−!sn
S

@vt(z; t)
@t

; (20)

Fig. 6. Experimental set up.

where ! is the air density. The right hand side term
acts as an array of secondary point-sources (scatterers)
which work when they are illuminated by the wave
travelling in the pipe.
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3.3. Propagation in a linear medium

3.3.1. Propagation equation
For a monochromatic acoustic wave with a fre-

quency below the cut-o& frequency of the waveguide,
the acoustic pressure and velocity along the wave-
guide are p(z; t)=p(z)ej!t and v(z; t)=v(z)ej!t , where
!= kc is the angular frequency. In this case Eq. (20)
becomes

d2p(z)
dz2

+ k2p(z) =
∑
n

�(z − zn)"np(z); (21)

where "n = −j!!sn=(SZn). In this relation Zn is the
impedance of the nth resonator connected at point
z = zn seen from the guide and "n is the jump of the
pressure derivative @p=@z|z=zn .
In the linear medium case, the solution of Eq. (21)

is seeked by the transfer matrix method [4,5,9]. In
the n + 1th cell (zn6 z¡ zn+1) the pressure and the
velocity are respectively denoted by pn and vn and
the solution pn(z) is given as a linear combination of
waves travelling in opposite direction:

pn(z) = Anejk(z−zn) + Bne−jk(z−zn); (22)

An and Bn being, respectively, the amplitudes of the
forward and backward waves.
The propagation through one cell is described by

Vn+1 =Tn+1Vn where Vn =

(
An

Bn

)

which links the vector pair (An Bn)t and (An+1 Bn+1)t.
The matrix Tn+1 has the following form [5]:

Tn =



(
1 +

"n

2jk

)
ejkdn

"n

2jk
e−jkdn

− "n

2jk
ejkdn

(
1− "n

2jk

)
e−jkdn


 :

(24)

The propagation through the lattice from zn to zn+m is
then described by the relation

Vn+m =
m∏
i=1

Tn+iVn: (25)

Vn may be interpreted as the vector of the initial condi-
tions (or boundary conditions) and Vn+m is the vector
of the wave amplitudes m cells further along.

3.3.2. Periodic lattice
For a periodic lattice, the transfer matrix Tn =T

and the derivative jump "n = " are the same ones for
each cell. The in3nite medium problem is analogous
to the KrNonig–Penney model well known in solid state
physics to investigate the motion of electrons in a pe-
riodic potential [4]. So the propagation in the lattice
can be seen in terms of plane waves subject to multi-
ple reLections at each derivation, resulting in standing
waves. It is also possible to describe the propagation
in terms of a collective excitation that propagates in
the periodic lattice without scattering but with a mod-
i3ed dispersion relation. The result is that spatial pe-
riodicity gives rise to dispersion even in the model of
plane waves. In this special case the lattice works as
a 3lter with allowed and forbidden frequency bands.
In the periodic lattice, the dispersion relation takes

the form

cos(qd) = cos(kd) +
"
2k

sin(kd); (26)

q being the Bloch wave number [2]. This derived dis-
persion relation exhibits the peculiar characteristic of
3lters marked by forbidden frequencies or gaps or
stopbands and allowed frequencies or passbands in the
frequency domain which results from the resonances
and the periodic arrangements of the medium. Waves
that obey the relation |cos(qd)|6 1 are within a pass-
band and travel freely in the duct and waves such that
|cos(qd)|¿ 1 are in a forbidden band and are quickly
damped spatially. They become evanescent so that
they cannot propagate.

3.4. Propagation in a ordered lattice with discrete
nonlinearities

For high sound level (
 120 dB), the relation be-
tween the acoustic pressure and the velocity in the
neck of the Helmholtz resonators is no longer linear.
A simple model of nonlinear Helmholtz resonator can
be developed by using a Taylor’s development of the
restoring force due to the change of pressure in the
resonator cavity.
The air enclosed in the resonator acts as a spring

for the lumped mass of air moving within the neck.
A general description of the nonlinear behavior of the
Helmholtz resonator may be derived by taking into
account the quadratic term in the restoring force of the
spring. The relative change of the pressure pn in the
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cavity of the nth resonator due to a small displacement
xn of the air in the neck induces a restoring force Fn

that has the following form [3]:

Fn = pnsn =−!c2s2n
V0

[xn − �nx2n + o(x3n)]: (27)

where + is the speci3c heat ratio. In this equation �n=
(+ + 1)sn=(2V0) and c is the sound velocity given by
c =

√
+p0=!. For a monochromatic wave with a pul-

sation ! the nonlinear relation between the acoustic
pressure pn and the velocity vn just outside the open-
ing of the nth resonator is pn = ZNL

n vn where ZNL is
the “nonlinear impedance” which takes the form

ZNL
n = ZL

n + �n!l′c
!2

0

!2

pn

ZL
n
+ o

((
pn

ZL
n

)2)
; (28)

with ZL
n the linear impedance of the nth resonator

(ZL
n = j!!l′c(1− (!2

0=!
2))) and !2

0 = snc2=(V0l′c) the
resonance frequency of the Helmholtz resonator and l′c
the e&ective neck length. So, the nonlinear e&ects lead
merely to a additive correction to the linear impedance
of the Helmholtz resonator which is non-vanishing
only around the Helmholtz resonance !0.

So, the propagation of waves in an ordered lattice
with discrete nonlinearities is described by Eq. (20)
where vt(z; t) is not a linear function of p(z; t). Nev-
ertheless we assume that the propagation (between
two resonators) remains linear. So the pressure in the
main pipe is calculated in the same way as for a lin-
ear medium but now nonlinear operators describe the
scattering of waves at each connection point of the
lattice.

4. Experimental results

4.1. Description of the experimental set-up

Fig. 6 shows the experimental setup. It consists of
a 8 m length cylindrical pipe having a 5 cm inner
diameter and a 0:5 cm thick wall connecting with an
array of 60 Helmholtz resonators as side branches.
The distance between two consecutive resonators is
dn = 0:1 m. The upstream section links this system
to a loudspeaker designed for high acoustic power
level and used to generate linear frequency modu-
lated waves (chirps) or wavepackets (approximate
�-function). The duration of the chirp is 0:5 s and

the frequency range is included in [100; 600] Hz.
The wavepackets duration is 0:01 s and its frequency
range extends from 0 to 2500 Hz. At the end of
the downstream section, an approximately anechoic
termination made of plastic foam suppresses re-
Lected waves. Lastly, two microphones m1 and m2

(B& K 4136 with Nexus 2690 ampli3er) measure
the pressure in up and downstream sections. These
microphones produce 0.2% of distortion at 150 dB
which ensures that the nonlinear e&ects are gener-
ated by the propagation in the lattice (and not by
the microphones themself). The data acquisition is
carried out by means of a 16 bits AD-converted with
a sampling frequency of 10 kHz and an anti-aliasing
3lter (8th order Chebyschev 3lter) with a bandwidth
of 4 kHz.
All the resonators are identical and are L=16:5 cm

long cylindrical cavities with a diameter of 4 cm. Their
volumes may be independently tuned by moving pis-
tons. Their neck is a 2 cm length tube having a diame-
ter of 1 cm. The Helmholtz resonance frequency cor-
responding to the whole volume (V0=2:1×10−4 m3)
is 300 Hz. All the pipes used are sti& enough for their
structural modes to be outside the frequency range of
interest.

4.2. Results

The PseudoWigner–Ville distribution (PWVD) im-
ages associated with the propagation of an acoustic
pulse in the linear ordered lattice are presented in
Fig. 7. Fig. 7a is the PWVD of the signal picked-up in
the upstream section of the apparatus by microphone
m1 corresponding to the incident impulse beginning at
0:4 s and three narrow bands reLected signal. Fig. 7b
shows the PWVD of the transmitted (output) signal
given by microphone m2. For the case where all the
resonators are identical (the resonance frequency is
300 Hz) the waves belonging to the allowed bands are
shown at the time 0:49 s (corresponding to the propa-
gation of waves through the lattice) and two kinds of
gaps are observed in the PWVD of the transmitted sig-
nal (Fig. 7b): the gaps due to the resonators included
in [300 : 450] Hz (Helmholtz resonance) and [1100 :
1200] Hz and the gap due to the period of the lattice
at 1700 Hz. The waves with frequencies close to the
gaps arrive at longer and longer delays. So their group
velocity goes to zero as the frequency gets closer to



2478 G. Gonon et al. / Signal Processing 83 (2003) 2469–2480

Fig. 7. (a) Wigner–Ville transform of a pulse signal upstream of the lattice. (b) Wigner–Ville transform of a pulse signal downstream of
the lattice.
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Fig. 8. Time waveforms of (a) transmitted signal downstream of the lattice, (b) fundamental component 3ltered in domain � = −0:91,
(c) 3rst harmonic 3ltered in domain � =−0:82, (d) second harmonic 3ltered in domain � =−0:74.
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Fig. 9. Spectrograms of (a) transmitted signal downstream of the lattice, (b) fundamental component 3ltered in domain � = −0:91,
(c) 3rst harmonic 3ltered in domain � =−0:82, (d) second harmonic 3ltered in domain � =−0:74.

the cuto& frequencies of each gap. This is indicated
on the PWVD plot by long tails on each side of the
gaps. From the point coordinates of PWVD of the out-
put signal, it is possible to estimate the group velocity
as a frequency dependant function which caracterizes
the dispersion of the medium.
For high levels of the source, the lattice has a non-

linear response. Since the restoring force of the cavity
is no longer a linear function of acoustical pressure,
higher harmonics are generated by the interactions of
the acoustic wave with the resonators. However, in
most cases, the amplitude of the input signal being
not large enough, the level of nonlinear e&ects is quite
weak.
Since the mechanisms responsible for the nonlinear

e&ects are various, the several components of such
a signal are not equally involved in the generation
of harmonics. So, to investigate how the energy is

transferred from one monochromatic component to its
harmonics, we analyse the behaviour of a linear FM
signal in the lattice. The response of the lattice to such
a signal is a multicomponent signal made up of chirps
each of them corresponding to one harmonic. Their
amplitudes are time dependent and display which parts
of the signal are involved in the nonlinear process and
their relative weights.
For the nonlinear case, the input signal is a lin-

ear FM signal with a frequency range (from 100 to
600 Hz) including the 3rst stopband of the lattice
([300 : 450]). The spectrogram of the transmitted sig-
nal (Fig. 9a) shows the presence of higher harmonics
for the frequencies of the input signal belonging to the
forbidden band (the slope of the input chirp is mul-
tiplied by 2 and by 3). The chirp extraction method
is used to separate the di&erent components of the
signal and the results are presented in Figs. 8 and 9.
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The fundamental component is found by 3ltering in
the fractional domain de3ned by � = −0:91, the 3rst
and second harmonics are obtained respectively with
�=−0:82 and −0:74.
The temporal signals (Fig. 8) of each component

of the transmitted signal show that the contribution
of the higher harmonics is small in face of the am-
plitude of the input signal but becomes quite large in
face of the amplitude of fundamental component in a
forbidden band. This separation points out the var-
ious nonlinear processes existing in a bandgap. For
frequencies belonging to the beginning of the stop-
band (from 0.2 to 0:4 s) only the second harmonic is
excited. On the contrary, at the end of the stopband
(from 0.6 to 0:85 s) only the 3rst harmonic is impor-
tant in the propagation of the wave (the fundamen-
tal component vanishes). The higher harmonics are
equally excited for the duration ranging between 0.4
and 0:6 s. All these di&erences show the complexity
of the physical phenomena which occur.
The spectrograms of each component of the trans-

mitted signal (Fig. 9) show the frequency localization
of the transmitted signal energy. The study of these
plots shows the 3rst approximation of the nonlinear
response of a Helmholtz resonator used in the analyti-
cal model. Around the resonance frequency (from 0.4
to 0:6 s) the amplitude of the 3rst harmonic is larger
than the amplitude of others harmonics. The model
could be improved by including higher order terms.
Nevertheless only the second harmonic emerges from
the response of lattice for frequencies ranging between
200 Hz and 300 Hz.

5. Conclusion

We have shown that the fractional Fourier transform
is well adapted to the analysis of the linear chirp signal.
It is found that the transform of such a signal is similar

to the transform of a sine for the classical Fourier
transform. Simulations have shown that it is possible
to extract linear chirps out of multicomponent and
noisy signal.
In the considered application, this method is very

eFcient to display the high intensity sound waves but
also to study separately each higher harmonic. The
chirp extraction method allows to improve the under-
lying model. The reconstruction of each harmonic in
the time domain is a major tool to the study of energy
transfers between the input signal and the harmon-
ics, providing a better understanding of the nonlinear
e&ects on the propagation in dispersive media.
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