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1Departamento de F́ısica Aplicada, Universidad Politécnica de Valencia - Camino de Vera s/n, 46022 Valencia,
Spain, EU
2 Instituto de Ciencia de Materiales, CSIC - Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain, EU
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Abstract – The transmission of acoustic waves in a fractal distribution of rigid scatterers
embedded in air is reported in this work. The Sierpinsky fractal is used to produce a compact
small device containing several periodicities, therefore the fractal distribution contains several
finite sonic crystals. The attenuation band produced by the fractal distribution results from the
sum of the Bragg peaks of each periodicity. On the other hand, bandgaps of sonic crystal depend on
the well-known filling fraction, thus the radii of the scatterers in the fractal distribution has been
optimized using genetic algorithm in order to overlap the bandgaps of each periodicity obtaining
a wide and full attenuation band.
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Research into heterogeneous artificial materials, con-
sisting of arrangements of rigid scatterers embedded in
a medium with different elastic properties, has been
intensely developed throughout the last two decades.
The capability to prevent the transmission of waves in
predetermined bands of frequencies —called bandgaps—
is one of the most interesting properties of these systems,
and leads to the possibility of designing devices to control
the wave propagation. The underlying physical mechanism
is the destructive Bragg interference. Here we show a
technique that enables the creation of a wide attenuation
band in these materials, based on fractal geometries. We
have focused our work in the acoustic case where these
materials are called Phononic/Sonic Crystals (SC) [1,2]
but the technique could be applied to any type of crystals
and waves in ranges of frequencies where the physics of
the process is linear.
Composites made of acoustically hard cylinders (scat-

terers) periodically embedded in air (host) are character-
ized by a large acoustic mismatch between the cylinder
and substrate materials, therefore modes of acoustic waves
are not allowed to exist in the cylinders and the physical
problem is reduced to the scattering based on Bragg’s law.

(a)E-mail: jusanc@fis.upv.es

With these conditions, the position and the size of the
bandgaps in the range of frequencies depend on: a) the
arrangement of the scatterers, according to the Bragg’s
law and b) the amount of matter formed by the scatter-
ers, quantified by the filling fraction (ff). For a given SC,
the range of frequencies of the bandgap can only get wider
by increasing the ff.
In the last years two ways for changing the characteris-

tics of full SC bandgaps have mainly been developed [3,4].
First, by varying the intrinsic acoustical properties of
the scatterers [5–7] and, second, by developing new
arrangements of scatterers different from the crystalline
symmetries. Quasi-crystals [8] and Quasi-Ordered Struc-
tures [9] are examples of this second strategy. Recently
new arrangements of scatterers characterized by the
concept of hyperuniformity, have been used to obtain
large and complete bandgaps with amorphous photonic
materials [10]. Here, we propose a new procedure to obtain
large attenuation bands based on the redistribution of
the elements of the SC based on fractal geometries [11].
We have chosen these geometries because they can be
modelled mathematically and they can be used as design
tools. Recently fractals have been under study for a
wide range of practical applications, from biological or
medical [12] to economics [13]. However, fractals have
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Fig. 1: Quasi-fractal arrangement of scatterers: Five stages of
cylinder arrays based on Sierpinski’s triangle geometry and the
resulting complete SC and QFS structure.

only been used in the field of SC [14–17] to design the
shapes of the scatterers [18].
The first step we have considered is the design of an

arrangement of scatterers inside an equilateral triangle of
side L based on a 2D fractal called Sierpinsky triangle
(see fig. 1). We have chosen a 2D symmetry triangular
pattern because among the other periodicities it presents
the largest bandgap as a consequence of its degree of
hyperuniformity [10]. In fig. 1, we represent a transversal
section (in the XY plane) of our arrangement considering
infinitely long cylinders with radius r parallel to the
z-axis. We have called it Quasi-Fractal Structure (QFS)
because, although the fractal construction follows an
infinite iterative process [11], we only show here the
first five iterations (or stages). The QFS shown here is
constrained by both L and r. Figure 1 also shows that
one cylinder is located at every vertex of the empty
triangles (white triangle) in each stage, except at stage
zero where the scatterers are located at the vertex of the
existing triangle (Black triangle). Also, one can compare
in fig. 1 the complete SC and the QFS resulting from
the sum of the different stages. At first glance one might
consider that the QFS is a classical triangular crystalline
array with some vacancies in its structure. However, the
underlying symmetry follows a fractal pattern. Thus, we
can consider the QFS as a sum of independent triangular

Fig. 2: (Colour on-line) Left: optimized arrangement of scatter-
ers based on the Sierpinski triangle with different relationships
among the radii of the cylinders (QFSOpt). Right: photograph
taken from beneath the commercial arrangement (QFSExp)
used to validate theoretical results. Part of the supporting
frame can be seen, too.

arrays with different lattice constants (L, L/2, L/4, L/8
and L/16), with every stage located iteratively within the
previous one. This provides a compact small device whose
attenuation band results from the sum of the Bragg peak
corresponding to the periodicity of each stage. This idea
is consistent with the nature of fractal geometries which
are based on the repetition of identical motifs at differing
size scales [11].
The relationship between the different lattice constants

of each stage in the QFS can also be used to explain the
existence of a large full attenuation band. As one can
observe in fig. 1 the lattice constants are proportional
to 1/2M , M being the order number of the stage. This
produces an overlapping of many Bragg peaks at different
stages and a reinforcement of the attenuation bands.
It is possible to find an expression to obtain the number
of repeated Bragg peaks at different stages. The following
functions Sα(n,M), α= 0

◦, 30◦ give the value of the
frequency for which the n-th Bragg peak appears at the
different stages M (M = 0, 1, 2, 3, 4), as a function of
L and along the two high-symmetry directions of the
triangular array (0◦, 30◦)

S0◦(n,M) =C0◦(n+1)2
M ,

S30◦(n,M) =C30◦(n+2)2
M−1,

(1)

where C0◦ =
√
3/3 and C30◦ = 2/3 due to the Bragg

law. Based on eqs. (1), it is straightforward to find the
relationship of the appearance of a predetermined Bragg
peak for any two different stages:

(0◦) n= (n′+1)2V − 1,

(30◦) n= (n′+2)2V − 2,
(2)

where V is the difference between the couple of stages we
want to compare (V = 1, 2, 3, 4). Equations (2) show the
relationship between the n-position of the appearance of a
Bragg peak in the stageM as a function of the n′-position
of the appearance of the same peak in another stage
M ′, such that V =M ′−M . Note the large number of
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Fig. 3: Attenuation properties of the designed devices: (a) experimental Quasi-Fractal Structure (QFSExp) and the triangular
SC used. The relationship among the radii of the cylinders for the first case is (r0/L≈ 0.094; r1/L≈ 0.078; r2/L≈ 0.054;
r3/L≈ 0.029; r4/L≈ 0.017), being (ffExp = 33%). (b) Theoretical normalized IL spectra along the two high-symmetry directions
for QFSExp. (c) The same for the triangular array (ffSC = 36%). (d) Both Theoretical and Experimental QFSExp attenuation
spectra for the ΓX-direction.

times certain Bragg peaks are repeated on different stages
according to eq. (2), producing a reinforcement and, as a
consequence, an enhancement of the full attenuation band.
We want to point out that the above formulas are valid if
the considered stage has a minimum number of cells.
The second step constitutes an important part of our

design technique. We have designed the diameter of each
set of cylinders in each stage independently in order to
distribute the filling fraction of each stage in a more
efficient way: increasing the sizes in the low stages and
reducing them in the higher ones, thereby providing each
stage with the adequate value of ff for the appearance of
their Bragg’s peaks. As a consequence, a further increase of
the attenuation band occurs. In fig. 2 we show a proposed
QFS built with an optimized relationship between the
radii of the cylinders belonging to the different stages M
(M = 0, 1, 2, 3, 4). For the optimization process we have
used genetic algorithm previously adapted to the acoustic
case [9]. The cylinders of the optimized QFS (QFSOpt)
present the following radii for each stage: r0/L≈ 0.14,
r1/L≈ 0.09, r2/L≈ 0.03, r3/L≈ 0.032 and r4/L≈ 0.02.

We would like to point out that it has been necessary
to remove some cylinders of the starting QFS shown in
fig. 1 in order to place the biggest cylinders (large radii)
of the first stages. Of course, other relationships among
the radii of the cylinders could be appropriate for other
applications.
To quantify the size of the attenuation band of this

device we have used the Attenuation Area (AA) parameter
in the analyzed range of frequencies and, at the moment,
only along the ΓX-direction (0◦ degrees). The AA para-
meter has been used successfully in previous works [9] to
obtain the attenuation power of a SC in a predetermined
range of frequencies. It is defined as the area enclosed
between the positive Insertion Loss (IL) spectra and the
0 dB threshold in the frequency range selected. Compar-
ing the AA value for the QFSOpt with the correspond-
ing to a SC with the same external size and shape, and
made of rigid cylinders (radius r/L≈ 0.02) arranged in
triangular lattice, we obtain interesting results: the AA
parameter grows for the QFSOpt case (AAOpt = 179.88
arbitrary units) more than 400% compared with the
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classical triangular lattice (AASC = 43.94 a.u.). We would
like to note that QFSOpt has been designed under the
premise of maintaining the same ff as SC (ffOpt =ffSC =
36%). With these data, we can break the rule about the
relationship between ff and the size of the bandgaps: we
have obtained a high increase in the size of the attenuation
band without increasing the ff of the device with respect
to the original triangular array device. These results have
been calculated in the normalized range of frequencies
0–15 shown in fig. 3. Also, we have normalized the IL of
each spectrum with its maximum value of IL in order to
obtain the AA in arbitrary units. We want to point out
the fact that the obtained results are valid for every range
of frequencies where the behavior of the system is linear.
Moreover, due to the nature of our technique, the crystal
wave properties of our device remain intact for each stage
as it is a sum of triangular arrays. This means that the
attenuation band obtained along the other high-symmetry
direction, ΓJ (30◦) and the full attenuation band of the
QFS also grow comparing to the corresponding bandgap
and full bandgap of the SC, respectively (the full attenua-
tion band of the QFS is 200% higher than the full bandgap
of the SC).
To illustrate the above statement experimentally we

have constructed a new device similar to QFSOpt but
with commercially available hollow cylinders, QFSExp
(fig. 3(a)). In figs. 3(b), (c) one can compare the theoretical
normalized IL spectra, along the two high-symmetry
directions ΓX and ΓJ (0◦, 30◦), for both QFSExp and
the SC defined above. The difference in the size of the
bandgaps in fig. 3(c) for 0 and 30 degrees can be explained
in terms of the external shape of the designed device: for
the triangular external shape, a constructive interference
area appears in front of the vertex of the triangle [19]. As
a consequence, a reduction in the size of the bandgap at
0◦ appears. This effect does not clearly appear at 30◦ of
incidence. We have used Multiple Scattering Theory [20,
21] to obtain these spectra, which have been calculated
at a distance d= 1/L from the vertex of the sample at
0◦. Moreover, in fig. 3(d) we show the good agreement
between the theoretical and experimental results for 0◦

incidence.
In summary, in this work we have shown that an

optimised fractal-based design technique enables a large
increase of the attenuation bands for arrays of rigid
scatterers. There are two steps. The first one consists
of using fractal patterns to arrange the scatterers. The
resulting device, the QFS, can be considered as the sum
of several independent crystalline arrays. The second step
consists of optimising the QFS by varying the ff of each
fractal stage independently. As a result, we have obtained
efficient and compact devices. The sum of the Bragg
peaks belonging to the different scale arrays (stages), the
reinforcement process due to the existence of different
lattice constants and the redistribution of cylinders among
the different stages are behind this enhancement.
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