
Evanescent modes in sonic crystals: Complex dispersion relation and
supercell approximation

V. Romero-García,1,2,a! J. V. Sánchez-Pérez,1 and L. M. Garcia-Raffi3
1Centro de Tecnologías Físicas: Acústica, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022,
Valencia, Spain
2Instituto de Ciencia de Materiales, Consejo Superior de Investigaciones Científicas. Sor Juana Inés de la
Cruz, 3, Cantoblanco, 28049, Madrid, Spain
3Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Camino de
Vera s/n, 46022, Valencia, Spain

!Received 26 February 2010; accepted 26 June 2010; published online 20 August 2010"

Evanescent modes in complete sonic crystals !SCs" and SC with point defects are reported both
theoretically and experimentally in this paper. Plane wave expansion !PWE" and in general, !!k"
methods have been used to calculate band structures showing gaps that have been interpreted as
ranges of frequencies where no real k exists. In this work, we extend PWE to solve the complex
k!!" problem applied to SC, introducing the supercell approximation for studying one vacancy.
Explicit matrix formulation of the equations is given. This k!!" method enables the calculation of
complex band structures, as well as enabling an analysis of the propagating modes related with real
values of the function k!!", and the evanescent modes related with imaginary values of k!!". This
paper shows theoretical results and experimental evidences of the evanescent behavior of modes
inside the SC band gap. Experimental data and numerical results using the finite elements method
are in very good agreement with the predictions obtained using the k!!" method. © 2010 American
Institute of Physics. #doi:10.1063/1.3466988$

I. INTRODUCTION

The propagation of scalar waves inside periodic struc-
tures has been receiving growing interest in recent years. A
great effort has been made to understand the physics of these
systems since the acoustical properties of a periodic sculp-
ture by Eusebio Sempere were measured.1

Phononic crystals !PCs" consist of an inhomogeneous
periodic distribution of elastic materials embedded in other
elastic materials with different properties.2,3 These systems
are extensions of the photonic crystals4,5 used for the propa-
gation of elastic waves through periodic elastic structures. If
one of the elastic materials is a fluid medium, then PCs are
called sonic crystals !SCs". Several studies discuss the simi-
larities and differences between these periodic systems.6,7

The periodicity of these systems is introduced in the so-
lution of the wave equation by means of Bloch’s theorem.
This solution leads to the phenomenon of band gaps !BGs":
frequency regimes where waves do not propagate through
the crystal. Traditionally, wave propagation inside such sys-
tems was analyzed by means of the band structures. Plane
wave expansion !PWE" !Ref. 8" transforms the wave equa-
tion into an eigenvalue problem that can be solved for each
Bloch vector, k, in the irreducible first Brillouin zone; and so
obtaining the eigenfrequencies !!k!" that constitute the band
structures. In the case of SCs, it has been proven that eigen-
frequencies for an arbitrary crystal structure and an arbitrary
filling fraction9 are real values. A great number of applica-
tions based on SCs are explained by the existence of BGs:
acoustic filters;10 acoustic barriers;11 or wave guides.12,13

Propagating waves inside a periodic media represent a
set of solutions to the wave equation that satisfy the transla-
tional symmetry and these are characterized by the transmis-
sion bands in the PWE method. However, where the transla-
tional symmetry is broken, finite periodic media or periodic
media with point defects, can support the well known eva-
nescent modes characterized by a complex wave number,
k.23 Recent experimental results14 show measurements of the
sound levels recorded inside a point defect and behind an
SC. These authors observed that this level is higher inside
the cavity than behind the crystal. This fact clearly shows
both the generation of a trapping mode !i.e., localized mode"
inside the point defect and its evanescent behavior outside
the vacancy. Some authors in the electromagnetic regime
have measured the evanescent modes in photonic crystals
and revealed multiexponential decay.15

Several extensions of the PWE method have been used
to analyze the propagation of sound through periodic sys-
tems in different situations; for example, crystals with point
defects have been analyzed with PWE using the supercell
approximation.16,17 The same methodology has been used to
analyze the influence of the following: constituent materials,
plate thickness, and the geometry of the array on the band
structure in two-dimensional !2D" PC plates.18 However,
these !!k!" methods interpret the BG as frequency regimes
where no real k exists. Therefore, these methods can only be
used to study and characterize propagating modes.

We have been motivated by the work of Hsue et al.,19 in
which the PWE was extended for the case of photonic crys-
tals to calculate the complex k in a 2D isotropic and in gen-
eral three-dimensional !3D" anisotropic cases. In this paper
we show the extended PWE !EPWE" for the case of 2D SCs.a"Electronic mail: virogar1@mat.upv.es.
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The aim is to obtain the band structures using the inverse
expression k!!", and with a possibly complex k. Recent
works show the calculation of complex band structures for
PCs.20,21 In the present work we show the explicit matrix
formulation and the approximation of supercell for analyzing
the complex relation dispersion of SCs. The extension of the
methodology enables us to characterize the evanescent and
propagating modes in complete SCs as well as in SCs with
point defects.

In this paper we present novel measurements of the pres-
sure in the space between rows inside an SC. We have de-
veloped a 3D computer-controlled automatic positioning sys-
tem together with an automatized acquisition system, called
3DReAMS !3D Robotized e-Acoustic Measurement Sys-
tem". This system enables the pressure field in trajectories
inside a crystal to be measured and we have consequently
analyzed the decay of the evanescent modes throughout an
SC. The imaginary part of the wave number of the evanes-
cent modes can be obtained experimentally with the mea-
surements taken by 3DReAMS. These data represent the ex-
perimental confirmation of the analytical results obtained by
the EPWE, as well as an experimental analysis of propagat-
ing and evanescent modes in an SC.

The paper is organized as follows. Sec. II summarizes
the main ingredients of the PWE for 2D SCs with the explicit
matrix formulation of the problem. In Sec. III we extend the
PWE to the EPWE to solve the eigenvalue problem k!!". We
show the matrix formulation, as well as the EPWE, together
with the supercell approximation for studying the complex
band structures of 2D SC with point defects. In Sec. IV the
complex band structures of an SC of polyvinyl chloride
!PVC" cylinders embedded in air are obtained with EPWE
for a 2D SC with, and without, point defects. Experimental
results validating the predictions of the EPWE for the eva-
nescent and propagating modes are shown in Sec. V. Finally,
the work is summarized in Sec. VI.

II. PLANE WAVE METHOD

Propagation of sound is described by the equation

1
"c2

#2p

#t2 = $%1
"

$ p& , !1"

where c is the sound velocity, " is the density of the medium,
and p is the pressure.

In this paper we consider a system composed of an array
of straight, infinite cylinders made of an isotropic solid A,
embedded in an acoustic isotropic background B. There is
translational invariance in direction z parallel to the cylin-
ders’ axis; and the system has a 2D periodicity in the trans-
verse plane. By making use of this periodicity, we can ex-
pand the properties of the medium in the Fourier series,

# =
1

"!r!"
= '

G!
#k!!G! "eıG! r!, !2"

$ =
1

B!r!"
= '

G!
$k!!G! "eıG! r!, !3"

where G! is the 2D reciprocal-lattice vector and B!r!"
="!r!"c!r!"2 is the bulk modulus. For the pressure p we use the
Bloch theorem and harmonic temporal dependence,

p!r!,t" = eı!k!r!−!t"'
G!

pk!G! "eıG! r!. !4"

It is simple to show that8

%!G! " = (%Af + %B!1 − f" if G! = 0!

!%A − %B"F!G! " if G! % 0!
) , !5"

where %= !# ,$" and F!G! " is the structure factor. For a cir-
cular cross section of radius r, the structure factor is

F!G! " =
1

Auc
*

Acyl

e−iG! r!dr! =
2f

Gr
J1!G" , !6"

where Auc is the area of the unit cell, Acyl is the area of the
cylinder, and J1 is the Bessel function of the first kind of
order 1.

Using Eqs. !1"–!4" we obtain8

'
G!!

#!k! + G! "#k!G! − G!! "!k! + G!! " − !2$!G! − G!! "$pk!!G!! "

= 0. !7"

For G! taking all the possible values, Eq. !7" constitutes a set
of linear, homogeneous equations for the eigenvectors pk!!G! ",
and eigenfrequencies !!k!". We obtain the band structures
when k! scans the area of the irreducible region of the first
Brillouin zone.

Equation !7" can be expressed by the matrix formulation
below

'
i=1

3

&i'&iP = !2(P , !8"

where i=1, 2, and 3. The matrices &i, ', and ( are defined
as

!&i"mn = )mn!ki + Gi
m" . !9"

The explicit matrix formulation is shown as follows:

&i =+ki + Gi 0 . . . 0

0 ki + Gi . . . 0

] ] ! ]
0 . . . . . . ki + Gi

, , !10"

' = + #!G! 1 − G! 1" . . . #!G! 1 − G! N*N"
] ! ]

#!G! N*N − G! 1" . . . #!G! N*N − G! N*N"
, , !11"

( = + $!G! 1 − G! 1" . . . $!G! 1 − G! N*N"
] ! ]

$!G! N*N − G! 1" . . . $!G! N*N − G! N*N"
, , !12"
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P = + P!G! 1"
]

P!G! N*N"
, , !13"

where G! = !Gx ,Gy ,Gx". To solve !8" we must truncate the
matrices. If we chose m=n= !−M , . . . ,M", the size of the
previous matrices is N*N= !2M +1"* !2M +1". N*N is
usually the number of plane waves used in the calculation.

By solving the system given in Eq. !8" for each Bloch
vector in the irreducible area of the first Brillouin zone, we
obtain N*N eigenvalues, !2, which can be used to represent
the band structures, !!k!".

III. EXTENDED PLANE WAVE METHOD

In the !!k!" formulation, the existence of BG is indicated
by the absence of bands in determined ranges of frequencies.
However, BG could be understood by means of the evanes-
cent behavior of the internal modes. This interpretation was
predicted by some authors23 when approximating the second
band near the BG by expanding !!k!" to powers of k around
the edge k=+ /a, being a the lattice constant of the array.
These authors claimed that as the BG is traversed, the expo-
nential decay grows as the frequency nears the center of the
BG. At a given frequency ! inside the BG, the evanescent
wave is characterized by a complex value of its wave number
k!!!" and which the imaginary part characterizes as the
exponential-like decay of the mode. In this section, we ex-
tend the previous PWE to the EPWE to obtain k!!!" and with
a possibly imaginary k.

From Eq. !8" we define the next vector,

,i = '&iP . !14"

With this definition we can reformulate the eigenvalue prob-
lem !8" as the equation system

,i = '&iP ,

!2(P = '
i=1

3

&i,i. !15"

To obtain an eigenvalue problem for k!!!", we write k! =k-! ,
where -! is a unit vector. Then Eq. !10" can be written as

&i = &i
0 + k-iI , !16"

where I is the identity matrix, and

&i
0 =+Gi 0 . . . 0

0 Gi . . . 0

] ] ! ]
0 . . . . . . Gi

, , !17"

-i =+-i 0 . . . 0

0 -i . . . 0

] ] ! ]
0 . . . . . . -i

, . !18"

Equation !8" can then be written as

+!2( − '
i=1

3

&i
0'&i

0 0

− '
i=1

3

'&i
0 I ,% P

,!
& = k+'

i=1

3

&i
0'-i I

'
i=1

3

'-i 0,
*% P

,!
& , !19"

where ,!='i=1
3 -i,i.

Equation !19" represents a generalized eigenvalue prob-
lem with 2N eigenvalues k and possibly complex numbers
for each frequency. Complex band structures have been cal-
culated for the incidence direction characterized by vector -!
by solving the previous eigenvalue equation for a discrete
number of frequencies and then sorting by continuity of k. In
contrast to the !!k!" method, the periodicity is not relevant in
this formulation of the problem and k!!" does not follow the
first Brillouin zone.

Because of the periodicity of the system, Bloch waves
can be expanded in a series of harmonics where each har-
monic corresponds with a value of k, if k is then a complex
number, the evanescent behavior of a wave with a predeter-
mined frequency would be multiexponential.15 The complex
band structures show the values of all of the complex values
of k which contribute to the multiexponential decay of the
mode in the BG. As we will see later, for the case of the SC
analyzed in this paper, we can only approximate the evanes-
cent behavior in the modes inside the BG by considering the
first term of this harmonic expansion in terms of k.

A. Supercell approximation

One particularly interesting aspect of SCs is the possi-
bility of creating point defects that confine acoustic waves in
localized modes.17,22 Because of the locally breaking period-
icity of the structure, defect modes can be created within the
BG. These defect modes are strongly localized around the
point defect: once the wave is inside the defect, it is trapped
because the borders of the defect act as perfect mirrors for
waves with frequencies in the BG. Localization depends on
several parameters, such as the size of the point defect. How-
ever, in finite periodic structures the strength of sound local-
ization also depends on the size of the structure around the
defect because of the exponential decay of the outgoing
wave.14

To analyze the propagation of waves inside periodic
structures with defects, authors have traditionally used PWE
with supercell approximation. The supercell method requires
the lowest possible interaction between defects. This results
in a periodic arrangement of supercells that contain the point
defect. With this method we can obtain the relation !!k!" for
crystals with local defects and, for instance, the physics of
wave guides13,18 or filters12 can be explained.

In this section, we apply the supercell approximation to
the EPWE. This methodology enables us to obtain the rela-
tion k!!" for defect modes. It will be interesting to discover
how the imaginary part of the wave vector inside the BG
changes with the creation of the defect.
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Consider an SC with primitive lattice vectors a! i !i
=1,2 ,3". The supercell is a cluster of n1*n2*n3 scatterers
periodically placed in space. The primitive lattice vectors in
the supercell approximation are a! i!=nia! i, and the complete
set of lattices in the supercell approximation is -R! .R!
= lia! i!/, where ni and li are integers. The primitive reciprocal
vectors are then

b! i! = 2+
.ijka! j! * a!k!

a!1! · !a!2! * a!3!"
, !20"

where .ijk is the completely antisymmetrical 3D Levi-Civita
symbol. The complete set of reciprocal-lattice vectors in the
supercell is -G! .G! i=Nib! i!/ where Ni are integers.

Finally, the structural factor of the supercell in this ap-
proximation has to be computed while taking into account
the size of the supercell. If we consider a 2D SC with cylin-
drical scatterers with a radius r and an n1*n2 sized super-
cell, the structure factor of the supercell is expressed by

F!G! " = '
i=−!n1−1"/2

!n1−1"/2

'
j=−!n2−1"/2

!n2−1"/2

eı!ia.G! 1.+ja.G! 2."P!G! ", !21"

where

P!G! " =
2f

Gr
J1!G" . !22"

f is the filling fraction of the supercell, G= .G! ., and a is the
lattice constant of the 2D periodic system.

By introducing the previous expressions in the matrices
of the PWE #Eq. !8"$ or in the case of the EPWE #Eq. !19"$,
we can then use the supercell approximation to calculate the
band structure of a periodic structure with, and without, a
point defect.

IV. NUMERICAL RESULTS

We consider a 2D SC consisting of PVC cylinders of
radius r in an air background arranged in a square lattice
with a lattice constant a. The material parameters employed
in the calculations are "air=1.23 kg /m3, "PVC
=1400 kg /m3, cair=340 m /s, and cPVC=2380 m /s. We
consider a filling fraction f =+r2 /a200.65. We have used
reduced magnitudes,8 so the reduced frequency is (
=wa / !2+chost" and the reduced wave vector is K=ka / !2+".

A. Complete array

In Fig. 1 we can observe the complex band structure
obtained by EPWE for the SC described above. In the left
panel we have represented the imaginary part of the wave
vector in the &X direction; in the right panel we have shown
the complex band structures in the &M direction; and the
central panel shows the real part of the band structures. The
imaginary part is not restricted in values of k; while the real
part is restricted to the first Brillouin zone. The area in gray
represents the full BG ranged between the frequencies (1
=!1a / !2+chost"=0.4057 and (2=!2a / !2+chost"=0.7189.
Note that the real part of the complex band structures has
exactly the same values as in the case of the PWE.

In Fig. 1 we can observe that modes inside the BG
present purely imaginary wave vectors and these can be
characterized as evanescent modes with an exponential-like
decay. The elegant and intuitive explanation of the evanes-
cent behavior of modes inside the BG given by
Joannopoulus23 is reproduced in Fig. 1 in &X; as well as in
&M directions !red dashed lines". The imaginary part of the
wave number for frequencies inside the BG grows with val-
ues of frequency closer to the center of the BG; and disap-
pears at the edges of the BG. In other words, the rate of
decay is greater for frequencies closer to the center of the
BG. We can also observe that the imaginary part of the wave
vector connects propagating bands and so conserves the
overall number of modes.

A recent paper has shown the multiexponential decay of
evanescent modes in a photonic crystal.15 In Fig. 3, we can
observe clearly that each frequency inside the BG is charac-
terized by several values of Im!k", corresponding to the har-
monics of the multiexponential decay of the evanescent
modes. In the Sec. IV we will see that only the first value of
the Im!k" contributes to the decay of the mode and, therefore,
higher harmonics can be neglected and we can approximate
in the same way as an exponential-like decay.

B. Defect modes

In this paper, point defects have been created by remov-
ing cylinders in an SC. We have used the EPWE method
with supercell approximation to analyze the propagating and
evanescent behavior of modes in an SC with point defects.

Figure 2 shows the complex band structures for the &X
direction and real band structures for an SC with a point
defect. In our case, we use only one direction of incidence to
analyze the complex band structure because the localized
mode appears at the same frequency for all the incidence
directions. The supercell used for the calculations is shown
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FIG. 1. !Color online" Band structure of an SC of PVC cylinders embedded
in air with filling fraction f 00.65. The left panel represents the imaginary
part of the wave vector for each &X direction frequency. The central panel
represents the real part of the wave vector, constrained in the first Brillouin
zone, for each frequency. The right panel represents the imaginary part of
the wave vector for each &M direction frequency. The dashed line represents
the imaginary part of the wave vector of the evanescent modes inside the
BG. Reduced magnitudes have been used.
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in the inset of Fig. 2. We can observe that the localized mode
appears at (3=!3a / !2+chost"=0.59 !green dashed line". For
frequencies in the BG, the borders of the point defect act as
perfect mirrors and produce the localized mode in this cavity.
The complex value of the k number for the modes inside the
BG can be obtained by EPWE and becomes a purely real
value for the localized mode !red dotted line and green
dashed line". The value exactly coincides with the value ob-
tained by PWE with supercell approximation.

V. EXPERIMENTAL RESULTS

We performed the experiments in an echo-free chamber
sized 8*6*3 m3. To obtain the experimental dependence
of the pressure all along the SC, we measured the pressure
field at several points between two rows of the SC. To
achieve this we built a finite SC and placed the microphone
inside the periodic structure in a space between two rows.
The finite 2D SC used in this paper was made of PVC cyl-
inders hung in a frame and measuring 5a*5a. The radius of
the cylinders was r=10 cm and the lattice constant of the SC
was a=22 cm. With these parameters, the finite SC has the
same filling fraction !f 00.65" as in Sec. IV and the dimen-
sions are large enough for the microphone to be placed be-
tween the rows. The microphone used was a prepolarized
free-field 1 /2" Type 4189 B&K. The diameter of the micro-
phone was 1.32 cm, which is approximately 0.06a, and so a
low level of influence over the pressure field measured is
expected.

The 3DReAMS system is capable of sweeping the mi-
crophone through a 3D grid of measuring points located at
any trajectory inside the echo-free chamber. The motion of
the robot was controlled by an NI-PCI 7334. We analyzed
the absolute value of the sound pressure between two rows of
the SC by moving the microphone in steps of 1 cm.

In Sec. IV we analyzed the upper and lower frequencies
of the BG for an SC of PVC cylinders with the filling frac-
tion value as in our experimental setup. By considering the
corresponding values of the parameters of our experimental
SC, we can obtain the frequency range of the BG. In our

case, the BG appears between 627 and 1111 Hz. To measure
the propagation of sound inside the SC, we analyzed two
different frequencies, one inside the BG and the other in the
first transmission band. The frequencies were 920 Hz and
442 Hz, respectively.

In Fig. 3 we show the experimental measurements of the
absolute value of the pressure inside SC for propagating and
evanescent modes. These experimental results represent a
novel measurement of the pressure field inside an SC. The
inset of Fig. 3 shows the measured points in steps of 1 cm
placed between two rows of cylinders inside the SC using
the 3DReAMS system. Blue squares with a continuous blue
polygonal line represent the absolute value of the pressure of
a frequency outside of the BG, that is, 442 Hz. This fre-
quency represents a propagating mode inside the SC. Red
circles with a polygonal red continuous line represent the
absolute value of the pressure of a frequency inside the BG,
that is, 920 Hz. For the last case, we can observe the decay of
the pressure inside the SC because of the evanescent behav-
ior of the mode inside the BG.

In contrast to the propagating mode !blue squares with a
blue polygonal continuous line", the evanescent mode !red
squares with a red polygonal continuous line" is practically
extinguished at the end of the crystal—and just a small value
remaining for the emerging pressure. This characteristic of
evanescent behavior in finite SCs has been measured re-
cently by Wu et al.14 in an SC with a point defect.

The value of the imaginary part of the first harmonic
of the wave vector for the 920 Hz frequency can be ob-
tained from Fig. 1. Using the values of parameters of the
SC, we can observe a value Im!k"=−5.6 m−1. From
experimental data !see Fig. 3", we can fit the decay of the
evanescent mode. We have chosen the points with max-
imum values in order to fit an exponential decay aebx. The
values of the fit are a=0.055 97/0.0103 Pa and b= Im!k"
=−5.60/1.45 m−1. Note that the experimental value is very
close to the analytical value, i.e., the assumption that only
the first harmonic is needed to represent the multiexponential
decay of the evanescent mode is correct.

By solving the scattering problem inside the SC by
means of the finite element method !FEM" we can analyze
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FIG. 2. !Color online" Band structure for an SC with an internal defect,
calculated using the EPWE with supercell approximation. The left panel
represents the imaginary part of the wave vector for each &X direction
frequency. The right panel represents the real part, constrained in the first
Brillouin zone, of the wave vector for each frequency. The dashed line
represents the frequency of the localized mode in the defect. The dotted line
represents the imaginary part of the wave vector of the evanescent modes
inside the BG. Reduced magnitudes have been used.
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FIG. 3. !Color online" Absolute value of the pressure inside the SC in the
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decay of the evanescent mode inside the BG. The continuous line represents
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the evanescent behavior of the modes inside the BG of an
SC. We have studied numerically the absolute value of the
sound pressure between two rows of an SC. Continuity
boundary conditions in the walls of the cylinders and the
radiation condition at the borders of the numerical domain
have been considered in the simulation. The black continu-
ous line in Fig. 3 represents the absolute values of pressure
obtained numerically inside the SC, considering an incidence
of a plane wave with a frequency of 920 Hz. The correspon-
dence between the experimental data !red polygonal line
with open red circles" and the numerical results is clear.

VI. CONCLUSIONS

The propagation of waves inside periodic structures con-
sists of propagating and evanescent modes. !!k!" methods
can be used to analyze the propagating modes, while evanes-
cent modes are represented by the absence of k for some
ranges of frequencies. In this paper, we extend the !!k!" to
the k!!" method for the case of 2D SCs. We present the
formulation of the supercell approximation for the k!!"
method. For the EPWE we have predicted the evanescent
nature of the modes inside the BG of an SC. In this paper we
have reported measurements of the exponential-like decay of
the acoustic field inside an SC. EPWE predicted a value for
the imaginary part of the first harmonic of the wave number,
Im!k"=−5.6 m−1; and by fitting an exponential decay, aebx,
the experimental value we have obtained is b= Im!k"=
−5.60/1.45 m−1. Therefore, we can conclude that only the
first harmonic contributes to the exponential-like decay of
the evanescent mode. We have also shown that the imaginary
part of the wave vector connects propagation bands and con-
serves the overall number of modes.

We have also applied the EPWE with supercell aproxi-
mation to SC with point defects. We have analyzed the case
of one vacancy observing the localized mode inside the BG
predicted by EPWE. The value of the k number for this lo-
calized mode, that is purely imaginary in the case of com-
plete SC, changes to purely real and it becomes in a passing
mode as it was observed in the literature. The frequency of
the localized mode exactly coincides with the value obtained
by PWE.

Analytical, numerical, and experimental results repro-
duce with very good agreement the complex values of the
wave vector inside the BG, meaning that these methodolo-

gies obtain good values for the exponential-like decay of the
evanescent modes in an SC. This work shows the basis for
the correct understanding of the design of narrow filters and
wave guides based on PCs or SCs with point defects.
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