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Abstract
The use of sonic crystals (SCs) as environmental noise barriers has certain advantages from
both the acoustical and the constructive points of view with regard to conventional ones.
However, the interaction between the SCs and the ground has not been studied yet. In this
work we are reporting a semi-analytical model, based on the multiple scattering theory and on
the method of images, to study this interaction considering the ground as a finite impedance
surface. The results obtained here show that this model could be used to design more effective
noise barriers based on SCs because the excess attenuation of the ground could be modelled in
order to improve the attenuation properties of the array of scatterers. The results are compared
with experimental data and numerical predictions thus finding good agreement between them.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Periodic arrangements of scatterers embedded in a medium
with different physical properties show ranges of frequencies,
known as band gaps (BGs), where the transmission of waves
is forbidden. If these periodic systems are formed by a
combination of solids and fluids then they are usually called
sonic crystals (SCs) [1]. In the last years, an increasing
interest has appeared in the potential exploitation of SCs as
environmental noise barriers [2–4].

Some examples of the advantages of using SCs instead
of conventional screens are the reduction in the size of the
foundation or the possibility of designing specific screens for
predetermined conditions. However, the acoustical properties
of SCs depend on several factors showing some particularities
in their attenuation properties. For example, the size and
position of the BGs depend on several factors such as the
direction of incidence of the wave on the SCs and the type

of arrangement of the scatterers [5]. As a consequence, the
development of the screens based on SCs is not a trivial process.

In order to avoid these handicaps several works have been
intensively developed in last years. The use of both materials
with acoustical properties added or more efficient distribution
of scatterers are two examples. The use of resonators [6] or
absorbent materials [7, 8] in the first case, and the use of quasi-
ordered [9, 10] or quasi-fractal [11] structures in the second
case have been studied.

The existence of the ground is one of the factors to be
considered in the use of SCs as noise barriers. Up to now one
of the most appropriate analytical approaches to predicting
the transmission properties of finite SCs has been based on
the well-known multiple scattering theory (MST) [12–15],
which is a self-consistent method to calculate the acoustic
pressure including all orders of scattering considering the
superpositions of the solution for a simple scatterer. MST
has been used to predict the acoustical performance of SCs
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Figure 1. (a) Square lattice array above a perfectly reflecting plane. (b) Schematic of the real and the image sources and the real and the
image scatterers.

in the absence of a ground plane [15]. On the other hand,
some works use MST to study the possibility of modulating
the scattering using a ground made of random [16] or periodic
inclusions [17]. However, the interaction between the SCs and
the ground has not been studied yet, and in this case the MST
is an unrealistic approximation as the presence of the ground
should be considered.

In this work, we present a semi-analytical method based
on both the MST and the method of images [16, 18] to study
the effect of ground planes on the propagation properties
of a SC made of rigid scatterers embedded in air. Two
types of grounds, acoustically rigid and with finite impedance,
have been considered. In the method of images the system
formed by the source, the array of cylinders and the ground
is equivalent to a doubled system source-array of cylinders
completely symmetric with respect to the axis defined by the
ground.

The self-consistent method presented here is completely
general, i.e. independent of the impedance model chosen to
characterize the ground, so that different ways to determine the
ground impedance can be combined with our semi-analytical
model. Here we have used a two-parameter impedance method
[19] due to both the simplicity of the model and the good
agreement of the results with the experimental data obtained,
although this method is constrained for the low grazing angles.

The paper is organized as follows: in section 2, we explain
the preliminary conditions of our work, including a brief
explanation of both the method of images and the impedance
model chosen to characterize the ground. In section 3, we
develop the semi-analytical method to model the SC–ground
interaction, comparing the results of canonical situations with
those obtained with numerical predictions (finite elements
method). In section 4, we present the results of the SC–ground
interaction as well as the comparison with the experimental
data. Finally, in section 5, the concluding remarks of our work
are shown.

2. Preliminary conditions: method of images and
ground impedance

The most interesting situation in the SC–ground interaction
is likely to involve periodic vertical finite cylinder arrays, but
this would require the solution of a 3D problem considering
the interaction between finite vertical cylinders and the finite
impedance ground. Due to the complexity of the geometry
of this general problem, the analytical study could be very
complicated and the numerical simulations could require long
computational time. Here we have considered the more
tractable 2D problem involving a periodic array of cylinders
with their axes parallel to the ground (horizontal cylinders).
This geometry has recently been used to observe BGs for water
waves propagating over an infinite periodic array of submerged
horizontal circular cylinders in deep water [20].

2.1. Defining the problem. Method of images

Consider a line source placed at point O and an array of M

circular scatterers placed in the positive half-space which is
air, characterized by the sound velocity, c = 344 m s−1, and
density ρ = 1.23 kg m−3. The position of each scatterer
Cm, m = 1, . . . , M is given by the vector �Rm. Figure 1(a)
shows the scheme of the problem in the particular case of
scatterers arranged in a square lattice which is defined by the
lattice constant a. The nearest base of the array of scatterers
is placed at a distance Hx from the ground, while the nearest
vertical base of the array from the source is placed at a distance
Hy (see figure 1(a))

The geometry used to perform the method of images in our
approach is shown in figure 1(b). In this approach one should
consider the image of the source as well as of the scatterers.
Note that all the waves reflected on the ground can be described
as waves coming either from the image source or from the
image scatterers, then the images are also interacting with the
real space. The image source is placed at point O ′ (from now
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on, the image vectors will be characterized by a prime), and
the image of scatterers C ′

m are placed on the negative half-
space. All the vectors measured from the image source are
characterized by a prime (′).

In the scattering problem, the image of the source and the
scatterers should be modulated by the presence of the ground.
Next, an amplitude and a phase should be added to correct
the contribution of images to the scattered field. Then, as we
will see in the next section, the complex reflection coefficient
should be considered to perform this correction.

2.2. Ground effect

In some cases the surface of the ground can be considered
perfectly rigid (or totally reflective). However, some cases
exist, as for example concrete or soil surfaces with or
without vegetation, in which there is absorption of energy
of the incident acoustic waves. An accurate prediction of
the influence of the ground in the scattering produced in
the structure requires the knowledge of the absorptive and
reflective properties (the acoustic impedance) of the surface.
Motivated by previous works [18], we characterize in this work
the effect of the ground on the scattering problem using the
reflection coefficient R(�rO, �rR; ν). In general, R(�rO, �rR; ν)

is a function that mainly depends on the impedance contrast
between the two half-spaces separated by the ground surface,
on the frequency (ν) and on the positions of both the source
(�rO) and the receiver (�rC) by means of the angle of incidence
on the ground.

The ground surface itself also provides a significant path
for transmission of acoustic energy, particularly at low graz-
ing angles and low frequencies. Incident acoustic energy is
transformed into vibrational energy and is transmitted along
the surface layer. This vibration disturbance can propagate
through long distances, before it is dissipated or re-radiated
as sound. At these long distances, the transmission of low
frequency sound can be dominated by this surface wave
mechanism. In this work, we are interested in the inter-
action between the SC and the ground effect. Therefore,
we have studied regions near the source and in the regime
of the dispersion frequencies of the array (high frequen-
cies). Thus, this transmission mechanism is neglected in
this work.

When airborne sound impinges on the ground, part of
the wave is transmitted while another is refracted at right
angles onto the surface. For our purposes, we have focused
our attention on the reflected waves leaving the surface at the
angle of incidence, with its amplitude and phase modified by
the impedance of the surface. This reflected wave propagates
towards the receiver in addition to the direct wave from the
source and, depending on their relative phases and amplitudes,
they may constructively add or destructively interfere [21–23].
The effect of the ground on the propagating wave is usually
called excess attenuation and it can be explained in terms of the
existence of two sources: the real one and the image source
that models the reflected wave. In this case, the governing
equation for pressure p at the receiver, assuming a uniform

medium and a line source, in the positive half-space is

p = H0(kr) + R(�rO, �rR; ν)H0(kr ′)
= H0(kr) + Rp(�rO, �rR, ν)H0(kr ′)

+ (1 − Rp(�rO, �rR, ν))FH0(kr ′) (1)

where Rp is the plane wave coefficient, H0 is the Hankel
function of 0th order and first kind; parameter F is the
boundary-loss factor which is a mathematical function of a
variable w called the numerical distance. These functions
are [19, 21]

Rp(�rO, �rR, ν) =
cos θ − Zair

Zground

cos θ +
Zair

Zground

(2)

F = 1 + ı
√

πwe−w2
erfc(−ıw), (3)

where

w =
√

1

2
ıkr2

(
cos θ +

Zair

Zground

)
, (4)

where Zair and Zground are the air and ground impedances
respectively, r2 is the distance between the reflection point
and the receiver and θ is the reflection angle measured from
the normal of the surface. erfc is the complex complementary
error function. Usually, fraction β = Zair/Zground is called
the admittance of the homogeneous impedance plane. The
reflected angle can be obtained as

θ = arctan

(
x − xO

y + yO

)
, (5)

where �rO = (xO, yO) is the position of the source and �rR =
(x, y) is the position of the receiver point with respect to the
origin of coordinates (see figure 1).

The knowledge of the expression of the impedance is
necessary in order to account the reflection properties of
the surface. In this work we have characterized these type
of surfaces (open cell foam layer) using a two-parameter
impedance model [19] with flow resistivity σe = 4 kPa s m−2

and porosity at the surface αe = 105 m−1, being the impedance
of the ground

Zground = ρc0

(
0.434

√
σe

ν
(1 + ı) + 9.75ı

αe

ν

)
, (6)

where ρ and c0 are the density and the sound velocity of air,
respectively.

3. MST for SC over a finite impedance ground
(MSTFIG)

The solution of the appropriate scattering problem satisfies the
Helmholtz equation in the half-space that is written in polar
coordinates (r, θ) as

�p(�r) + k2p(�r) = 0, (7)

where

� = 1

r

∂

∂r

(
r

∂

∂r

)
+

1

r2

∂2

∂θ2
,
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�r = r(cos θ, sin θ) is the radius vector, p is the acoustic
displacement potential, k = ω/c and ω is the angular
frequency. Equation (7) is solved in conjunction with radiation
conditions

∂p

∂r
− ikp = o(r−1/2), as r → ∞. (8)

Given that M disjoint cylindrical scatterers located at the
positions �Rm = �R1, . . . , �RM all placed above a surface on
the symmetry axis (see figure 1) and a sound source located
at point O, one can consider the incident field over the nth
scatterer in the presence of both the other M −1 scatterers and
the ground by taking into account the conditions explained
in section 2 about the multiple scattering technique and the
method of images.

pn(�r) = p0(�r) +
M∑

j=1,j �=n

(pj
s (�r) + R( �ROj , �rR; ν)pj ′

s (�r)), (9)

where p0 is the pressure produced by both the real and the
image sources and p

j
s and p

j ′
s are the scattered pressure

by the j th cylinder and its image j ′th cylinder respectively.
Equation (9) defines the interaction between the scattering of
the array and the ground, therefore the semi-analytical method
shown in this work is called MST for finite impedance ground
(MSTFIG). The pressure of the sources can be expressed as

p0(�r) = H0(kr) + R(�rO, �rR; ν)H0(kr ′), (10)

where �r = r(cos θ, sin θ) is the vector connecting the real
line source and the receiver point and �r ′ = r ′(cos θ ′, sin θ ′)
connects the position of the receiver and the image point
source. On the other hand, the scattered pressures produced
by the cylinders m and m′ can be represented as

pm
s (�r) =

∞∑
l=−∞

Am
l H

(1)
l (krm)eılθm , (11)

pm′
s (�r) =

∞∑
l=−∞

Am′
l R( �ROm, �rR; ν)H

(1)
l (krm′)eılθm′ , (12)

where �rm = rm(cos θm, sin θm) is a vector connecting the centre
of scatterer Cm and the receiver and �rm′ = rm′(cos θm′ , sin θm′)

connects the receiver with the scatterer image Cm′ . Note that
the reflected wave on the cylinder image is produced by the
presence of the ground, thus the reflected pressure on the
cylinder should be modulated by the reflection coefficient as
in the case of the incident wave on the ground.

In order to introduce equations (10), (11) and (12) in
equation (9) all the terms must be expressed in the same origin
of coordinates. To do so, Graf’s addition theorems for the
Bessel and Hankel functions are necessary [14, 25]. Thus,
pressures p0 and ps in the reference system centred at nth
scatterer are

p0(�r) =
∞∑

l=−∞
(H

(1)
−l (kRn)e

−ılθRn

+ R(�rO, �rR; ν)H
(1)
−l (kR′

n)e
−ılθR′

n )Jl(krn)e
ılθn , (13)

pj
s (�r) =

∞∑
l=−∞

(Gjn
m + R( �ROj , �rR; ν)Gj ′n

m )Jl(krn)e
ılθn , (14)

Gjn
m =

∞∑
s=−∞

Aj
s H

(1)
m−s(kRjn)e

ı(m−s)θjn =
∞∑

s=−∞
Aj

s G
jn
ms, (15)

Gj ′n
m =

∞∑
s=−∞

Aj ′
s H

(1)
m−s(kRj ′n)e

ı(m−s)θj ′n =
∞∑

s=−∞
Aj ′

s Gj ′n
ms ,

(16)

where vector �Rn = Rn(cos θRn
, sin θRn

) ( �R′
n = Rn(cos θR′

n
,

sin θR′
n
)) defines the position of scatterer Cn with respect to

real (image) line source and vector �Rjn = Rjn(cos θjn, sin θjn)

( �Rj ′n = Rj ′n(cos θj ′n, sin θj ′n)) defines the position of scatterer
Cj (Cj ′) with respect to scatterer Cn.

Finally, due to the geometry of the problem, we can
express the total incident wave over the nth scatterer as

pn(�r) =
∞∑

s=−∞
Bn

s Js(krn)e
ısθn . (17)

Introducing equations (13), (14) and (17) in equation (9), one
can obtain the following system of equations:

Bn
s = Sn

s +
M∑

j=1

((1 − δjn)G
jn
s + R( �ROj , �rR; ν)Gj ′n

m ), (18)

where

Sn
s = H

(1)
−l (kRn)e

−ılθRn + R(�rO, �rR; ν)H
(1)
−l (kR′

n)e
−ılθR′

n .

(19)

At this stage Bn
s , Aj

s and A
j ′
s are unknown coefficients but they

can be related using the boundary conditions on the scatterers
and the symmetry of the problem. The boundary conditions
at the surface of a rigid cylinder relates B

j
s with A

j
s and the

symmetric condition relates A
j
s with A

j ′
s . In our approach we

will consider the general boundary condition, i.e. the continuity
of both the pressure and the normal velocity across the interface
between the scatterers and the surrounding medium. Note that
the asymptotical situation, ρn → ∞ and cn → ∞, reproduces
the case of rigid scatterers (Neumann boundary conditions).

The boundary conditions in the nth scatterer can be
expressed as

pext|∂�n
= pint|∂�n

, (20)

1

ρ

∂pext

∂n

∣∣∣∣
∂�n

= 1

ρn

∂pint

∂n

∣∣∣∣
∂�n

, (21)

where ∂�n is the boundary of the nth scatterer, ρ is the density
of the surrounding medium and ρn is the density of the nth
scatterer.

In order to apply the previous boundary conditions, we
have considered that the pressure field inside the nth cylinder
can be represented by

P n
int =

∞∑
j=−∞

Dn
j Jj (k1nrn)e

ıjθn , (22)

where k1n is the wave number inside the nth cylinder.
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Using the boundary conditions and the expressions of both
the exterior and interior fields in the nth scatterer, we can obtain
the following relation:

Bn
j = n

j A
n
j , (23)

where

n
j = Hj(kbn)J

′
n(kbn/hn) − gnhnH

′
j (kbn)Jj (kbn/hn)

gnhnJ
′
j (kbn)Jj (kbn/hn) − Jj (kbn)J

′
j (kbn/hn)

.

(24)

Here bn is the radius of the nth cylinder (in this work the radius
of the scatterers takes the same value for all the cylinders,
bn = b), gn = ρn

1 /ρ is the density ratio, andhn = k/kn
1 = cn

1/c

is the sound speed ratio for the ith cylinder. Note that if the
scatterers are acoustically hard, i.e. ρ1 � ρ and c1 � c,
then the coefficients n

j coincides with those obtained with the
Neumann boundary conditions,

n
j = −∂rHj (kbn)

∂rJj (kbn)
, (25)

where ∂r is the derivative with respect to polar coordinate r .
The image symmetry can be used to relate A

j
s with

A
j ′
s . One has to take into account that rj ′ = rj and that

θj ′ = −θj , then

pj ′
s (�r) = R( �ROj , �rR; ν)

∞∑
l=−∞

A
j ′
l H

(1)
l (krj ′)eılθj ′

= R( �ROj , �rR; ν)

∞∑
l=−∞

A
j

l H
(1)
l (krj )e

−ılθj ′

= R( �ROj , �rR; ν)

∞∑
l=−∞

A
j

−lH
(1)
−l (krj )e

ılθj ′

= R( �ROj , �rR; ν)

∞∑
l=−∞

A
j

−l(−1)lH
(1)
l (krj ′)eılθj ′ (26)

and

A
j ′
l = (−1)lA

j

−l . (27)

Introducing equation (24) or (25) in (23) and in (18), the
following infinite system of equations is obtained:

n
s A

n
s = Sn

s +
M∑

j=1

∞∑
l=−∞

((1 − δjn)G
jn

sl

+ (−1)lR( �ROj , �rR; ν)G
j ′n
s−l)A

n
l . (28)

The methodology previously shown is completely analytical,
however the coefficients An

s should be obtained by properly
truncating the previous system, i.e. one should use numerical
methods to find the solution of the problem. Thus, strictly
speaking the methodology is semi-analytical. The subindices
l and s take values from −L to L, therefore the infinite system
is truncated to one with 2L+1 equations. In this work, we have
truncated the system using L = 3 which produces an error less
than 1% with respect to the values obtained with L = 4. The

total acoustic field obtained using the MSTFIG is

P(�r) = H0(kr) + R(�rO, �rR; ν)H0(kr ′)

+
M∑

m=1

∞∑
l=−∞

Am
l (H

(1)
l (krm)eılθm

+R( �ROj , �rR; ν)H
(1)
l (krm′)e−ılθm′ ). (29)

Note that the methodology shown here is self-consistent and
can be applied to any distribution, periodic or random, of
scatterers. On the other hand, the effect of the finite impedance
of the ground only depends on the model to calculate this
impedance, i.e. on the calculation of the reflection coefficient,
not on the MST procedure.

Through this work, we will study the variation of the
attenuation properties of a SC with different types of grounds.
This variation will be represented using the insertion loss (IL)
parameter, calculated as

IL = 20 log10
|p0|
|P | , (30)

where P is calculated using equation (29).

3.1. Acoustically hard and completely absorbent grounds

For this study we have considered a 5 × 3 square array
with lattice constant a = 0.3 m and diameter of cylinders
D = 0.25 m. The distance from the ground to the centres of
the lowest cylinders in the array is half of the lattice constant,
Hx = 0.15 m, so that they are separated from the centre of the
cylinders of the image array nearest to the ground by the lattice
constant. The distance between the source and the array of
scatterers is Hy = 1 m, and the site of the receiver is (2.5, 0) m.
We analyse in this section, two different types of ground: hard
ground (R(�rO, �rR; ν) = 1) and completely absorbent ground
(R(�rO, �rR; ν) = 0).

When the real source is placed on the origin of coordinates
(O = (0, 0)), then the image source coincides with the real
one and depending on the properties of the ground several
interesting possibilities can be analysed. With the source on an
acoustically hard ground, the predicted IL spectrum of the array
should be equivalent to that predicted for an array of double
the size (10 × 3) in the free field (without ground), whereas in
the presence of an completely absorbent ground, the IL should
be the same as the initial array, 5 × 3, in free field. In this
section, we use these canonical situations in order to check our
semi-analytical method, specifically using the MSTFIG in the
case of a SC on a surface (section 3) and the MST in the case
of a SC in free field. Additional numerical results based on
finite element methods (FEMs) have also been used to validate
the MSTFIG.

The application of FEM to unbounded domains, as for
example the case of the scattering problems, involves a domain
decomposition by introducing an artificial boundary around
the obstacle. This artificial boundary consists of a region
in which the discretization can be coupled in various ways
to some discrete representation of the analytical solution.
In this work, we use a region of perfectly matched layers
(PMLs) [24] to numerically approximate the Sommerfeld

5
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and ‘lowest’ cylinder centres at Hx = 0.15 m. The source and receiver coordinates are (0,0) m and (2.5,0) m, respectively. The nearest part
of the array is at Hy = 1 m from the source. (a) Acoustically hard ground R(�rO, �rR, ν) = 1: blue continuous line, (respectively, green dots)
shows the IL produced by a 5 × 3 square array of rigid cylinders calculated using the MSTFIG (respectively, FEM). The open red circles
(respectively, black pentagrams) show the IL produced by a doubled (i.e. a 10 × 3) lattice in the free field calculated using the MST
(respectively, FEM). (b) Completely absorbent ground R(�rO, �rR, ν) = 0: blue continuous line (respectively, open red circles and black
pentagrams) shows the IL produced by a 5 × 3 square array of rigid cylinders calculated using the MSTFIG (respectively, MST and FEM).
(c) Band structure in the considered case calculated using plane wave expansion (PWE). The grey area represents the pseudogap in the X
direction.

conditions (see equation (8)). In this Section the commercial
software COMSOL Multiphysics 3.5a is used for the numerical
simulations. The PML, originating from electromagnetic
computations, is based on simulating an absorbing layer of
damping material surrounding the domain of interest, like a
thin sponge which absorbs the scattered field radiated on the
exterior of this domain. The method was immediately applied
to different problems based on the scalar Helmholtz equation
as for example acoustics, elasticity, poroelastic media, shallow
water waves, etc. Note that MSTFIG gives the pressure
field as function of the position, thus one should not solve
the entire solution domain to obtain the value at this point.
However, FEM should solve the entire solution domain to
obtain the value of the field in one point. Thus, FEM takes more
computational time than the MSTFIG method to obtain similar
convergences.

Figure 2 shows the predicted IL spectra in these two
particular cases, acoustically hard and completely absorbent
ground. In figure 2(a), the acoustically rigid ground is
analysed. The blue continuous line shows the IL produced
by the array placed on an acoustically hard plane at y = 0
calculated using the MSTFIG. The red open circles show
the IL produced by a doubled (i.e. a 10 × 3) lattice in the
free field calculated using the MST. The analogous numerical
predictions are also shown in figure 2(a) with green dots
(5 × 3 square array) and black pentagrams (doubled (i.e. a
10 × 3) lattice), respectively. Note the complete agreement
between both cases, the red open circles completely coincide
with the blue line, and the green dots completely coincide with

the black pentagram. The possible small differences could
be produced by the precision of the mesh in the numerical
discretization. The differences in the predictions at higher
frequencies can be reduced by considering more elements on
the solution domain. However, the computational time is
increased.

Figure 2(c) represents the band structures for a periodic
SC with the same periodicity as the finite structure analysed in
this section. These bands have been calculated using the plane
wave expansion (PWE) [26]. Grey areas show the pseudogap
in the X direction (0◦ of incidence). The pseudogap covers
the range of frequencies (329, 748) Hz. This range is in
complete agreement with that obtained using the MSTFIG in
the spectra shown in figure 2(a). The differences could be
produced by the finite size and the near field effects.

In figure 2(b), the case of the completely absorbent ground
(R = 0) with the source at (0,0) is analysed. The blue
continuous line shows the IL produced by a 5 × 3 square array
placed on the absorbing ground using the MSTFIG. The red
open circles show the IL produced by a 5 × 3 array in the free
field calculated using the MST. The black pentagrams show
the FEM predictions. Note the complete agreement between
all the cases.

Even though the FEM can be used for analysing the
situations studied in this paper, its use has been limited to the
purpose of validating the MSTFIG methodology. In the rest of
this work we will only use the MSTFIG and we will validate
our results with experimental data.
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Figure 3. IL and reflection coefficient predictions obtained using the MSTFIG for five values of ground impedance. (a) IL of the same array
as in figure 2(a) with the source and the receiver placed at points (0,0.25) m and (2.5, 0.75) m respectively, and Hx = 0.15 m and Hy = 1 m.
The orange continuous dotted line shows the IL predicted in the case of a rigid ground. The green crossed dash line shows the IL predicted
in the case of a completely absorbent ground. The black dashed line shows the IL predictions in the case of a covered ground characterized
by σe = 630 kPa s m−2 and αe = 188 m−1. Red dots show the IL predicted for the case of a ground characterized by σe = 272 500 Pa s m−2

and αe = 158 m−1. The blue continuous line shows the IL predictions in the case of a sheet of porous material characterized by
σe = 4000 Pa s m−2 and αe = 105 m−1. The real, imaginary and absolute values of the reflection coefficients of these three grounds are
shown in (b), (c) and (d) respectively. The grey area represents the pseudogap in the X direction.

3.2. Finite impedance surface

When the source is not located on the ground, the semi-
analytical solution of the problem has to be obtained using
the MSTFIG. In the finite impedance surface case we will use
experimental data to check the methodology in section 4.3.
We analyse here the same array as before but varying the
impedance of the ground. As we have previously mentioned,
the finite impedances considered here are characterized by a
two-parameter impedance model [19] with different values of
σe and αe. We have specifically analysed the cases of a rigid
ground, a completely absorbent ground, a covered ground
characterized in [22], the finite impedance ground analysed
in [19] and the sheet of porous material used in this work with
σe = 4000 Pa s m−2 and αe = 105 m−1.

Figure 3(a) shows the IL predictions obtained using the
MSTFIG for the five values of the ground impedance. In
these cases the source and the receiver are out of the ground,
placed at points (0,0.25) m and (2.5, 0.75) m, respectively.
Figures 3(b)–(d) show the absolute, real and imaginary values
of the reflection coefficients calculated at the receiver site for
the three considered ground impedances. The calculations
of these impedances are based on a two-parameter model,
being σe = 630 kPa s m−2 and αe = 188 m−1, σe =
272 500 Pa s m−2 and αe = 158 m−1, σe = 4000 Pa s m−2 and
αe = 105 m−1, respectively.

The orange line with open circles in figure 3(a) shows the
IL of the array over a rigid ground. At around 1200 Hz, the
values of the IL are negative because the excess attenuation
shows a clear interaction between the BG of the array and the
ground effect. Note that this deep in the attenuation spectrum,
due to the excess attenuation, depends on the impedance of the
ground, thus it could be modelled depending on the considered

impedance. The black horizontally dashed line, the red dots,
the green vertically dashed and the blue continuous lines show
the reduction or shift of the excess attenuation peaks due
to the reduction on the reflection coefficient because of the
finite ground impedance. Note that the IL is calculated here
considering the pressure level of the system with the ground as
a reference. Taking this into account, the negativity of the IL
means that, although the sound is attenuated behind the SC, the
presence of the SC reduces the effect of the excess attenuation
peak. This will be discussed in detail in the following sections.

4. Results

In this section, we analyse the effect of the finite ground
impedance on the attenuation properties of a periodic array of
scatterers from both semi-analytical and experimental points
of view. In both cases we have used an array of 7×3 scatterers
in square periodicity with lattice constant a = 0.069 m over a
ground with a line source placed at point O = (0, 0.235) m.
The circular scatterers present a radius r = 0.0275 m. For
these simulations, we have considered Hy = 0.755 m and
Hx = 0.0275 m.

Here, we have considered two different grounds: an
acoustically rigid ground (R = 1) and a finite impedance
ground characterized by a two-parameter model (σe =
4000 Pa s m−2 and αe = 105 m−1).

4.1. Symmetry of the acoustic field. Rigid and finite
impedance surfaces

In figure 4, we have analysed the symmetry of the acoustic
pressure field with respect to the ground plane depending on
the value of the impedance. If the impedance is infinite,
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Figure 4. Pressure maps for an array of 7 × 3 scatterers in square array with lattice constant a = 0.069 m considering a line source placed at
point O = (0, 0.235) m. The circular scatterers present a radius r = 0.0275 m. For these simulations we have considered Hy = 0.755 m and
Hx = 0.0275 m. (a) Band structure calculated using the PWE method. (b) and (c) pressure maps (Re(P )) (Pa) at 2000 Hz for an
acoustically hard ground and an finite impedance ground (σe = 4000 Pa s m−2 and αe = 105 m−1), respectively.

i.e. acoustically hard ground, the acoustic field should be
symmetric, which means that the acoustic field in the image
space should be symmetrically equivalent to the acoustic field
in the real space. However, in the case of a finite impedance
ground, the symmetry is broken and the field in the real space
and the image space are not identical.

Figure 4(a) shows the band structure for the considered
array calculated using the PWE method. Note that, in this case,
the lattice constant is lower than in the previous array, and this
produces a shift to higher frequencies of the BG. Moreover, the
filling fraction also affects the width of both the pseudogap and
the gap. The range of frequencies between 2478 and 3171 Hz
defines the full BG for this array. Using the MSTFIG, we
have predicted the acoustic field at 2000 Hz considering both
an acoustically hard ground and a finite impedance ground.
Figures 4(b) and (c) show the pressure maps (Re(P )) at
2000 Hz. One can clearly observe the symmetry of the acoustic
pressure field in the hard ground case and how this symmetry
is broken in the case of finite impedance.

4.2. BG–ground plane interaction

For a predetermined source position and the impedance of
the ground, the IL defined by equation (30) represents the
difference between the pressure level measured with and
without the array in the presence of the ground. To interpret
the IL, one should take into account the effects produced
by both the ground and the SC. The ground produces zones
with excess attenuation which depends on both the position
of the receiver and on the frequency. On the other hand, SC
present ranges of attenuated frequencies which depend on both
the relative position of the source and the receiver and on
the filling fraction. We have calculated the IL spectra using

the MSTFIG for the receiver positioned at the interval height
y = [0, 0.469] m and for a distance of x = 1.203 m from the
source. In all these cases the IL has been analysed for the
two different kinds of grounds defined at the beginning of this
section.

4.2.1. Hard ground. The excess attenuation caused by the
ground with the receiver at several heights, due to a rigid
ground and without SC, can be observed in figure 5(a). Each
horizontal cut, y = yr , of the map in figure 5 represents the
spectrum at point (1.203, yr) m. The pressure level (PL) in the
receiver sites is characterized with the following expression:

PL = 20 log10(|H0(kr) + H0(kr ′)|). (31)

The excess attenuation appears in figure 5(a) as regions
of frequencies with negative values of the PL produced by
the destructive interference between the incident wave (from
the source) and the reflected wave on the ground. Then,
the positive values of the PL mean a positive interference
and consequently a reinforcement. Figure 5(a) shows
the dependence of the excess attenuation on the height of
the receiver and on the frequency. The higher the height, the
lower the frequency of the excess attenuation peak is. Excess
attenuation peaks of second order can also be observed for high
values of both height and frequencies.

In figure 5(b), the IL map produced by the interaction of
the rigid ground and the array of scatterers is shown. The
vertical dotted line shows the beginning of the pseudogap in
the X direction whereas the vertical continuous lines show
the range of frequencies of the full BG of the array. This IL is
calculated using equation (30). One can observe that, for all
the considered heights, the maximum value of IL is obtained
for the frequencies inside the pseudogap in thr X direction.
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Figure 5. (a) Pressure level spectra surface produced by the line source in the presence of a rigid ground. The line source is placed at point
O = (0, 0.235) m. We have calculated the pressure level using equation (31) at interval height y = [0, 0.469] m for a distance x = 1.203 m
from the source. (b) IL map produced by a 7 × 3 array with square periodicity with a = 0.069 m. The circular scatterers present a radius
r = 0.0275. For these simulations we have considered Hy = 0.755 m and Hx = 0.0275 m. We have calculated the IL spectra using the
MSTFIG at interval height y = [0, 0.469] m and for a distance of x = 1.203 m from the source. The vertical dashed line marks the
beginning of the pseudogap in the X direction (0◦) and the vertical continuous line marks the ranges of frequencies of the full BG. The
horizontal dotted lines show the semi-analytical and experimental cuts shown in figure 7.
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Figure 6. (a) Pressure level spectra surface produced by the line source in the presence of a finite impedance ground (σe = 4000 Pa s m−2

and αe = 105 m−1). The line source is placed at point O = (0, 0.235) m. We have calculated the pressure level using equation (32) at
interval height y = [0, 0.469] m and for a distance of x = 1.203 m from the source. (b) IL map produced by a 7 × 3 array with square
periodicity with a = 0.069 m above a finite impedance ground. The circular scatterers present a radius r = 0.0275. For these simulations
we have considered Hy = 0.755 m and Hx = 0.0275 m. We have calculated the IL spectra using the MSTFIG at interval height
y = [0, 0.469] m and for a distance of x = 1.203 m from the source. The vertical dashed line marks the beginning of the pseudogap in the
X direction (0◦) and the vertical continuous line marks the ranges of frequencies of the full BG. The horizontal dotted lines show the
semi-analytical and experimental cuts shown in figure 8.

However, there are heights at which the IL is negative, which
represents a reinforcement with respect to the case in which
we used a reflecting surface alone. The low values of the
pressure at these points and frequencies for the reference
taken to calculate the IL (i.e. the pressure only calculated
with the presence of the ground) produce that, although the
SC attenuates sound because of the BG, the IL was negative.
Then, in comparison with the case of only the ground, the
negativity of the IL means that, although at these heights a low
pressure level exists, the presence of the SC reduces the excess
attenuation of the ground.

4.2.2. Soft ground. The excess attenuation caused by a soft
ground (σe = 4000 Pa s m−2 and αe = 105 m−1) at different
heights of the receiver and without the array of scatterers can
be observed in figure 6(a). In this case, the pressure level
(PL) in the receiver sites is characterized using the following
expression:

PL = 20 log10(|H0(kr) + R(�rO, �rR; ν)H0(kr ′)|), (32)

where R(�rO, �rR; ν) is calculated using the approach shown in
section 2.2 and is obtained by combining equations (2) and (6)
in equation (1).
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Figure 7. Measured (open circle with dotted line) and predicted (continuous line) insertion loss spectra for a source at coordinates
(0,0.235) m and 0.755 m from a 7 × 3 array of rigid cylinders of a 0.055 m diameter over acoustically hard ground with receiver coordinates
(a) (1.203,0.117) m, (b) (1.203,0.235) m and (c) (1.203,0.352) m. Arrays of cylinders placed near the ground surface.

In figure 6(a), one can observe the pressure level in the
case of a sound source with this finite impedance ground.
Once again, the excess attenuation also depends on both
the frequency and the height of the receiver. However, this
dependence changes due to the properties of the ground. The
first excess attenuation peak appears at lower frequencies and
lower heights than in the case of the acoustically rigid ground.
Excess attenuation peaks of second order can also be observed
for lower values of both heights and frequencies than in the
case of the rigid ground.

Figure 6(b) shows the IL maps produced as a result of the
interplay between the soft ground and the array of scatterers.
The vertical dotted line shows the beginning of the pseudogap
in the X direction whereas the continuous lines show the
range of frequencies of the full BG of the array. As in the case
of the hard ground, the attenuation peaks are once again present
due to the influence of the ground. One can also observe that
the array of scatterers changes the attenuation properties at the
receiver site for frequencies above and below the first peak of
excess attenuation adding this effect to that related with the BG.

4.3. Comparisons between data and predictions

4.3.1. Laboratory experiment. 2 m long PVC cylinders with
outer diameters of 55 mm have been used to construct the 7×3
square periodic array with lattice constant a = 0.069 m. The

sound source was a Bruel and Kjaer point source loudspeaker
controlled by a Maximum-Length Sequence System Analyzer
(MLSSA) enabling the determination of impulse responses.
Measurements of the insertion loss (IL) spectra for arrays of
cylinders placed near a ground surface in an anechoic chamber
have been obtained.

A 0.03 m thick wooden board, large enough to avoid the
diffraction at the edges, was used as a hard surface. The
loudspeaker point source was positioned at 0.755 m from
the array at the height of the horizontal mid-plane of the
array (0.23 m above the ground). The height of the receiver
microphone was 0.117, 0.235 or 0.352 m and it was placed in
a vertical plane at 0.257 m from the back of the array. The
receiver heights were chosen to be below, at, and above, the
horizontal mid-plane of the array. In all cases, a constant
distance between the microphone and the periodic array has
been considered, in such a way that the distance between the
source and the receiver was x = 1.203 m. In this study, we
have analysed the properties in the X direction (0◦). The
attenuation spectra have been obtained from the difference
between the sound level recorded at the same point in two
different configurations: (i) the ground alone and (ii) the
ground and the periodic array.

4.3.2. Hard ground. Figure 7 compares measured and
predicted IL spectra for the considered array placed on a
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Figure 8. Measured (open circles with line) and predicted (continuous line) insertion loss spectra for a source at coordinates (0,0.235) m and
0.755 m from a 7 × 3 array of rigid cylinders of a 0.055 m diameter over a finite impedance ground with receiver coordinates (a)
(1.203,0.117) m, (b) (1.203,0.235) m and (c) (1.203,0.352) m. Arrays of cylinders placed near the ground surface.

hard ground plane with the receiver in three positions with
different heights and using the source location described in
section 4.3.1. An R = 1 value has been used for the
calculation due to the rigidity of the ground. The agreement
between predictions and measurements is fairly good. The
discrepancies observed are probably produced by the fact that
the experimental ground is not completely rigid. The semi-
analytical spectra corresponding to these three heights are also
marked in figure 5(b) with dotted horizontal lines. One can
observe in figure 7 that the ground effect in the IL due to
the excess attenuation peaks for the three heights analysed
in this work corresponds with depths at 4000 Hz, 2000 Hz
and 1400 Hz respectively. These frequencies correspond to
horizontal dotted lines in figure 5(b).

In figure 5(c), one can observe that the experimental
measurements do not reproduce the second order peak of the
excess attenuation at high frequencies (4000 Hz). Once again
this discrepancy could be due to the fact that the impedance
of the ground used in the laboratory is not infinite, i.e. the
reflection coefficient is not R = 1. However, the agreement
between the semi-analytical predictions and the laboratory
measurements is good.

4.3.3. Soft ground. Figure 8 compares the corresponding
measured and predicted insertion loss spectra for the

considered array on a finite impedance ground for the
three receiver heights previously described. For the
simulations with the MSTFIG we have used the reflection
coefficient obtained from equation (2) with the two-parameter
impedance model with the values σe = 4000 Pa s m−2

and αe = 105 m−1. Once again, the agreement between
the predictions and measurements is fairly good. The
horizontal dotted lines in figure 6(b) show the corresponding
cuts of the IL maps for the three heights analysed in this
section.

The semi-analytical predictions of the IL spectra in
figures 8(a) and (b) predict excess attenuation peaks around
1000 Hz in complete disagreement with the experimental
results. However, in the case of figure 8(c), the attenuation
peak is well defined both semi-analytically and experimentally.
This discrepancy could be explained in terms of the
interference between the microphone and the finite impedance
ground at low grazing angles. The adverse and the additional
attenuation influences of the ground effect in the IL spectra are
shifted towards lower frequencies due to the finite impedance
of the ground. Note that the dependence of the excess
attenuation peak on the height of the receiver produces
a lower shift in frequency than in the case of the rigid
ground, in complete agreement with the results shown in
figure 6(b).
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5. Concluding remarks

The effect of both rigid and finite impedance grounds on the
attenuation properties of an array of rigid cylindrical scatterers
has been booth analytically and experimentally analysed. The
MST for a SC over a finite impedance ground (MSTFIG) has
been developed as a semi-analytical methodology to study the
effect of the ground with different values of the impedance
on the propagation properties of an array of rigid scatterers
in air. We have also analysed the interaction between the
SC and the ground with the receiver at different heights. In
order to both compare and validate the model, the MSTFIG
has been checked with both numerical predictions (FEM) and
experimental results obtaining good agreement between them.
The excess attenuation produced by the interplay between
the sound source and the ground can be used to tune the
attenuation properties of the array of scatterers. Then, the
excess attenuation should be taken into account in the design
of arrays of scatterers acting as SC noise barriers.
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