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Level repulsion and evanescent waves in sonic crystals
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This work theoretically and experimentally reports the evanescent connections between propagating bands
in periodic acoustic materials. The complex band structures obtained by solving for the k(ω) problem reveal
a complete interpretation of the propagation properties of these systems. The prediction of evanescent modes,
nonpredicted by classical ω(�k) methods, is of interest for the understanding of these propagation properties.
Complex band structures provide an interpretation of the evanescent coupling and the level repulsion states
showing the possibility of controlling evanescent waves in periodic materials.
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Propagation of waves in periodic structures is character-
ized by both propagating and evanescent waves. On one
hand, the control of the propagation properties of periodic
electromagnetic1–3 and elastic4–7 materials has revealed a
huge number of physical phenomena in the last decades.
On the other hand, the complex band structures8,9 reveal the
band gaps as ranges of frequencies where only evanescent
modes can be excited in the system. Imaging with super
resolution,10,11 that is, overcoming the diffraction limit, can
be obtained by restoring all the evanescent components of
a near-field image. This can be achieved by the coupling
of the evanescent modes with other mechanisms, leading
to their amplification in order to successfully transport the
information carried by the evanescent waves through the
system. Recently, the possibility of controlling the evanescent
properties in periodic composites has shown several interesting
possibilities in both photonic12,13 and phononic14–16 crystals.
In this way, the evanescent properties of the periodic systems
have been revealed necessary for the design of new acoustic
and electromagnetic applications.

The characterization of evanescent modes in acoustic
periodic structures can be obtained from the complex band
structures calculated using k(ω) methods.17 The extended
plane wave expansion (EPWE) with supercell approximation18

represents one of the possibilities to evaluate the excited
evanescent modes in periodic structures with defects. Although
our analysis is general, we study here the evanescent modes
in two dimensional (2D) sonic crystal wave guides (SCW),
because, as we will see later, this system allows us to obtain
high precision measurements inside the periodic structure
where the evanescent properties appear. In this work, we
experimentally and theoretically show that the complex bands
obtained using the EPWE are more general than the classical
ones ω(�k), revealing a complete picture of the physics of the
systems. These results have been also evaluated by solving
for the scattering problem using multiple scattering theory
(MST).19–21

We have performed experiments in an echo-free chamber
sized 8 × 6 × 3 m3 in order to evaluate all the theoretical

predictions. The SCW has been generated by removing the
middle row of a complete square periodic array of rigid
cylindrical scatterers embedded in air (ρ = 1.23 kg/m3,
chost = 340 m/s) with lattice constant a and filling fraction
ff = πr2/a2 = 0.71 (in the experimental setup, we use
r = 0.09 m and a = 0.19 m). To obtain the experimental
dependence of the pressure all along the SCW, we measured
the pressure field at several points inside the guide. The
microphone used was a prepolarized free-field 1/2 in Type
4189 B&K. The acoustic field has been measured in this work
using our 3D Robotized e-Acoustic Measurement System
(3DReAMS).22 Figures 1(a) and 1(b) show detailed pictures
of the experimental setup and of the microphone inside the
SCW respectively.

Using the classical ω(�k) methods, one can find two kinds of
bands, the propagating and the deaf ones,6 and no information
can be obtained about the evanescent modes. We show here
that the complex band structure reveals additional bands
related with evanescent modes, never predicted by the ω(�k)
methods, that drastically change the propagation properties
of the system. Figure 2(a) shows the complex band structure
for a SCW in the �X direction [through the work reduced
magnitudes have been used, � = νa/chost, K = ka/(2π )].
Left and right (respectively, middle) panels represent the
imaginary (respectively, real) part of the complex band
structures. The classification shown in this work, inspired by
the works of Bavencoffe,23 helps us to a better understanding
of the complex band structures. The convergence of all the
calculations has been carefully analyzed selecting the adequate
number of plane waves for each case. The modes are classified
following the next restrictions: (i) The classical band structures
correspond to modes characterized by values of Re(K) in the
Brillouin zone and Im(K) = 0. Modes with these properties
are shown in this work with black filled circles. (ii) The
modes characterized by Im(K) � 0 and Re(K) = 0 are shown
with red filled triangles. These modes represent connections
between propagating bands at the � point. (iii) The modes
characterized by Im(K) � 0 and Re(K) = 1/2 (respectively,
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FIG. 1. (Color online) (a) Experimental setup. (b) Details of the
microphone inside the waveguide.

Re(K) = 1/
√

2) are shown with green filled squares. These
modes represents connections between propagating bands at
the X (respectively, M) point. (iv) The modes Re(K) in the first
Brillouin zone but with Im(K) �= 0 are in this section in blue
filled diamonds. These modes belong to evanescent connecting
bands between bands with the same symmetry crossing the
Brillouin zone.

To see the relevance of the complex bands, we first focus
our attention on the range of frequencies of the band gap
[yellow rectangular area of Fig. 2(a)] of the perfect SC. Among
the classical propagating and deaf bands,24 we can observe
evanescent connections (blue diamonds and green square
lines). To analyze their properties, we analyze three different
modes marked in the figure with red squares. The mode 1
(�1 = 0.484, K1 = 1/2 + 0.049ı) belongs to a connecting
evanescent band (green squared line) between two symmetric
propagating bands. Notice that at the same frequency in the
real part there is a deaf band (antisymmetric) that does not
contribute to the propagation properties. The absolute value
of the acoustic field obtained from the Fourier transform
of the eigenvectors is in agreement with the predictions
of the scattering problem shown in Fig. 2(b), which are
also experimentally measured using our experimental setup
[Fig. 2(e)]. One can also observe the decay rate of the mode
as it penetrates in the waveguide. This decay is related to
the imaginary part of the Bloch vector predicted by EPWE,
Im(K1) = 0.049. Fitting this decay to an exponential ae−bx ,9,25

we obtain b = 0.053 ± 0.004 with fairly good agreement
with EPWE. On the other hand, the mode 2 (�2 = 0.619,
K2 = 0.346) belongs to a guiding (symmetric) band. Notice
that for this frequency, the evanescent connection (green
squared line) appears between two antisymmetric (deaf) bands,
therefore the evanescent mode cannot be excited. The MST

FIG. 2. (Color online) Theoretical and experimental analysis of
the SCW. (a) Complex band structures for the SCW. 1681 plane
waves have been used in the calculation. Reduced magnitudes have
been plotted. (b–d) Absolute value of the acoustic field predicted
using MST for frequencies (a) �1 = 0.484, (b) �2 = 0.619, and
(c) �3 = 0.731 [red squares in (a)]. (e), (f), and (g) show the
experimental results of the absolute value of the acoustic field for
frequencies corresponding to (b), (c), and (d), respectively.

predictions for this propagating mode are shown in Fig. 2(c),
and the experimental evidence is shown in Fig. 2(f).

We would like to pay special attention to mode 3 (�3 =
0.731, K3 = 0.3 + 0.21ı) in Fig. 2(a). This mode belongs to a
complex band with the real part inside the first Brillouin zone
(blue diamond line). Notice that this evanescent symmetric
band connects two symmetric (guided) bands. The maximum
value of the lower band appears in the � point (open black
circle), whereas the minimum value of the upper band appears
at the X point (open black circle); as a consequence the
real part of the evanescent connection crosses the Brillouin
zone. This kind of band is not observed by the classical
ω(�k) methods, and it could considerably contribute to the
propagation properties, as we will see later. The acoustic
field predicted by the Fourier transform of the eigenvectors
again coincides with the predicted field using MST shown in
Fig. 2(d). Notice the good agreement between the theoretical
prediction and the experimental results in Fig. 2(g). On the
other hand, for this case EPWE predicts a decay rate equal
to Im(K3) = 0.21 which coincides with the fit from the MST
prediction, b = 0.21 ± 0.03.

In order to observe the relevance of the evanescent modes
and the accuracy of the EPWE predictions, we analyze the
previous waveguide in which a scatterer is removed generating
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FIG. 3. (Color online) Analysis of the stubbed sonic crystal wave guide. Left column: Resonances. The left column shows the results for
the first resonance at � = 0.3812, the middle column shows the ones for the resonance at � = 0.605, and the right panel for the resonance
at � = 0.72. Right column: Level repulsion. The left panel shows the results for the level repulsion at � = 0.429, and the right panel for the
level repulsion at � = 0.544. (a) and (b) represent the complex band structures calculated using EPWE. (b)–(c) and (e)–(f) represent the MST
predictions and the experimental results, respectively. We note that the experimental setup does not allow the measurement of the acoustic field
inside the stub. All the maps represent absolute value of the acoustic field. Green rectangles show the measured area.

a stubbed SCW. Due to both the cavity and the local breaking
of the symmetry produced by the stub, two effects can disturb
the transmission properties of the system. On one hand, if some
resonance of the stub coincides with either a guiding mode or
an evanescent wave, the resonance will be excited, and the
wave should be localized around the stub. On the other hand,
antisymmetric modes can be excited due to the local breaking
of the symmetry produced by the stub. The classical methods
only predict the interaction of the guiding modes with this
phenomena, but, as we have previously observed, evanescent
waves can also appear in the system.

The left column of Fig. 3 shows the analysis for the
frequencies of the resonances of the stub. The left and middle
columns show the analysis for resonances at � = 0.3812 and
� = 0.605, respectively. Each one of these frequencies coin-
cide with a guiding band, and as a consequence, a hybridization
of the resonance (flat band) and the guiding band appears [see
left and middle panels in Fig. 3(a)]. The MST predictions in
Fig. 3(b) show the acoustic fields excited by an impinging plane
wave. The acoustic field obtained using both MST and EPWE
methods is fairly similar. Figure 3(c) shows the measured
acoustic fields in the region marked with green squares in
Fig. 3(b). We can theoretically and experimentally observe
how the guiding modes excite the resonances in the stub.

At this stage, we would like to notice that the third
resonance of the stub (right panels of the left column of Fig. 3,
� = 0.72 K = 0.29 + 0.20ı) coincides with an evanescent
connection [blue diamond line in Fig. 2(a)] predicted using
EPWE. Thus, whereas when using classical ω(�k) methodolo-
gies no modes would be expected at this frequency, when using
the EPWE a coupling of the evanescent modes with the stub
resonances appears. In the right panel of Fig. 3(a), one can
see that for this case no hybridization appears in the complex

band structures. As a consequence, one can theoretically [right
panel of Fig. 3(b)] and experimentally [right panel of Fig. 3(c)]
observe how the evanescent mode excites the resonance in the
stub changing the transmission properties in good agreement
with the EPWE predictions.

Recently the mode conversion in phononic crystals thin
slabs has been observed.26 Depending on the symmetry of the
system with respect to the incident direction of the incident
wave, shear-horizontal modes either couple or not with the
Lamb wave modes. The coupling can be observed by a splitting
in the lower-order symmetry band structure and by a transfer
of the symmetry from one band to the other. Bavencoffe23

established a link between the attenuation of the ultrasonic
wave observed in the case of a limited grating and the values
of the imaginary part of the wave number in a stop band
computed for an infinite grating. On the other hand, Achaoui
et al.27 have recently observed in phononic crystals with some
freedom of anisotropy, that when a band mostly polarized
in-plane is close to a band mostly polarized out-of-plane, a
phenomenon of repelling can occur and in some instances it
introduces a local band gap. Moreover, the work shows that
this interaction is accompanied by a transfer of the polarization
state from one band to the other. These levels’ repulsion,28

which avoids crossing in the distribution of eigenvalues, is well
known within the physics community, however, there are only
a few works in the literature26,27,29 analyzing and discussing
this phenomenon in two-dimensional phononic crystals. The
stubbed SCW shown in this work seems to be a good example
to observe the level repulsion.

The complex band structure of the stubbed SCW at the
frequencies of the levels’ repulsion are shown in Fig. 3(d).
One can observe that between the two repelled guiding bands
an evanescent connection appears. It is worth noting that the
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symmetry of the lower (upper) guiding band changes from
symmetric (antisymmetric) in the � point to antisymmetric
(symmetric) in the X point, showing the evanescent connection
between the maximum of the lower band and the minimum of
the upper one. The evanescent connection presents a mixed
symmetry, showing the transfer of symmetry between the two
repelled bands also observed in previous works26,27,29 but now
explained as the presence of the evanescent connections. The
acoustic fields excited by a plane wave at these frequencies are
shown in Fig. 3(e). These fields are close to those predicted by
the Fourier transform of the eigenvectors obtained using the
EPWE for these frequencies, and they are in good agreement
with the experimental measurements corresponding to the area
marked in green squares, shown in Fig. 3(f). The attenuation
predicted between the two repelled bands is explained by the
decay rate of the mode.

The complex band structures obtained using the EPWE
[k(ω) method] show additional bands not revealed by the
classical ω(�k) methods being a fundamental tool to control
the evanescent modes in periodic systems. In this work, we
have theoretically shown the interpretation of these evanescent
additional bands with very good agreement with the experi-
mental results. In the ranges of frequencies where a deaf band is
traditionally predicted, an evanescent mode with the excitable

symmetry appears changing drastically the interpretation of
the transmission properties of the system. On the other hand,
evanescent modes can excite cavity resonances in the stubbed
SCW. We have interpreted, without loss of generality, the
level repulsion between symmetric and antisymmetric bands
in sonic crystals as the presence of an evanescent mode
connecting both bands. These evanescent modes explain both
the attenuation produced in this range of frequencies and the
transfer of symmetry from one band to the other. Thus, the
additional bands of EPWE should be considered to control
the evanescent modes in the systems based on periodicity. The
EPWE offers the possibility of knowing the spatial distribution
of the field of the evanescent modes in periodic media, and thus
can show the way to enhance the properties of the evanescent
modes.
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