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The hyperbolic bioheat equation (HBE) has been used to model heating applications involving very short
power pulses. This equation includes two mathematical distributions (Heaviside and Delta) which have to
be necessarily substituted for smoothed mathematical functions when the HBE is solved by numerical
methods. This study focuses on which type of smoothed functions would be suitable for this purpose,
i.e. those which would provide solutions similar to those obtained analytically from the original Heaviside
and Delta distributions. The logistic function was considered as a substitute for the Heaviside function,
while its derivative and the probabilistic Gaussian function were considered as substitutes for the Delta dis-
tribution. We also considered polynomial interpolation functions, in particular, the families of smoothed
functions with continuous second derivative without overshoot used by COMSOL Multiphysics. All the
smoothed functions were used to solve the HBE by the Finite Element Method (COMSOL Multiphysics),
and the solutions were compared to those obtained analytically from the original Heaviside and Delta distri-
butions. The results showed that only the COMSOL smoothed functions provide a numerical solution almost
identical to the analytical one. Finally, we demonstrated mathematically that in order to find a suitable
smoothed function (f) that must adequately substitute any mathematical distribution (D) in the HBE, the dif-
ference D – f must have compact support.
© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Mathematical modeling is widely used to study temperature distri-
butions in different medical procedures such as radiofrequency (RF)
thermal ablation [1]. Most modeling studies use the bioheat equation
(BE), which is based on Fourier's Law [2]:

−ΔT x; tð Þ þ 1
α
∂T
∂t x; tð Þ ¼ 1

k
S x; tð Þ; ð1Þ

where T(x, t) and S(x, t) are respectively the temperature and the inter-
nal heat sources at point x at time t, k is thermal conductivity and α is
thermal diffusivity (α ¼ k

ηc η being density and c specific heat). When
the BE is used to study thermal therapies, the source term S(x, t) usually
includes a heat source produced by an external energy source Ss(x, t)
(e.g. laser, microwave, ultrasound or RF) and a blood perfusion term
Sp(x, t). The BE assumes an infinite thermal energy propagation speed,
i.e. any local temperature disturbance causes an instantaneous
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perturbation in the temperature at every point in the medium [3].
Although the BE can be valid in most heat modeling, under certain
circumstances, such as very fast heating with short power pulses, a
model which considers a finite thermal energy propagation speed has
been found to be more accurate [4]. For this reason, some modeling
studies ([3–15]) employed the hyperbolic (non-Fourier or wave) BE
(HBE) which has a double-derivative term (called the wave term)
that changes BE to a hyperbolic partial differential equation [4]:

−ΔT x; tð Þ þ 1
α

∂T
∂t x; tð Þ þ τ

∂2T
∂t2

x; tð Þ
 !

¼ 1
k

S x; tð Þ þ τ
∂S
∂t x; tð Þ

� �
; ð2Þ

inwhich there is a newparameter τ, which is the thermal relaxation time
of the tissue. This equation therefore assumes a finite heat conduction
speed [16], which is inversely proportional to τ.

We previously developed mathematical models using HBE to study
the temperature distributions in RF ablation (RFA) [17,18]. To achieve
an analytical solution, we considered the simplest geometry, consisting
of a spherical active electrode with a radius of r0 completely embedded
in the biological tissue. The tissue was considered homogeneous with
infinite dimension and the dispersive electrode placed at infinity. For
this geometry model we used spherical coordinates, and since the
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model presented radial symmetry, a one-dimensional approach was
possible, r being the dimensional variable. Consequently, the model
domain was restricted to the biological tissue, i.e. the electrode body
was not included.

From the point of view of the HBEmodel, Eq. (2) in spherical coordi-
nates constitutes the governing equation, where k, η, c and τ are as-
sumed to be constants. The source term for the RFA is the Joule heat
produced per unit volume of tissue, (Ss(r, t)), which can be expressed
as [19]:

Ss r; tð Þ ¼ P r0
4π r4

H tð Þ; ð3Þ

where P is the total applied power (W) and H(t) is the Heaviside distri-
bution, which allows the constant power application to be modeled by
means of a step at t = 0. The blood perfusion term can be expressed as
[2]:

Sp r; tð Þ ¼ −ηbcbwb T−T0ð Þ; ð4Þ

where ηb is blood density, cb is the blood specific heat,wb is the perfusion
coefficient and T0 is the blood temperature. Then, the internal heat source
term is

S r; tð Þ ¼ P r0
4π r4

H tð Þ−ηbcbwb T r; tð Þ−T0ð Þ;

and

S r; tð Þ þ τ
∂S
∂t S r; tð Þ ¼ P r0

4π r4
H tð Þ þ τδ tð Þð Þ−ηbcbwb

∂T
∂t T r; tð Þ ð5Þ

where δ(t) is the Dirac delta distribution. Accordingly, Eq. (2) in spherical
coordinates is:

−α
∂2T
∂r2

r; tð Þ þ 2
r
∂T
∂r r; tð Þ

 !
þ ζ

∂T
∂t r; tð Þ þ τ

∂2T
∂t2

¼ Pα r0
4πkr4

H tð Þ þ τδ tð Þð Þ−B T−T0ð Þ; ð6Þ

where B ¼ αηbcbwb
k and ζ = 1 + τB.

The initial conditions are

T r;0ð Þ ¼ T0;
∂T
∂t r;0ð Þ ¼ 0 ∀r > r0: ð7Þ

The boundary condition at infinity is

lim
r→∞

T r; tð Þ ¼ T0 ∀t > 0: ð8Þ

To write the boundary condition at r = r0 (interface electrode–
tissue), we adopt a simplification assuming thermal conductivity of
the electrode to be greater than that of the tissue, which is generally
true (15 W/K m in metal vs 0.5 W/K m in tissue), i.e. considering that
the boundary condition at the electrode–tissue interface is mainly
governed by the thermal inertia of the electrode [19]. Thus, at each
time t, the heat flux along the electrode surface per unit time is inverted
to produce a heat increment in the mass electrode:

η0 c0
4π r30
3

∂T
∂t r0; tð Þ; ð9Þ

where η0 and c0 are respectively the density and specific heat of the
active electrode. Using the expression for the hyperbolic heat flux [4]
we obtained

η0 c0
4π r30
3

∂T
∂t r0; tð Þ ¼ 4π r20

k
τ
e−

t
τ∫t

0e
ψ
τ
∂T
∂r r0;ψð Þdψ ð10Þ
and by derivationwith respect to tweobtained the remaining boundary
condition

τη0 c0 r0
3k

1
τ
∂T
∂t r0; tð Þ þ ∂2T

∂t2
r0; tð Þ

 !
¼ ∂T

∂r r0; tð Þ: ð11Þ

Themajority of heat transfer problems that arise from real situations
either involve complex geometries, are non-linear, or their boundary
conditions lead us to use numerical instead of analytical methods to
solve them. For instance, the Finite Elements Method (FEM) has been
used to solve many RFA mathematical models [20–23]. In this respect,
it is crucial to note that prior using a numerical method to solve the
HBE, it is necessary to substitute the Heaviside and Dirac distributions
(H(t) and δ(t)) for smoothed functions, which can be addressed by
FEM. It is also necessary to emphasize that the Heaviside function H(t)
is a non continuous function and that the Dirac's Delta δ(t) is a distribu-
tion but not a function, it is in fact a measure. The annex provides infor-
mation about these two distributions and the underlying theory,
Schwartz's Distributions Theory.

The aim of this study was to mathematically justify the type of
smoothed functions that can substitute the Heaviside and Delta distribu-
tions in the HBE and reach solutions identical to those obtained with the
original distributions. We consider that this information is crucial when
theHBEhas tobe solvedbynumericalmethods, since substitution isman-
datory. As far as we know no previous studies have addressed this issue.

2. Materials and methods

2.1. Analytical solution of the HBE and conditions of substitution

First we consider a general formulation of Eq. (6):

−α
∂2T
∂r2

r; tð Þ þ 2
r
∂T
∂r r; tð Þ

 !
þ ζ

∂T
∂t r; tð Þ þ τ

∂2T
∂t2

¼ Pα r0
4πkr4

D tð Þ−B T−T0ð Þ; ð12Þ

with conditions (7)-(11) and where D(t) is any function of t.
The analytical solution of this problem is denoted by T(r, t, D(t)). Our

goal is to mathematically compare the analytical solutions T(r, t, H(t) +
τδ(t)) and T(r, t, R(t)), inwhich R(t) is a term like f(t) + τg(t), andwhere
f(t) and g(t) are smoothed functions which can substitute H(t) and δ(t),
respectively.

The analytical solution of (12) is obtained by the Laplace transform.
From previous results [17,18] this solution can be expressed as follows:

T r; t;D tð Þð Þ ¼ T0 þ
P

rπkr0
V

r
r0

;
αt
r20

;d
αt
r20

 ! !
; ð13Þ

with

V ρ; ξ;d ξð Þð Þ ¼ F ξð Þ � d ξð Þ ð14Þ

where * is the convolution operator, d(ξ) is the dimensionless term of
D(t), i.e. D r20ξ

α

� �
and

F ξð Þ ¼ L−1
s

"
1
2ρ

 
∫
∞

ρ

e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ s2þζsþb

p
u−ρð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λs2 þ ζsþ b
p du

u3

þ ∫
ρ

1

e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ s2þζsþb

p
ρ−uð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λs2 þ ζsþ b
p du

u3 −∫
∞

1

e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ s2þζsþb

p
uþρ−2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λs2 þ ζsþ b
p du

u3

þ ∫
∞

1

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λs2 þ ζsþ b

p
m λs2 þ s
� �þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λs2 þ ζsþ b

p
þ 3

e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ s2þζsþb

p
uþρ−2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λs2 þ ζsþ b
p du

u3

!#

ð15Þ
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λ ¼ α τ
r20

being the dimensionless relaxation time, ρ ¼ r
r0
the dimen-

sionless variable r, b ¼ Br20
α the dimensionless constant of the blood

perfusion term and m ¼ η0 c0
η c the dimensionless electrode thermal

inertia.
In order to reach a general conclusion about which smoothed

functions could be candidates to substitute the Heaviside function
and Dirac's delta distribution, we first try to compare two generic
solutions T(r, t, D1(t)) and T(r, t, D2(t)), where D1(t) and D2(t) are
different distributions.

From the previous sections,

V ρ; ξ; d1 ξð Þð Þ−V ρ; ξ;d2 ξð Þð Þ ¼ F ξð Þ � d1 ξð Þ−d2 ξð Þð Þ

where d1 ξð Þ ¼ D1 r20ξ
α

� �
and d2 ξð Þ ¼ D2 r20ξ

α

� �
. To quantify this differ-

ence we consider a property of the convolution of two distributions
of D′(ℝ), if at least one of them has compact support (see Annex).

We denote the space of the indefinitely differentiable functions inℝ
(endowed with its “usual Fréchet topology”, i. e. metrizable and com-
plete) by C∞(ℝ). From Schwartz's Theory of Distributions [24] if D ∈
D′(ℝ) has compact support and h ∈ C∞(ℝ), the convolution operator
D * h belongs to C∞(ℝ). Moreover, if we set h ∈ C∞(ℝ), the map: D′(ℝ)
→ C∞(ℝ) such that D → D * h is continuous in the sense that if {Dn, n
∈ ℕ} is a sequence of distributions with compact support which con-
verges to D in D′(ℝ), then {Dn * h, n ∈ ℕ} converges to D * h in C∞(ℝ).

In other words, if the distributions D1(t) and D2(t) are “close
enough” in D′(ℝ) and D1(t) – D2(t) has compact support, then the dif-
ference V(ρ, ξ, d1(ξ)) – V(ρ, ξ, d2(ξ)) can be “sufficiently small”, and
hence T(r, t, D1(t)) – T(r, t, D2(t)) can also be “sufficiently small”. This
would be the condition necessary in order to consider D1(t) a good
substitute for D2(t) and vice versa.

In the case of the HBE, we can apply the above result taking:

a) h = F(ξ) ∈ C∞(ℝ).
b) Gn(ξ) = H(ξ) – fn(ξ) + λ(δ(ξ) – gn(ξ)), choosing fn(ξ) and gn(ξ)

such that (H(ξ) – fn(ξ) + λ(δ(ξ) – gn(ξ)) is a distribution ofD′(ℝ)
with compact support, the sequence {fn(ξ); n ∈ ℕ} converges to
H(ξ) in D′(ℝ) and the sequence {gn(ξ); n ∈ ℕ} converges to δ(ξ)
inD′(ℝ) Then {Gn, n∈ℕ} is a sequence of distributionswith com-
pact support which converges to zero in D′(ℝ).

As the map D′(ℝ) → C′(ℝ) such that G → G * h is continuous, then
{Gn * h, n ∈ ℕ} converges to zero in C∞(ℝ). That is, {V(ρ, ξ,
H(ξ) + λδ(ξ)) – V(ρ, ξ, fn(ξ) + λgn(ξ)), n ∈ ℕ} converges to zero in
C∞(ℝ) for every ρ > 1. Hence {V(ρ, ξ, fn(ξ) + λgn(ξ)), n∈ℕ} converges
to V(ρ, ξ, H(ξ) + λ(ξ)) in C∞(ℝ) for every ρ > 1. Then for n ∈ ℕ “large
enough”, the analytical solution T(r, t, fn(t) + τgn(t)) is “close” to the
analytical solution of the original HBE, T(r, t, H(t) + τδ(t)).

2.2. Smoothed functions

There are several smoothed functions which could be candidates
to substitute Heaviside H(t) and Dirac's delta distribution δ(t) in the
Fig. 1. (A) Three logistic functions f tð Þ ¼ 1
1þe−pt as possible smoothed functions to substitute t

smoothed functions to substitute the Dirac distribution δ(t).
HBE. One of the simplest options could be to use a logistic function
f tð Þ ¼ 1

1þe−pt as substitute for H(t) and its derivative g(t) = f′(t) as
substitute for δ(t) (see Fig. 1A). Another option is to use a probabilis-

tic Gaussian functionh tð Þ ¼ 1
q
ffiffiffiffi
2π

p e
−t2

2q2 , instead of the derivative function

f′(t), as a substitute for δ(t) (see Fig. 1B).
Still other options could use polynomial interpolation functions built

from pairs of values by means of the splines method. This would pro-
videmany candidate functions f(t) = I H(t) and g(t) = I D(t) to substi-
tute H(t) and δ(t) respectively. An example of this kind of function are
the families of smoothed functions with a continuous second derivative
without overshoot, denoted by flc2hs(t, p) and fldc2hs(t, q) (where p
and q are parameters), which are used by COMSOL Multiphysics
(COMSOL, Burlington, MA, USA), as approximations of H(t) and δ(t)
respectively (see Fig. 2). This software is being increasingly used to
study the heating of biological tissue with the BE ([20,22,23]).

2.3. Description of the numerical model

In order to put the above ideas into practice, we considered a theo-
retical RFA model using the HBE. The liver was chosen as the target tis-
sue, with the following characteristics: Density η = 1060 kg/m3, specific
heat c = 3600 J/kg K and thermal conductivity k = 0.502 W/m K.
The blood properties were density ηb = 1000 kg/m3 and specific heat
cb = 4148 J/kg K. Electrode characteristics were radius r0 = 1.5 mm,
density η0 = 21500 kg/m3 and specific heat c0 = 132 J/kg K. The
perfusion coefficient was wb = 0.01 s−1, which is slightly higher than
themaximum value proposed by Chang and Nguyen [21], corresponding
to a well-perfused organ. Blood temperature and initial tissue tempera-
ture were T0 = 37 °C. There is a lack of experimental data regarding the
thermal relaxation time τ of biological tissue. In fact, although Mitra
et al. [25], found the value to be τ = 16 s in processed meat, no values
have been measured for non excised tissues. Here we assumed that
τ = 16 s. The applied power was P = 1 W.

In order to study the suitability of the different functions f(t) and g(t)
mentioned in Section 2.2, we obtained the numerical solutions of the
HBE using each one, i.e. T(r, t, f(t) + τg(t)) by means of COMSOL. This
numerical approximation is denoted by NT(r, t, f(t) + τg(t)). We then
studied the temperature evolution at r = 2r0 for 160 s of RFA, and
used Mathematica 7.0 (Wolfram Research, Champaign, IL, USA) to
plot the analytical solutions.

3. Results

3.1. Logistic function and its derivative

We first conducted an analysis in order to choose themost suitable p
parameter of the logistic function. We plotted the logistic function for
different p values ranging, from 0.05 to 5 (see Fig. 1A). The approxima-
tion of the logistic function towards H(t) improves when p increases.
he Heaviside function H(t) and (B) three Gaussian functions g tð Þ ¼ 1
q
ffiffiffiffi
2π

p e
− t2

2q2 as possible



Fig. 2. Representation of flc2hs(t, p) with p = 1 (left) and fldc2hs(t, q) with q = 1 (right). These smoothed functions are used by COMSOL Multiphysics as candidates to substitute
Heaviside and Dirac distributions, respectively.
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Thus, we chose p = 50, which was the greatest p value we used in
Fig. 1A. However, we observed that for p ≥ 5 the approximation of
the logistic function to the Heaviside function was suitable. Fig. 3
shows the temperature evolution for p between 0.05 and 50. In this
case p = 5 and p = 50 provided a temperature plot very similar to
that obtained with the analytical solution using H(t), as will be shown
in Section 3.4.
3.2. Logistic function and probabilistic Gaussian function

In this case we searched for the optimum value of q in the probabi-
listic Gaussian function.Weplotted the Gaussian function for different q
values ranging, from 0.05 to 50 (See Fig. 1B). In this case, the approxi-
mation of the Gaussian function towards δ(t) improves when q
decreases, however, for very small values the numerical method fails.
We then selected q = 0.05 which was the minimum q value we tested
and the approximation was suitable. Fig. 4 shows temperature evolu-
tion for different values of q, p = 50 being. In this case q = 0.05
(solid line) provided a temperature plot very similar to that obtained
with the analytical solution using H(t), as will be shown in Section 3.4.
3.3. Smoothed functions of COMSOL Multiphysics

The smoothed functions used by COMSOL to substituteH(t) and δ(t)
also have a couple of parameters p and q. We conducted a similar anal-
ysis to choose their optimum values.We found that large variations in p
did not give a noticeable difference in the results, while theywere high-
ly influenced by variations in q. The optimum value of q = 0.035 was
found; the numerical method always failed with values other than
this one. Fig. 5 shows temperature evolution for different values of p,
q = 0.035 being. Note that the results did not vary much when p
changed, even in a broad range.
Fig. 3. Temperature evolution at r = 2r0 for different values of p of the logistic func-
tion. This function and its derivative were used as candidates to substitute Heaviside
and Dirac distributions, respectively.
3.4. Comparison between candidate functions

Fig. 6 compares the temperature evolution of all the candidate func-
tions considered and their optimum values for parameters p and q as
obtained in the previous steps. Fig. 6 also includes (solid line) the ana-
lytical solution using H(t) and δ(t) directly, which can be considered
as the standard to check the suitability of each pair of candidate
functions.

4. Discussion

This study was conducted to identify the types of smoothed func-
tions that could be possible candidates to substitute H(t) and δ(t) in
problems involving the HBE. Several functions were considered and
compared with the numerical HBE solutions. Only COMSOL smoothed
functions provided a solution almost identical to the analytical one.
Here we provide a mathematical explanation for this.

The theoretical basis presented in theAnnex proves that if f(t) and g(t)
are “close to”H(t) and δ(t) respectively andH(t) – f(t) and δ(t) – g(t) have
compact support, then we can ensure that T(r, t, H(t) + τδ(t)) is “close
to” T(r, t, f(t) + τg(t)), i.e. f(t) and g(t) are good candidates to substitute
H(t) and δ(t) respectively. Otherwise if H(t) – f(t) or δ(t) – g(t) does not
have compact support, we are not able to reach a conclusion on the
suitability of the candidate functions.

It is necessary to emphasize the essential difference between the
logistic function and an interpolation function I H(t) as used in COMSOL.
A properly calculated interpolation function can be zero for t b –a and is
1 for t > a for some a > 0. In contrast, in the logistic functions the lines
y = 0 and y = 1 are asymptotes (see Fig. 1A). Likewise, the main dif-
ference between the probabilistic Gaussian function or the derivative
of the logistic function, and I D(t) is that I D(t), properly calculated,
can be zero for |t| > b, for some b > 0, while in the others the line
y = 0 is an asymptote (see 1B and C). In general, since H(t) – I H(t)
and δ(t) – I D(t) have compact support, NT(r, t, I H(t) + τI D(t)) is not
only a numerical approximation of T(r, t, I H(t) + τI D(t)) but also of
T(r, t, H(t) + τδ(t)).
Fig. 4. Temperature evolution at r = 2r0 for different values of q of the probabilistic
Gaussian function, p = 50 being in the logistic function. These functions were used
as candidates to substitute Dirac and Heaviside distributions, respectively.

image of Fig.�2
image of Fig.�3
image of Fig.�4


Fig. 5. Temperature evolution at r = 2r0 for different values of p of the smoothed functions
used by COMSOL Multiphysics, q = 0.035 being. These functions were used as candidates
to substitute Dirac and Heaviside distributions.
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COMSOL functions flc2hs(t, p) and fldc2hs(t, p) ∈D′(ℝ), ∀p, q ∈ ℝ+

and satisfy that limp → 0(H(t) – flc2hs(t, p)) = 0 and limq → 0(δ(t) –

fldc2hs(t, 0)) = 0 in D′(ℝ). Moreover the parameter p controls the
value of a such that flc2hs(t, p) is zero for t b –a and it is 1 for
t > a. And likewise the parameter q controls the number b such that
fldc2hs(t, q) is zero for |t| > b. Consequently, we can affirm that the
numerical solution NT(r, t, flc2hs(t, p) + τ fldc2hs(t, q)) is not only an
approximation of T(r, t, flc2hs(t, p) + τ fldc2hs(t, q)), but also of T(r, t,
H(t) + τδ(t)).

Otherwise, if f(t) is a logistic function and g(t) is the probabilistic
Gaussian function or the derivative of the logistic function, neither
H(t) – f(t) nor δ(t) – g(t) have compact support. Accordingly, NT(r, t,
f(t) + τg(t)) is a numerical approximation of T(r, t, f(t) + τg(t)), but
we cannot say whether it is a numerical approximation of T(r, t,
H(t) + τδ(t)) or is not.

It is also important to note that in the expression of the analytical
solution of the HBE

V ρ; ξ;H ξð Þ þ λδ ξð Þð Þ ¼ F ξð Þ � H ξð Þ þ λδ ξð Þð Þ; ð16Þ

neither F(ξ) nor H(ξ) + λδ(ξ) have compact support. This explains
why Fig. 6 presents a peak. In this case T(r, t, H(t) + λδ(t)) inherits
the irregularity of H(t) + λδ(t), and T(r,t,H(t) + λδ(t)) ∉ C∞(ℝ).

The very simple geometry included in themodeling could be consid-
ered as a limitation of the study. In fact, in problems with the same
governing equation but with other geometries, the convolution factor
F(ξ) will be different. In spite of this, H(ξ) + λδ(ξ) is implicit to the ex-
ternal energy source. Consequently, by choosing appropriate fn(t) and
gn(t), n ∈ ℕ, the corresponding difference T(r, t, H(t) + τδ(t)) – T(r, t,
fn(t) + τgn(t)) tends to zero in C∞(ℝ) for every r > r0, so that the
Fig. 6. Temperature evolution at r = 2r0 for the different candidate functions to substitute
Dirac and Heaviside distributions. Solid line corresponds with the analytical solution using
directlyH(t) and δ(t), which can represent the comparison standard. 1) COMSOL smoothed
functions, 2) Logistics and Gaussian probabilistic functions, and 3) Logistic functions and its
derivative.
conclusion that the interpolation functions are as suitable substitutes
for H(t) and δ(t) in HBE is still valid.

In addition, the findings of this study open the way for other more
general situations. For instance, if a model of partial differential equa-
tions has a distribution D, in many cases it can be suitably substituted
by an approximate smoothed function h ∈D′(ℝ) of D such that D – h
has compact support.

5. Conclusions

The numerical solutions of HBE showed that only the families of
smoothed functions with a continuous second derivative without over-
shoot used by COMSOLMultiphysics provided solutions similar to those
obtained analytically from the original Heaviside and Delta distribu-
tions. With the other candidate functions, such as the logistic function
as substitute for the Heaviside function and its derivative, and the prob-
abilistic Gaussian function as substitute for the Delta distribution, we
obtained approximate solutions to the analytical, but not as satisfactory
as the obtained with COMSOL. From themathematical analysis we con-
cluded that in order to find a suitable smoothed function (f) to substi-
tute any mathematical distribution (D) in the HBE, the difference D – f
has to have compact support. In fact, of all the smoothed functions
considered here, only the smoothed COMSOL Multiphysics functions
accomplish this requirement.
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Annex

Dirac's Delta was introduced to satisfy the need of Quantum
Mechanics for a measure of mass placed at a point x0 denoted here
by δx0 It is defined in the space of continuous functions with compact
support C00(ℝ) such that,

i) b δx0 ; f >¼ f x0ð Þ; ∀f ∈ C00 Rð Þ :

ii) δx0 Rð Þ ¼ 1:

A measure μ has a density function with respect to the Lebesgue
measure if there is a function ϕμ integrable in the compact subsets
of ℝ, such that:

i) b μ; f >¼ ∫Rϕμ xð Þ f xð Þdx

ii) μ(A) = ∫Aϕμ(x)dx for all measurable set A ⊂ ℝ.

In this case we identify the measure μ with its density function ϕμ,
and then we say that the measure μ is also a function.

For example, for every ε > 0, given the interval Iε = [0, ε] we can
define the measure με such that με Að Þ ¼ 1

ε ∫A∩Iεdx. We consider the
function ϕε xð Þ ¼ 1

ε if x ∈ Iε and zero if x ∉ Iε. It is easy to see that ϕε is
the density of με. Moreover με(ℝ) = 1. In fact, we put the constant
factor 1

ε in the definition only because of this probabilistic requirement.
Sometimes Dirac's Delta function is defined in x0 as the function

x → δ(x – x0), such that it is infinity at x = x0 and zero if x ≠ x0. Then,
on identifying the measure δx0 with δ(x – x0); that is, as if δ(x – x0) was
the density of the measure δx0 .

With this identification the following conditions should be
accomplished:

image of Fig.�5
image of Fig.�6
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i) b δx0 ; f >¼ f x0ð Þ ¼ ∫Rf xð Þδ x−x0ð Þdx, for every continuous func-
tion f of compact support.

ii) 1 ¼ ∫Rδ x−x0ð Þdx

However, from the classical theory of real functions, the integral of a
function which is zero in all real numbers except in x0 must be zero,
which contradicts i) and ii). In consequence, δ(x – x0) is not a function.
Then we conclude that Dirac's Delta is a positive measure without a
density function, hence it is not a function. Furthermore, it is the sim-
plest example of measure which is not a function (without density).

Schwartz's Distribution Theory provides theoretical support. We
consider the space D(ℝ) of indefinitely differentiable functions with
compact support, endowed with a “certain” topology. The distribution
space in the sense of Schwartz is the topological dual of D(ℝ) (i.e., the
space of linear and continuous forms defined in D(ℝ)) endowed with
the weak topology (denoted by D′(ℝ)).

Three facts have to be taken into account:

1) D′(ℝ) contains functions (for example, measures with densi-
ties) and mathematical objects which are not functions, for ex-
ample, Dirac's Delta. But a Schwartz's distribution is always a
linear and continuous form defined in D(ℝ).

2) Every integrable function f in the compact sets ofℝ defines a dis-
tribution, and thus can also be considered also as a distribution.
For example, the Heaviside function Hx0 is also a distribution.

3) In the spaceD′(ℝ) it is possible to extend the notion of derivative,
which coincides with the derivation of functions if the distribution
is a derivable function. And the derivative of a distribution T,
denoted DT, is also a distribution. By definition, if T ∈ D′(ℝ),
DT is the element of D′(ℝ) such that for every f ∈ D(ℝ), bDT,
f>:= – b T, DF>. In particular, the Heaviside function Hx0 , as
a function, is not derivable in x0, but as distribution DHx0 ¼ δx0
Obviously this property has been used to obtain the source
term for the governing equation.
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