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Abstract
The tunable and the engineering possibilities of waveguides in periodic arrays made of rigid
square-rod scatterers are theoretically and experimentally reported in this work. Due to the
square shape of the scatterers, the control of their orientation with respect to the direction of
the incident wave can be used for moulding the propagating acoustic waves inside the periodic
structure. On the one hand, the plane wave expansion with supercell approximation is used to
obtain the band structure of the periodic system. On the other hand, the scattering of waves in
finite periodic arrays is analysed using the finite elements method. Experimentally, a prototype
made of rigid square-rod scatterers is used to validate the theoretical predictions. A
spatial-frequency filter and some applications in waveguiding for audible sound are discussed
in this work. Good agreement between theory and experiments and the high tunability of the
system are demonstrated.

(Some figures may appear in colour only in the online journal)

1. Introduction

Wave propagation through periodic structures is a subject
of interest for several branches of science and technology
such as water waves [1], seismology [2], acoustics [3–5]
or electromagnetism [6, 7]. The most important property of
such systems is perhaps the presence of band gaps, ranges of
frequencies in which wave propagation is forbidden [8–11].
Many interesting physical phenomena arise from this property
such as wave localization [12, 13], excitation of evanescent
waves [14, 15], as well as relevant applications concerning
filtering [16] and wave guiding [17]. Therefore the control
of the properties of the band gaps, specially the creation of
large full band gaps, has been deeply analysed [18] during
recent years.

Band gaps in periodic structures appear at high symmetry
points in the Brillouin zone due to the presence of a degeneracy

of the band structure [10]. The most severe limit to
increase the width of the band gap comes precisely from this
degeneracy and, as a consequence, many approaches have
been proposed to lift the band degeneracy and thus enlarge
the band gaps [19–21]. In this sense, one possibility consists
of reducing the total symmetry of the crystal in order to
remove some band degeneracy, allowing the appearance of
complete gaps [8]. Another possibility to enlarge band gaps
comes from changing the shape of the scatterers. In this
way, some theoretical works have shown that for a given
lattice symmetry, the width of the gap is the largest when the
geometric symmetry of each scatterer is the same as that of
the lattice which, incidentally, has the same symmetry as the
first Brillouin zone [22]. For example, square-rod scatterers
arranged following a two-dimensional (2D) square unit cell
have theoretically exhibited a progressive widening of the gap
by increasing the rotation angle of these rods with respect
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to the lattice orientation [23]. Other theoretical works have
used optimization techniques to improve the band structure
by changing the shape of the scatterers, using for example
fractal patterns [24]. Very recently, Bilal and Hussein [25]
have reported several optimized unit-cell designs exhibiting
record values of normalized band gap size for combined in-
plane and out-of-plane elastic waves. Specifically, they report
a design with a normalized band gap width exceeding 60%
for the case of combined polarizations. Finally, band gaps
can be also tuned by anisotropic scatterers in an isotropic host
medium [26].

Most of the previous works discussed above are purely
theoretical but, recent works have shown the relevance in
several branches of physics of the experimental validation
of the properties of analogous systems [27]. In this work
using acoustic waves we show accurate experimental proofs
of the properties of the periodic arrays made of rigid square-
rod scatterers and propose applications for guiding and spatial
filtering of acoustic waves. Specifically, we experimentally
and theoretically analyse and make use of the tunability of the
band gap in such a periodic structure made of rigid square-
rod scatterers embedded in air. Due to the enlargement
of the band gap for determined angles of rotation of the
scatterers we can design tunable waveguides for frequencies
within the band gap by changing the rotation angles of the
scatterers in determined paths inside the array. The dispersion
relations, i.e. the band structure of the periodic medium [5, 10],
have been obtained using plane wave expansion (PWE) [28],
whereas the scattering of waves in the finite periodic structures
is analysed using finite element method (FEM) [29]. The
approximation of supercell in the PWE is explicitly derived
here for the case of square-rod scatterers and applied to analyse
the case of waveguides. From the experimental point of
view, a prototype made of 14 rows of seven rigid square-rod
scatterers is used to validate the theoretical predictions. Some
applications in waveguiding as well as a spatial-frequency
filter based on the design of several waveguides with different
guided frequencies are theoretically discussed in this work
showing good agreement between experiments and proving
the tunability of the system. In particular, the system could be
used to improve the acoustic quality of music halls, and as a
perspective as a superlens for audible sound.

The work is organized as follows. In section 2 we present
the theoretical tools used in this work, i.e. PWE with supercell
approximation and FEM. The experimental setup is presented
in section 3 and the motivating results are shown in section 4.
Section 5 shows both the theoretical and the experimental
results of the spatial-frequency filters and waveguides analysed
in this work. Finally, the conclusions are presented in section 6.

2. Theoretical tools

In this section we present the theoretical methods used to
analyse a system composed of a 2D periodic arrangement
of square-rod scatterers rotated by an angle θ as shown in
figure 1(a). The scatterers are made of an isotropic solid A,
embedded in an acoustic isotropic background B. The ratio
between the area of the scatterer and the area of the unit cell is

)b()a(

Figure 1. (a) Scheme of the system. The inset shows the first
irreducible Brillouin zone of the 2D square periodicity. (b)
Schematic view of the experimental set up. The scanned area
depends on the experiment we analyse (see text for details).

called filling fraction, f . For the case analysed in this work, the
lattice is made of rigid square-rod scatterers with side length
l, embedded in a square periodicity with lattice constant a; so
the filling fraction is f = l2/a2.

2.1. PWE: band structure

The medium considered in this work is invariant by translation
in direction z, parallel to the symmetry axis of the scatterers,
and exhibits a 2D periodicity in the transverse plane. By using
this periodicity, it is possible to expand the physical properties
of the medium in Fourier series and to use the Floquet–Bloch
theorem to obtain the solution of the acoustic wave equation.
Then, if these expansions in plane waves are substituted in
the wave equation, one can obtain the following eigenvalue
problem [28]∑

�G′

((�k + �G)σ�k( �G − �G′)(�k + �G′)p�k( �G′)

−ω2η�k( �G − �G′)p�k( �G′)) = 0, (1)

where �k is the wave vector, �G is the 2D reciprocal-lattice
vector, ω the angular frequency and σ�k (η�k) are the amplitudes

of the Fourier component �k of σ = 1
ρ

= ∑
�G σ�k( �G)eı �G�r

(η = 1
ρc2 = ∑

�G η�k( �G)eı �G�r ). It is usual to write that [28]

β�k( �G) =
{

βAf + βB(1 − f ) if �G = �0,(
βA − βB

)
F( �G, θ) if �G �= �0,

(2)

where β = (σ, η), and F( �G, θ) is the structure factor. For the
case of square-rod scatterers of side l and angle of rotation θ

embedded in a square unit cell, the structure factor is

F( �G, θ) = 1

Auc

∫
AA

e−ı �G�r−→dr = f sinc

(
Gxl

2

)
sinc

(
Gyl

2

)
,

(3)

where,(
Gx

Gy

)
=

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

) (
Gx

Gy

)
, (4)

and, Auc is the area of the unit cell, AA is the area of
the considered scatterer and ı = √−1. For �G taking all
the possible values, equation (1) constitutes a set of linear,
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homogeneous equations for the eigenvectors p�k( �G) and the

eigenfrequencies ω(�k).
Equation (1) can be expressed by the following matrix

formulation
3∑

i=1

�i��iP = ω2	P, (5)

where i=1,2,3. The matrices �i , � and 	 are defined as

(�i)mn = δmn(ki + Gm
i ), (6)

or in the developed form,

�i =




ki + Gi 0 . . . 0
0 ki + Gi . . . 0
...

...
. . .

...

0 . . . . . . ki + Gi


 , (7)

� =




σ( �G1 − �G1) . . . σ ( �G1 − �GN×N)
...

. . .
...

σ ( �GN×N − �G1) . . . σ ( �GN×N − �GN×N)


 , (8)

	 =




η( �G1 − �G1) . . . η( �G1 − �GN×N)
...

. . .
...

η( �GN×N − �G1) . . . η( �GN×N − �GN×N)


 , (9)

P =




P( �G1)
...

P ( �GN×N)


 , (10)

where �G = (G1, G2, G3) = (2πm/a, 2πn/a, 0). If m =
n = (−M, . . . , M), the size of the previous matrices is
N × N = (2M + 1) × (2M + 1).

By solving the system given in equation (5) for each Bloch
vector in the irreducible area of the first Brillouin zone, N ×N

eigenvalues ω2, are obtained and they can be used to represent
the band structure ω(�k).

2.1.1. Supercell approximation. In this approximation one
considers an arrangement with primitive lattice vectors �ai

(i = 1, 2, 3). Generally the supercell consists of a cluster
of n1 × n2 × n3 scatterers periodically placed in space. If we
treat the supercell as the unit cell of the system, the primitive
lattice vectors in the supercell approximation can be defined
as �a′

i = ni �ai , and the complete set of lattices in the supercell
approximation is {R′|R′ = mi

�a′
i}, where ni and mi are

integers. The primitive reciprocal vectors are then

�b′
i = 2π

εijk
�a′

j × �a′
k

�a′
1 · ( �a′

2 × �a′
3)

, (11)

where εijk is the three-dimensional Levi-Civita completely
anti-symmetric symbol. The complete set of reciprocal lattice
vectors in the supercell is { �G| �Gi = Ni

�b′
i} where Ni are

integers. The reciprocal vectors represent the periodicity of
the array in the reciprocal space. So, they depend on the
periodicity of the unit cell, then for the case of the supercell
one should define them taking into account all the scatterers

in the supercell. Without loss of generality, the following
formulation is constrained to 2D systems.

With the previous definition of the supercell, the
equivalent expression to equation (2) for the case of the
supercell approximation is shown here. The filling fraction of a
square-rod scatterer in a supercell is f S = l2/A, where A is the
area occupied by the supercell. If we consider a supercell with
N square-rod scatterers organized in an array of size n1 × n2

then

β�k( �G) =
{

βAN f S + βB(1 − N f S) if �G = �0,(
βA − βB

)
F S( �G) if �G �= �0,

(12)

where F S( �G) is the structure factor of the supercell. It is
worth noting that in equation (12) one takes into account the
total number of scatterers in the supercell, N , in such a way
that for N = 1, equation (12) reproduces equation (2).

In this approximation, the structure factor of the supercell
has to be computed accounting for its size. If we consider a
2D array of scatterers with a supercell n1 ×n2, ni being an odd
number, the structure factor is expressed by

F S( �G, θ) =
(n1−1)

2∑
i=− (n1−1)

2

(n2−1)

2∑
j=− (n2−1)

2

eı(ia| �G1|+ja| �G2|)F ( �G, θ), (13)

where F( �G) is given by equation (3) substituting f by f S.
The interest of the supercell approximation in the PWE

is the possibility to analyse point defects or waveguides in
the structure [31, 32]. We consider now the case in which
several point defects are created in periodic structures. Point
defect can be understood as vacancies or square-rod scatterers
with different side length, l, or with different rotating angle θ .
Then, if the supercell presents Np defects at the sites labelled
by (ns, ms) in the periodic system, with s = 1, . . . , Np, each
one having a side length ls, and a rotating angle θs , then the
Fourier coefficients of the expansion of the physical parameters
involved in the problem satisfy the following equation

β�k( �G) =




βA
�k ((N − Np)f S + fdefect)+

+βB
�k (1 − ((N − Np)f S + fdefect)) if �G = �0,(

βA
�k − βB

�k

)
F S( �G, θ, θs) if �G �= �0,

(14)

where, fdefect = ∑Np

s=1 l2
s /A. Notice that if we consider ls = 0

∀s, equation (14) becomes the case in which the defects are
vacancies. The structure factor of such a supercell with Np

point defects is

F S( �G, θ, θs) =




(n1−1)

2∑
i=− (n1−1)

2

(n2−1)

2∑
j=− (n2−1)

2

eı(ia| �G1|+ja| �G2|)


 F( �G, θ)

−

 Np∑

s=1

eı(nsa| �G1|+msa| �G2|)


 F( �G, θ)

+
Np∑
s=1

((
eı(nsa| �G1|+msa| �G2|)

)
F( �G, θs)

)
. (15)
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Notice that the last term of equation (15) takes into account the
presence of the defect, thus the structure factor (equation (3))
should be calculated using fdefect.

By introducing the previous expressions in the matrix
formulation of the PWE, equation (5), the band structure of a
periodic structure with and without defects using the supercell
approximation can be calculated. The condition to apply the
supercell approximation is that the defect interactions must
be negligible between the neighbouring supercells. As a
consequence, the size of the supercell should be large enough
to place the defects sufficiently separated over consecutive
supercells.

2.2. Finite elements method

The scattering of waves in finite structures in an unbounded
domain is solved in this work using FEM. In these
kinds of problems the Sommerfeld condition is analytically
accomplished by the solutions of the problems. This basically
assumes that no wave is reflected from infinity, and the
solutions of these problems are called radiating solutions.
Using FEM it is only possible to obtain some approximation
of the radiating solutions in unbounded domains by applying
some artificial boundaries in the numerical domain. Several
techniques can be used for this purpose [29]. Among them the
one of the perfectly matched layers (PMLs) [30] has been used
here. PMLs have been applied to different cases based on the
scalar Helmholtz equation [33], acoustics [34], elasticity [35],
poroelastic media [36], water waves [37] and other hyperbolic
problems [38], etc. Here, the interest is focused on the wave
propagation in time-harmonic scattering problems for linear
acoustics, i.e. on the scalar Helmholtz equation. It is worth
noting here that the scatterers are considered rigid, so hard-
wall (Neumann) boundary conditions have been assumed in
the surfaces of the scatterers.

3. Experimental setup

The experimental results have been obtained in the anechoic
chamber of LAUM (Laboratory of Acoustics at University
of Maine). The experimental prototype consists of a 14 × 7
array of acoustically rigid square-rod scatterers made of wood,
located on a square lattice with constant a = 7.5 cm (see
figure 2(b)). The scatterers have a side length l = 5 cm
(l/a = 0.67), therefore the filling fraction of the system is
f = l2/a2 = 0.44. The scatterers are 2 m long, which is
much bigger than the lattice constant and than the wavelength
of interest in this work, so the system can be fulfilled when
considered as 2D. The source has been placed at a distance
d = 1.5 m (d/a = 20) away from the array in order to send a
plane wave to the periodic array.

Figure 1(b) shows the schematic view of the experimental
setup and figure 2 shows the pictures of three systems
experimentally analysed in this work. Figures 2(a) and (b)
correspond to the cases of complete periodic structures with
the square-rod scatterers rotated by θ = 0◦ and θ = 45◦,
respectively. Figure 2(b) shows the details of the fastening
system of the array as well as the system of coordinates

)c()b()a(

Figure 2. Experimental setup. Array made of rigid square-rod
scatterers rotated by 0◦ (a) and 45◦ (b). Scatterers are 2 m long with
a side length l = 5 5 cm. One can also see the details of the
fastening system of the array. (c) Waveguide in the array made of
square-rod scatterers rotated by 45◦. The waveguide is generated by
rotating one of the rows to 0◦. The array has a square periodicity
a = 7.5 cm, and its size is 14 × 7 scatterers. The source is placed
1.5 m away from the array.

considered in this work. The picture of the array used
to analyse the case of the waveguide can be observed in
figure 2(c), in which one row of the array is rotated to 0◦ while
the rest of the scatterers in the array are rotated to 45◦.

All the acoustic measurements are performed using a
microphone B&K 1/4′′ type 4135. The movement of the
microphone in the anechoic chamber is controlled by a 1D
robotized arm (Zaber LSQ) designed to move the microphone
over a 1D trajectory in steps of 1 cm. The acquisition of
the acoustic signal and the movement of the robotized arm
are controlled by a Stanford SR 785 and Octave. Once the
robotized system is turned off, the acoustic source generates a
swept sine signal and the microphone detects it. The analyser
provides the FFT information (module and phase for each
frequency).

4. Motivating results: complete structures

In this section, we theoretically and experimentally analyse
the dispersion relation, specially the band gaps, of a
square array of rigid square-rod scatterers embedded in air
(ρair = 1.29 kg m−3, cair = 340 m s−1) depending on the angle
of rotation of the scatterers. To avoid the overlapping between
neighbour scatterers once they are rotated, the maximum
length of the side of the square cross section should be
l = a/

√
2. The filling fraction of the structure theoretically

analysed in this section coincides with that of the prototype, i.e.
f = l2/a2 = 0.44. We present the results using normalized
units, i.e. normalized distances, (x/a, y/a), and normalized
frequencies, νa/chost. Notice that the experimental results
shown in this section constitute an accurate experimental study
of the properties of 2D arrays made of square-rod scatterers
due to the fact that the working frequencies of this work are
less than 10% of the length of the scatterers, therefore the 2D
approximation should be well fulfilled with a better accuracy
than in previous works [39].

As has been theoretically shown in previous works
[23], the band structure of square-rod scatterers is extremely
dependent on the angle of rotation of the scatterers. One can go
from the situation without full band gap to the case with large
full band gap just by rotating the scatterers of the array. These
peculiar band structures have been used in both photonics and
acoustics in order to substantially improve the band gaps in 2D
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Figure 3. Numerical and experimental analysis of the propagation through a periodic array made of square-rod scatterers rotated 0◦ along
the �X direction. (a) Band structure calculated using PWE. (b) Numerical and (c) experimental frequency-y map, evaluated at point
x/a = −8.67 from the array. (d) Comparison of the spectra evaluated at (x/a, y/a) = (−8.67, 0). Black continuous (blue dashed) line
represents the numerical (experimental) IL spectrum. The lower panel shows the band structure for an easy comparison.

lattices. It has been shown that for square lattices, the largest
absolute band gap using square-rod scatterers is wider than
for the case of circular-rods [22]. Then, by means of simply
rotating the square-rods, the scattering sections change and one
can also manipulate the refraction properties of the system.
Feng et al [40] observed that one can change from positive to
negative refraction in these systems and thus produce a tunable
acoustic superlens by rotating the scatterers [39]. These results
show an effective method to control wave propagation in not
only sonic crystals, but also other periodic structures, such as
light in photonic crystals or water waves propagating through
periodic rods.

At this stage we would like to show the accurate
experimental validation of the tunability of the band gaps of
this system. We analyse how the properties of the array can
be drastically changed by rotating the square-rod scatterers
and therefore without changing the lattice constant or the
filling fraction. We study the particular cases of θ=0◦ and
θ = 45◦. We then compare the band structure calculated
using the PWE method with the numerical and experimental
attenuation spectra of the finite structure. The attenuation
spectrum is characterized in this work by means of the insertion
loss (IL) defined as

IL = 20 log10

( |pincident|
|pincident + pscattered|

)
, (16)

where pincident is the direct wave from the source and pscattered

is the scattered field by the array of square-rod scatterers, both
fields evaluated in the same point. From the experimental
point of view, we consider |pincident| as the amplitude of the
wave measured without the array and |pincident + pscattered|
the amplitude measured with the inserted array of square-rod
scatterers.

Figures 3 and 4 show the comparison between the
theoretical and experimental results for the cases of complete

structures whose scatterers are rotated 0◦ and 45◦, respectively.
The band structures along the �X direction are shown in
the (a) panels of figures 3 and 4. The scattering problem
has been analysed in several points behind the structure.
The IL spectrum has been calculated in the transversal sites
y/a = [−0.8, 0.8] at x/a = −8.67 (see figure 2(b) to see
the coordinate system). The (b) panels of figures 3 and 4
show the IL frequency-y/a map obtained using FEM. In this
map, each vertical line represents the IL spectrum for a given
position (x/a, y/a). Panels (c) of figures 3 and 4 show these
experimental results. In the (c) panels the vertical axis shows
the frequencies in Hz taking into account the lattice constant
of the prototype and the sound velocity in the host (air). Then,
one can compare normalized and real values in the same plot.
Finally, panels (d) of figures 3 and 4 show the IL spectrum
for the central point (x/a, y/a) = (−8.67, 0). The black
continuous line represents the numerical predictions and the
blue dashed line represents the experimental results in the
anechoic chamber. To have a clear comparison, we have also
added the band structure in the bottom of the panels (d) of
figures 3 and 4.

The case of θ = 0◦ does not present a full band
gap (see [22, 23, 39]), however the band structure (see
figure 3(a)) reveals two band gaps at �X direction between
normalized frequencies 0.3157 (1431 Hz, experimentally) and
0.5529 (2506 Hz), and between 0.6653 (3016 Hz) and 0.9375
(4250 Hz). Between these two band gaps, a propagating
band can be observed. The comparison between the band
structure, figure 3(a), and the numerical frequency-y/a IL
map, figure 3(b), shows agreement in the sense that in the
range of frequencies where a band gap is predicted by the band
structure, a range of attenuated frequencies appears in the case
of the finite structure. It is worth noting that the attenuation is
a function of the measurement point, but on average the band
gaps appear in the range of frequencies predicted by the band

5



J. Phys. D: Appl. Phys. 46 (2013) 305108 V Romero-Garcı́a et al

Figure 4. Numerical and experimental analysis of the propagation through a periodic array made of a square-rod rotated 45◦ along the �X
direction. (a) Band structure calculated using PWE. (b) Numerical and (c) experimental frequency-y map, evaluated at point x/a = −8.67
from the crystal. (d) Comparison of the spectra evaluated at (x/a, y/a) = (−8.67, 0). Black continuous (blue dashed) line represents the
numerical (experimental) IL spectrum. The lower panel shows the band structure for an easy comparison.

structure. The propagating band is also well reproduced by the
finite structure in agreement with the PWE predictions.

In figure 3(c) one can observe the frequency-y/a IL map
measured in the anechoic chamber. Similar behaviour of
the attenuation in the experimental results can be seen by
comparing with the numerical predictions in figure 3(b). Due
to the finite size of the structure one can also observe the
presence of the well-known Fabry–Pérot resonances [10, 41],
which are the effect of the multiple reflections inside the finite
size crystal between the two interfaces. Figure 3(d) shows both
the theoretical and experimental IL spectrum at central point
(x/a, y/a) = (−8.67, 0). Two band gaps and the transmission
band are observed. Moreover, one can notice the presence of
attenuated frequencies in the first propagating band. This is
due to the refractive behaviour of the device at these ranges of
frequencies, producing attenuation at the measurement point,
but without presence of a bandgap.

For the case of θ = 45◦, figure 4, different properties than
in the case of θ = 0◦ are predicted by the band structure (see
[22, 23, 39]). For this structure a complete band gap is observed
in the �X direction between frequencies 0.286 (1295 Hz) and
0.6463 (2930 Hz), and a second band gap at higher frequencies
between 0.8575 (3887 Hz) and 0.936 (4243 Hz) is predicted.
Notice that for this case the band gap at �X direction is wider
than in the case of θ = 0◦. Between them, a propagating
band wider than in the case of the θ = 0◦ is observed.
Figure 4(b) shows the frequency-y/a IL map for the case of
θ = 45◦ while figure 4(c) shows the measurements of the IL
map in the anechoic chamber. Figure 4(d) shows both the
theoretical and experimental IL spectrum for the central point
(x/a, y/a) = (−8.67, 0) in the case of θ = 45◦. The black
line represents the numerical predictions and the blue dashed
line shows the experimental results in very good agreement.

A good agreement between the properties theoretically
predicted by the band structure and the attenuation properties
numerically obtained using the finite structure is observed for
the cases of θ = 0◦ and θ = 45◦ (figures 3 and 4, respectively).

The differences between the numerical predictions and the
experimental results could be the result of the errors in the
positioning system, of the small curvature of the square-rod
scatterers used in the prototype which are not perfectly straight
(a relative error in the worst cases up to 12% at 0◦ and up to
70% at 45◦) and also due to the fact that in the experimental
situation a non perfectly plane wave impinges the crystal.

5. Results: waveguides

5.1. Simple waveguides

In this section the case of a waveguide in the 2D lattice of
square-rod scatterers rotated by 45◦ is considered. The linear
defect is generated by rotating the scatterers of a row with
θ �= 45◦ creating consequently a linear defect. Figure 5(a)
shows a general scheme of the waveguide considered in this
section. Figure 2(c) shows the experimental setup for the case
in which the angle of the linear defect is θdefect = 0◦.

Using the PWE with the supercell approximation,
explicitly shown in section 2, the propagation properties of a
2D array made up of square-rod scatterers with a linear defect
are analysed in this section. The supercell has a size of 1 × 5
scatterers with the linear defect in the middle. Figure 5(a)
shows the supercell considered for the calculations. This
supercell is long enough to avoid the interaction between the
localized modes in neighbour linear defects. The complete
structure is made of square-rod scatterers with l = 0.67a

and rotated θ = 45◦ in order to have a complete band gap.
Therefore, conditions to enable guidance in linear defects at
frequencies within the band gap are fulfilled.

From a general point of view, the linear defect could be
created by introducing a row of square-rod scatterers with a
different side length, ldefect, and a different angle of rotation,
θdefect. Figure 5(b) shows the general theoretical analysis of
the dependence of the guided frequency on both the side length
ldefect/a and the angle of rotation of the linear defect, θdefect. We
particularize here for the case in which the side length of the
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Figure 5. (a) Scheme of the supercell considered for the analysis of the waveguides. (b) General analysis of the frequency dependence of
the guided mode on both the ratio ldefect/a and the rotating angle θ . (c) Dependence of the frequency of the guided mode for the case
analysed in this work, ldefect/a = l/a = √

f . (d)–(f ) FEM simulation of the scattering problem by a finite structure made of 14 × 7
square-rod scatterers, in which the central row of cylinders has been rotated. (d) Sound pressure level (SPL) maps for several rotating angles
of the central row. (0◦ (upper panel), 10◦, 20◦, 30◦, 40◦ (lower panel)). (e) Longitudinal cut along the line x/a at y/a = 0.5, between the
central row and the next one. (f ) Transversal cut behind the crystal at x/a = −8 along the line y/a. Each coloured line represents the SPL
for a determined rotating angle of the linear defect.

scatterers of the linear defect is ldefect/a = l/a, i.e. the same
ratio as the square-rod scatterers of the complete structure.
Then, only by rotating the row that constitutes the linear defect,
can the guided frequency propagating through the waveguide
be tuned. Figure 5(c) shows the dependence of the guided
frequency for this case on the angle of rotation of the square-
rod scatterer. Notice that all the frequencies represented in
figure 5(c) belong to the band gap at each angle of rotation.

Figure 5(d) shows the sound pressure level (SPL) map for
the cases where the scatterers of the linear defect are rotated
0◦, 10◦, 20◦, 30◦ and 40◦ (from the top to the bottom of the
panel, respectively). The guided frequencies correspond to the
frequencies obtained by PWE with supercell approximation in
figure 5(c). Between 0◦ and 30◦ there is propagation because
the guided band is isolated inside the band gap. However, for
larger angles, the propagating band is at the same frequency
as the band gap edge, and the corresponding Bloch mode is
excited inside the structure.

Figures 5(e) and (f ) show the cuts along the x and y axis
for each rotating angle of figure 5(d). Coloured lines represent
the SPL profile in each direction. In figure 5(f ) one can see a
maximum value of SPL at point y/a = 0 for the waveguides
whose angles are between 0◦ and 30◦. At these angles the
guided mode is confined in the waveguide. However, at 40◦,
although the SPL is higher, it is not confined at the waveguide
because the mode is very close to the propagating mode in the
second band.

For comparison between theoretical predictions and
experimental results we particularize for the case where the
scatterers in the linear defect are rotated 0◦. If we consider
that the linear defect is generated along the x axis and the
origin of coordinates is as shown in figure 2(b), then we have
measured and simulated the SPL spectrum at a point located
in x/a = −8 and along the trajectory y/a = [−2, 2].

Figure 6(a) shows the band structure for this particular
case with the red dots showing the guided mode inside the

bandgap at normalized frequency 0.627 (2841 Hz). In order to
clearly see the wave guidance along this linear defect, we plot in
figures 6(b) and (c) the experimental and numerical SPL maps,
respectively. Each vertical line shows the SPL spectrum for a
given y/a point. The maximum value of SPL at the frequency
of guidance is observed at the point y/a = 0. The colour
scale shows the SPL. It is worth noting that in the experimental
map the values of frequency are not normalized, therefore, one
can compare the real case with that theoretically predicted.
Figure 6(d) shows both the experimental and numerical SPL
profiles along the measured points in the y/a axis at the
guidance frequency. The blue continuous line represents the
numerical predictions, whereas the red dashed line shows the
experimental values. Good agreement between the theoretical
predictions and the experimental results is achieved.

5.2. Spatial-frequency acoustic filter

In the previous section we have shown the particular case of
the linear defect with θdefect = 0◦. It is worth noting that
the analysis shown in figure 5(c) represents a powerful design
tool, in such a way that one can design waveguides for a
determined frequency just rotating the specific angle given
by this design line. In this section we show an example
of the tunability of such a system. In a square array made
of square-rod scatterers with θ = 45◦, we generate three
different waveguides by rotating three rows, each one with
a different angle of rotation. We choose, for example, the
angles θ1,defect = 0◦, θ2,defect = 18◦, θ3,defect = 28◦ as shown
in figure 7(a). Due to the fact that each angle is associated
with different guided frequencies (see figure 5(c)), we expect
different acoustic patterns behind the structure depending on
the frequency.

Figure 7(b) shows the y/a-frequency SPL map. Each
vertical line represents the field measured at x/a = −8
all along the points y/a = [−7, 7] for a given frequency
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Figure 6. Numerical and experimental results of the waveguide made by rotating the scatterers of a row at 0◦. (a) Band structure. Red dots
represent the guided mode inside the band gap. (b) and (c) show the SPL measured and numerically simulated spectra for the several points
along the y axis (y/a = [−2, 2]) at x/a = −8. (d) SPL profile at x/a = −8 at the guided frequency, 2841 Hz. Blue continuous line
represents the numerical predictions and dashed red line shows the experimental results.
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Figure 7. Spatial-frequency acoustic filter. (a) Scheme of the acoustic filter. (b) and (c) represent the numerical and the experimental results
in dB of the y/a-frequency SPL maps, respectively. Colour scale represents the values of the SPL. Each vertical line represents the SPL
values along the points y/a = [−7, 7] at x/a = −8 for a given normalized frequency (νa/chost). (d)–(f ) represent the vertical cuts of the
maps shown in (b) and (c) at the normalized frequencies 0.623, 0.648 and 0.675, respectively. Continuous lines are for the numerical
predictions and dashed lines for the experimental results.
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Figure 8. (a) Numerical SPL map at normalized frequency νa/chost = 0.64. The SPL in dB is shown in the colour scale. The black
continuous line represents the measuring points. (b) and (c) show the numerical and experimental frequency-y/a SPL map, respectively. (d)
Comparison of the numerically obtained SPL (black continuous line) with the experimental measurements (black dotted lines) measured in
the point x/a = −8 at the frequency νa/chost = 0.64.

marked at the horizontal axis. The correspondence between
the position of the waveguide and the position of SPL
maximum values is striking. One can also see how the guided
mode appears at these determined positions depending on the
frequency. Figure 7(c) shows the experimental y/a-frequency
SPL map. For a clear comparison between numerical and
experimental results, we have plotted in figures 7(d)–(f ) the
vertical cuts of this y/a-frequency SPL map at the normalized
frequencies 0.623, 0.648 and 0.675, respectively (marked also
in figures 7(b) and (c) with dashed white lines). Continuous
lines represent the numerical SPL and dashed lines represent
the experimental results. One can see that for the low
frequencies of the design line, only one transmitted peak
behind the structure emerges in figure 7(d). At middle
frequencies two transmitted peaks in figure 7(e) are observed.
And, finally at high frequencies, three transmitted peaks exist
(figure 7(d)). Arrows in figures 7(d) and (e) mark the positions
where the sound is transmitted depending on frequency.

5.3. Guiding and splitting waves inside the SC

Due to the tunability of the system shown in this work, one can
design several paths to guide the sound through the structure
only by rotating the scatterers. In this section two different
systems have been numerically and experimentally analysed.
Figures 8(a) and 9(a) show the two cases analysed in this
section. In the first one, sound is guided by a bended path and
leaves the structure by one exit in a different y-position than the
entrance. The second one consists of a bifurcated waveguide
in which the sound is divided in two paths presenting two
different exits, so showing the possibilities of splitting the
waves in two different paths. The guided paths in both
structures are generated by rotating the square-rod scatterers
with θdefect = 0◦. The rest of square-rod scatterers in the array
are fixed with θ = 45◦.

Figure 8 shows the numerical and the experimental results
for the case of the bended waveguide with one exit. Figure 8(a)

shows the SPL map for one of the guided frequencies,
νa/chost = 0.64. One can observe the guidance of the wave
through the bended waveguide and the maximum value of SPL
in the exit of the waveguide. Figure 8(b) and (c) represent the
numerical and the experimental frequency-y/a SPL maps. It
is easy to see the maximum values around y/a = 0, i.e. in front
of the exit of the waveguide. For a better comparison between
the numerical and experimental results, we plot the vertical
cut along the points y/a = [−3, 3] (following the coordinate
axis shown in figure 8(a)) measured in the point x/a = −8
at the frequency νa/chost = 0.64 in figure 8(d). The black
continuous line represents the numerical simulations whereas
the black dashed line represents the experimental results. A
fairly good agreement is observed.

Figure 9 shows the numerical and the experimental
results for the case of the bifurcated waveguide with two
exits. Figure 9(a) shows the SPL map for one of the
guided frequencies, νa/chost = 0.629. The guidance
of the wave through the bifurcated waveguide and the
maximum value of SPL at the two exits of the waveguide are
shown. Figures 9(b) and (c) represent the numerical and the
experimental frequency-y/a SPL maps. The maximum values
around y/a = −3 and y/a = 3, i.e. in the two ends of the
bifurcated waveguide are clearly seen. For a better comparison
between the numerical and the experimental results, we plot
the vertical cut along the points y/a = [−5, 5] (following the
coordinate axis shown in figure 9(a)) measured in the point
x/a = −8 at the frequency νa/chost = 0.629 in figure 9(d).
Once again the observed good agreement demonstrates the
possibility of waveguiding by defect complex waveguides.

6. Concluding remarks

In this work we use acoustic waves to experimentally proof
the physical properties of modulated systems made of square-
rod scatterers as well as to design applications for guiding and
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Figure 9. (a) Numerical SPL map at normalized frequency νa/chost = 0.629. The SPL in dB is shown in the colour scale. The black
continuous line represents the measuring points. (b) and (c) show the numerical and experimental frequency-y/a SPL map, respectively. (d)
Comparison of the numerical predictions of the SPL (black continuous line) with the experimental measurements (black dotted lines)
measured in the point x/a = −8 at the frequency νa/chost = 0.629.

spatial filtering of acoustic waves. Extensive simulations and
experimental results in order to show tunable waveguides made
of arrays made of rigid square-rod scatterers embedded in air
are performed here. We have experimentally and theoretically
shown that by rotating some of the square-rod scatterers of an
array one can easily produce a point defect, and even multiple
point or line defects. This work could also be effectively
extended to progressing toward the realization of tunable
systems for light, liquid, and other waves, which will lead to
great potential in ultrasonics, photoelectronics and so on. The
tunability we demonstrated in this work could be applied to
control not only the band gap and the waveguiding properties
but also the refraction properties of the system. The use of such
a device as superlens for audible sound could be a perspective.
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Redondo J and Soliveres E 2009 Propagation of sound
beams behind sonic crystals Phys. Rev. B 80 134303

[17] Khelif A, Choujaa A, Djafari-Rouhani B, Wilm M,
Ballandras S and Laude V 2003 Trapping and guiding of
acoustic waves by defect modes in a full-band-gap
ultrasonic crystal Phys. Rev. B 68 214301

[18] Sigalas M, Economou E and Kafesaki M 1994 Spectral gaps
for electromagnetic and scalar weaves: possible explanation
for certain differences Phys. Rev. B 50 3393

[19] Caballero D, Sánchez-Dehesa J, Rubio C, Martı́nez-Sala R,
Sánchez-Pérez J, Meseguer F and Llinares J 1999 Large
two-dimensional sonic band gaps Phys. Rev. E 60 R6316

10

http://dx.doi.org/10.1017/S0022112090002750
http://dx.doi.org/10.1103/PhysRevLett.103.024301
http://dx.doi.org/10.1038/378241a0
http://dx.doi.org/10.1103/PhysRevLett.80.5325
http://dx.doi.org/10.1524/zkri.2005.220.9-10.765
http://dx.doi.org/10.1103/PhysRevLett.58.2059
http://dx.doi.org/10.1103/PhysRevLett.58.2486
http://dx.doi.org/10.1103/PhysRevLett.71.2022
http://dx.doi.org/10.1063/1.119130
http://dx.doi.org/10.1016/j.surfrep.2010.08.002
http://dx.doi.org/10.1121/1.418156
http://dx.doi.org/10.1016/j.ssc.2004.11.024
http://dx.doi.org/10.1103/PhysRevB.80.092301
http://dx.doi.org/10.1063/1.3367739
http://dx.doi.org/10.1103/PhysRevB.80.134303
http://dx.doi.org/10.1103/PhysRevB.68.214301
http://dx.doi.org/10.1103/PhysRevB.50.3393
http://dx.doi.org/10.1103/PhysRevE.60.R6316


J. Phys. D: Appl. Phys. 46 (2013) 305108 V Romero-Garcı́a et al

[20] Anderson C and Giapis K 1996 Larger two-dimensional
photonic band gaps Phys. Rev. Lett. 77 2949

[21] Anderson C and Giapis K 1997 Symmetry reduction in group
4 mm photonic crystals Phys. Rev. B 56 7313

[22] Wang R, Wang X-H, Gu B-Y and Yang G-Z 2001 Effects of
shapes and orientations of scatterers and lattice symmetries
on the photonic band gap in two-dimensional photonic
crystals, J. Appl. Phys. 90 4307

[23] Goffaux C and Vigneron J P 2001 Theoretical study of a
tunable phononic band gap system Phys. Rev. B 64 075118

[24] Norris R C, Hamel J S and Nadeaua P 2008 Phononic band
gap crystals with periodic fractal inclusions: theoretical
study using numerical analysis J. Appl. Phys. 103 104908

[25] Bilal O R and Hussein M I 2011 Ultrawide phononic band gap
for combined in-plane and out-of-plane waves Phys. Rev. E
84 065701(R)

[26] Lin S-C S and Huang T J 2011 Tunable phononic crystals with
anisotropic inclusions Phys. Rev. B 83 174303

[27] Lemoult F, Kaina N, Fink M and Lerosey G 2013 Wave
propagation control at the deep subwavelength scale in
metamaterials Nature Phys. 9 55–60

[28] Kushwaha M, Halevi P, Martı́nez G, Dobrzynski L and
Djafari-Rouhani B 1994 Theory of acoustic band structure
of periodic elastic composites Phys. Rev. B 49 2313–22

[29] Ihlenburg F 1998 Finite Element Analysis of Acoustic
Scattering (New York: Springer) p 224

[30] Berenger J 1994 A perfectly matched layer for the absorption
of electromagnetic waves J. Comput. Phys. 114 185

[31] Sun J-H and Wu T-T 2006 Propagation of surface acoustic
waves through sharply bent two-dimensional phononic
crystal waveguides using a finite-difference time-domain
method Phys. Rev. B 74 174305

[32] Romero-Garcı́a V, Sánchez-Pérez J V and Garcia-Raffi L M
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[38] Lions J L, Métral J and Vacus O 2002 Well-posed absorbing
layer for hyperbolic problems Numer. Math. 92 535–62

[39] Pichard H, Richoux O and Groby J-P 2012 Experimental
demonstration in audible frequency range of band gap
turability and negative refraction in two dimensional sonic
crystals J. Acoust. Soc. Am. 132 2816–22

[40] Feng L, Liu X P, Lu M H, Chen Y B, Chen Y F, Mao Y W,
Zi J, Zhu Y Y, Zhu S N and Ming N B 2006 Refraction
control of acoustic waves in a square-rod-constructed
tunable sonic crystal Phys. Rev. B 73 193101

[41] Sanchis L, Hakanson A, Cervera F and Sánchez–Dehesa J
2003 Acoustic interferometers based on two-dimensional
arrays of rigid cylinders in air Phys. Rev. B 67 035422

11

http://dx.doi.org/10.1103/PhysRevLett.77.2949
http://dx.doi.org/10.1063/1.1406965
http://dx.doi.org/10.1103/PhysRevB.64.075118
http://dx.doi.org/10.1063/1.2931955
http://dx.doi.org/10.1103/PhysRevE.84.065701
http://dx.doi.org/10.1103/PhysRevB.83.174303
http://dx.doi.org/10.1038/nphys2480
http://dx.doi.org/10.1103/PhysRevB.49.2313
http://dx.doi.org/10.1006/jcph.1994.1159
http://dx.doi.org/10.1103/PhysRevB.74.174305
http://dx.doi.org/10.1088/1367-2630/12/8/083024
http://dx.doi.org/10.1142/S0218396X0000008X
http://dx.doi.org/10.1006/jcph.1997.5868
http://dx.doi.org/10.1002/nme.896
http://dx.doi.org/10.1190/1.1487073
http://dx.doi.org/10.1175/1520-0493(2004)132<1369:APMLAT>2.0.CO;2
http://dx.doi.org/10.1007/s002110100263
http://dx.doi.org/10.1121/1.4744974
http://dx.doi.org/10.1103/PhysRevB.73.193101
http://dx.doi.org/10.1103/PhysRevB.67.035422

	1. Introduction
	2. Theoretical tools
	2.1. PWE: band structure
	2.2. Finite elements method

	3. Experimental setup
	4. Motivating results: complete structures
	5. Results: waveguides
	5.1. Simple waveguides
	5.2. Spatial-frequency acoustic filter
	5.3. Guiding and splitting waves inside the SC

	6. Concluding remarks
	 Acknowledgments
	 References

