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d Centro de Tecnologı́as Fı́sicas: Acústica, Materiales y Astrofı́sica, Universitat Polit�ecnica de Val�encia, Camino de Vera s/n, 46022 Valencia, Spain
a r t i c l e i n f o

Article history:

Received 13 April 2011

Received in revised form

1 August 2012

Accepted 8 August 2012
Handling Editor: Y. Auregan
resonances of the cavities can be excited by sound producing several attenuation peaks
Available online 12 September 2012
0X/$ - see front matter & 2012 Elsevier Ltd.

x.doi.org/10.1016/j.jsv.2012.08.003

esponding author.

ail addresses: virogar1@mat.upv.es, virogar1@

a@mat.upv.es (L.M. Garcia-Raffi), O.Umnova@

: http://personales.upv.es/virogar1 (V. Romer
a b s t r a c t

An acoustic metamaterial made of a two-dimensional (2D) periodic array of multi-

resonant acoustic scatterers is analyzed both experimentally and theoretically. The

building blocks consist of a combination of elastic beams of low-density polyethylene

foam (LDPF) with cavities of known area. Elastic resonances of the beams and acoustic

in the low frequency range. Due to this behavior the periodic array with long

wavelength multi-resonant structural units can be classified as a locally multi-

resonant acoustic metamaterial (LMRAM) with strong dispersion of its effective

properties.The results presented in this paper could be used to design effective tunable

acoustic filters for the low frequency range.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Recent success in the design of artificial electromagnetic materials with properties not found in nature, denoted
metamaterials [1–3], has boosted a great amount of effort to develop their acoustic analogues, i.e. acoustic metamaterials
[4,5]. It has been shown that periodic distributions of sound scatterers in a fluid, known as sonic crystals (SCs), can be
employed in the design of acoustic metamaterials [6–8] in the low frequency regime. When sound wavelength, l, is long
compared to the separation between the scatterers, a, (long wavelength regime), homogenization theories can be applied
and as a consequence SCs behave as effective homogeneous acoustic media [6] called metamaterial. However, in the
diffraction regime, i.e. when lCa, both theoretical predictions and experimental results have shown, among other
properties, that SCs present ranges of frequencies related to the periodicity of the structure, known as band gaps (BG), in
which sound propagation is not allowed [9–12].

The pioneering work of Liu et al. [4] described a three-dimensional (3D) periodic array of coated spheres that exhibited
attenuation bands with wavelength about two orders of magnitude larger than the periodicity of the structure. The origin
of this phenomenon has been explained by means of the localized resonances associated with each scatterer: the
hybridization of the flat resonance band and the propagating band of the periodic medium produces the stop band. Thus,
the frequency of the stop band can be tuned by varying the size and geometry of the resonator. The sound attenuation
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level in this stop band also increases with the number of local resonators. In such a way, Liu et al. showed a general
direction towards the design of locally resonant acoustic metamaterials (LRAM) where the effective properties can be used
to accurately describe the wave interaction with LRAM.

The sound speed in the LRAM is equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
keff=reff

p
, where keff and reff are the effective bulk modulus and the mass

density, respectively. In conventional acoustic materials, the real part of k and r is always positive which allows
maintaining structural stability. This is not necessarily the case for LRAM. It has been previously shown that in periodic
media made of resonant scatterers, the effective density becomes negative near resonant frequencies, giving rise to
exponential decay of the waves [13]. This is in contrast to the case of SC formed by rigid scatterers where the effective
properties are real and positive and can be used, for example, to design gradient index lenses [7].

In last years, several 3D [14] and 2D [15] locally resonant phononic crystals have been analyzed, showing the resonance
gaps and the almost dispersionless bands within the absolute gap originated from the resonance modes of the individual
scatterers. Numerical simulations showed the tunability of the frequency position of these resonances by a proper choice
of the different parameters involved; size of cavities, nature of gases inside and outside the scatterer, and elastic
coefficients of the solid material. Very recent works have demonstrated the existence of both electromagnetic [16] and
elastic [17] metamaterials with multiple resonances. Lai et al. [17] designed an elastic metamaterial exhibiting multiple
resonances in its building blocks. These metamaterials could be used as wave polarizers or for imaging and controlling
seismic waves. For the electromagnetic counterpart, Turkmen et al. [16] experimentally and theoretically analyzed a
compact multi-resonant metamaterial structure based on U- and T-shaped nano-apperture antennas, showing opportu-
nities in applications ranging from subwavelength optics and optoelectronics to chemical and biosensing.

In the present work an acoustic metamaterial made of a two-dimensional (2D) periodic array of scatterers exhibiting
multi-resonant acoustic behavior in the long wavelength regime is studied. A scatterer with multiple resonances of
different nature is used to design a locally multi-resonant acoustic metamaterial (LMRAM). The building blocks of this
LMRAM consist of a combination of elastic beams of low-density polyethylene foam (LDPF) with cavities of known area.
The conventional application of LDPF can be found in packaging industry or in shock absorbing and vibration damping
techniques. The low density, the elastic properties of this material as well as the shape of the scatterer allow the sound to
excite both elastic resonances of the material and acoustic cavity resonances producing several attenuation peaks in the
low frequency range.

The work is organized as follows. First, in Section 2 some of the experimental results that motivate this work are
presented. The acousto-elastic coupled problems for the complex geometry of the real scatterer are solved in Section 3. The
behavior of both single scatterers and the periodic arrangements of scatterers are analyzed using finite element method
(FEM). The details of the experimental setup and the experimental validation of all the numerical simulations are
described in Section 4. The performance of the periodic structure in the long wavelength regime is discussed in Section 5.
Sound manipulation is perhaps the most obvious application of the structures presented in this work, and a discussion of
this application is presented in Section 6. Finally, a summary of results as well as the conclusions of the work are
presented.

2. Motivation

The scatterers analyzed in this work will be called U-profiles due to their geometrical shape (see Fig. 1a). The goal of
this section is to describe the system to be analyzed, showing some of the experimental results that motivated the work.
Further details of the experimental setup will be given later (Section 4).

Fig. 1a shows the measured acoustic response of a commercial scatterer made of LDPF (see inset). The insertion loss (IL)
defined as the difference between the sound pressure level (SPL) recorded without and with the sample has been
measured. The red dashed line in Fig. 1a illustrates the IL of a single U-profile. One can observe two attenuation peaks
around 700 Hz and 1100 Hz. These peaks, when the U-profiles are arranged in a lattice – periodic medium – forming a SC,
will give rise to a couple of attenuation bands that we will call first and second attenuation bands, respectively. Their
nature can be understood as elastic and cavity resonances of every scatterer in the SC as will be shown later.

With these scatterers, an array with triangular unit cell which lattice constant is a¼0.127 m, as shown in Fig. 1b, has
been built. Pictures of both the cross-section and the complete SC are shown in Fig. 1b. For this array the Bragg frequency
(f Bragg ¼ chost=2a, chost ¼ 340 m=s) is 1545 Hz. The goal of this work is the analysis of the effect of the resonances of the
building blocks on the propagation properties of the periodic structure. Hereinafter, we will pay attention to the range of
frequencies below the first Bragg peak of the periodic structure. Fig. 1c and d shows the IL measured 1 m behind a SC made
of U-profiles for two different incidence directions 01 and 301, respectively. One can see three attenuation bands, two
corresponding to the resonances of the scatterers (700 Hz and 1100 Hz) and the one corresponding to the periodicity
(1545 Hz) in the diffraction regime.

3. Numerical results

In this section the resonances of a single U-profiles and the band structures of their periodic arrays are analyzed
numerically using FEM. We use COMSOL Multiphysics software working together with MATLAB. The FEM is an adequate
technique when the shape of the modeled objects is complicated and when several physical problems are coupled.



Fig. 1. Experimental results. (a) IL of single U-profile. (b) Pictures of both the cross-section and the complete structure used in the experimental setup.

Details of the triangular unit cell are also shown. (c) and (d) measured IL of a SC made of U-profiles arranged in a triangular array, lattice constant

a¼0.127 m, measured at 01 and 301, respectively. The inset shows the transversal view of a U-profile. (For interpretation of the references to color in this

figure caption, the reader is referred to the web version of this article.)
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Although this numerical approximation takes into account the complex geometry of the scatterers, a simplified physical
analysis can be done and, as a consequence, approximate equations of the resonances are obtained. More details of this
phenomenological analysis can be found in Appendix A.

3.1. FEM model: acousto-elastic coupling

This section starts with the analysis of acoustic wave propagation inside a periodic structure made of solid scatterers, B,
embedded in a fluid host, A, using FEM. If the host material is fluid only longitudinal waves are supported by the structure.
Then, the governing equation in A is

�
o2

c2
A

p¼r
1

rA

rp

� �
, (1)

where p is the pressure, o¼ 2pf with f the frequency, rA is the density and cA is the sound velocity in the host material.
The propagation of elastic waves inside the scatterers is governed by

�rBo
2ui ¼

qsij

qxj

� �
, (2)

where rB is the density of the elastic material and ui is the ith component of the displacement vector, u. The stress tensor is
defined by

sij ¼ lBulldijþ2mBuij,

uij ¼
1

2

qui

qxj
þ

quj

qxi

� �
, (3)

where lB and mB are the Lamé coefficients which are related to the longitudinal, cl, and transversal, ct, sound velocities in
the solid as

cl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lBþ2mB

rB

s
, (4)

ct ¼

ffiffiffiffiffiffimB

rB

r
: (5)
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On the other hand, the Lamé coefficients can be also related to Young’s modulus, E, and Poisson’s ratio, n, as follows:

lB ¼
En

ð1þnÞð1�2nÞ , (6)

mB ¼
E

2ð1þnÞ
: (7)

In this coupled problem the acoustic wave is incident on the scatterer and then the pressure acts as a load on the elastic
medium. In order to simultaneously solve (1) and (2) the following boundary conditions have been applied:

qp

qn
9qB ¼ rAo

2un,

sijnj9qB ¼�pni: (8)

where qB is the boundary of medium B and n is the unit vector normal to the scatterer surface and directed outward. In the
numerical problem, the solution domain was surrounded by perfectly matched layer (PML) [18] region in order to emulate
the Sommerfeld radiation condition.

3.2. Scattering problem

3.2.1. Single scatterer

First of all, the frequency response of the U-profile will be analyzed. The real geometry of the U-profiles was
approximated using the CAD tools of COMSOL. The scatterer is shown in the inset in Fig. 2. In this section a plane wave
impinging the scatterer from the left is considered and the IL is evaluated behind the scatterer. The physical properties of
the LDPF are shown in Table 1.

The blue continuous line in Fig. 2 shows the numerical results. The frequency response obtained numerically is close to
the experimental results which is plotted using a red dashed line in Fig. 2. Two attenuation bands can be observed near
700 Hz, corresponding to the elastic resonances (continuous arrow), and near 1300 Hz, corresponding to cavity resonances
(dashed arrow).

Fig. 2 shows a difference between the numerical results and data for the frequencies of the second peak (cavity
resonance shown by dashed arrow in Fig. 2). FEM model should be capable of describing any effects within the theory of
linear acoustic and solid mechanics, therefore any discrepancies between numerical results and the data are most likely to
Fig. 2. IL produced by a single U-profile. Numerical predictions (red dashed line) and experimental results (blue continuous line). Continuous (Dashed)

arrow shows the elastic (cavity) resonance peak. The insets show the geometry used in the numerical model. (For interpretation of the references to color

in this figure caption, the reader is referred to the web version of this article.)

Table 1
Physical parameters of the LDPF.

Density, rB

(kg/m3)

Young’s modulus, E

(109 Pa)

Poisson’s

ratio, n

50 0.095 0.32
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be due to the idealization of the scatterer material and possible differences in the geometry. It should be noted that the
resonances of the U-profile depend on both the aperture of the cavity and the length of its elastic lateral walls. The
observed elastic resonance is very sensitive to the length of the beams while the observed cavity resonance is very
sensitive to the area of the cavity (see Eqs. (A.3), (A.4) and (A.8) in Appendix A). This gives the possibility to tune the
frequency response of the two resonances in the long wavelength regime of the periodic medium formed using these
elements.
3.3. Infinite periodic array of U-profiles

A band structure of the periodic arrangement of U-profiles is analyzed applying Bloch periodic boundary conditions for
a unit cell. The left panel of Fig. 3 shows the band structures of a periodic arrangement of U-profiles arranged in a
triangular lattice with lattice constant a¼0.127 m. For further analysis the band structure of a SC made of rigid U-profiles
(black dashed lines) is also plotted in order to be compared with that of a periodic array of elastic U-profiles (blue
continuous lines). For the perfectly rigid U-profiles Neumann boundary conditions have been applied on the walls of the
scatterer. One can observe that the arrangement of rigid U-profiles presents the BG related to the periodicity (C1545 Hz)
as well as the stop band due to the cavity resonance (1155 Hz). However, for the SC made of elastic U-profiles (blue
continuous lines) one can observe the BG due to the periodicity (C1545 Hz) and the stop bands due to both the resonance
of the cavity (1155 Hz) and the resonance of the EB (700 Hz). The non-propagating ranges of frequencies are marked by the
black rectangles.

In order to compare the numerical results with the data, a plot has been added in the right panel of Fig. 3 showing the
measured IL of a triangular periodic distribution of elastic U-profiles along the main symmetry directions: 01 (blue line)
and 301 (red dashed line). The SC used in the experimental setup is formed by 6 rows of 10 scatterers per row. One can
observe the weak dependence of the resonances on the direction of incidence. However, as it is predicted for periodic
structures [12], the range of attenuated frequencies depends on the incident direction (it is said that different pseudogaps
appear at GX and GJ directions, being the intersection of both pseudogaps the BG of the structure). It is worth noting that
the measured IL presents a background attenuation possibly due to the losses in the material (discussed later in Section 4).
Recent works [19,20] analyze the effect of the losses of the scatterers on the band structure of the periodic systems.
Generally speaking, these losses depend on the frequency and one should analyze the complex band structures [19]
solving for the inverse problem kðoÞ. We have not considered them in the analysis of the periodic structure because the
methodology is out of the scope of the present work; however, the losses of the material are discussed in the next Section 4
showing the influence of these effects on the results shown in the work.
Fig. 3. Band structure for a periodic arrangement of U-profiles in triangular lattice with a¼0.127 m. Left panel: rigid U-profiles (black dashed line) and

elastic U-profiles (blue continuous line). The non-propagating ranges of frequencies are shaded in black.. The Brillouin zone is defined as G¼ ð0,0Þ,

X ¼ ðp,�p=
ffiffiffi
3
p
Þ, J ¼ ð4p=3,0Þ. Right panel: measured IL of a triangular array made of 6 rows of 10 U-profiles measured in the two main symmetry

directions, 01 (blue line) and 301 (red dashed line). We can observe that both the number of attenuation peaks and their position are in very good

agreement with the elastic U-profiles. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this

article.)
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3.3.1. Finite periodic array of U-profiles

The next step is to analyze a finite periodic array of elastic U-profiles arranged in a triangular lattice with lattice
constant a¼0.127 m. Here, a plane wave impinging from the left side is considered and the numerical domain is
surrounded by PML. Thus the numerical solution satisfies an approximated Sommerfeld condition.

The numerically predicted IL of a finite structure made of 6 rows of 10 U-profiles for an incident wave in the direction of
01 is shown by a blue continuous line in Fig. 4. By comparing these results with those for a single U-profile (see Fig. 2), one
can conclude that the attenuation level at the resonant frequencies of both the EB and the cavity grows as the number of
scatterers increases. Moreover, an attenuation band around the Bragg frequency (1545 Hz) appears, which is related to the
array periodicity.

The measured IL for this array is shown by open circles in Fig. 4. A good correspondence between numerical predictions
and the data can be observed. Several discrepancies between them appear around 1400 Hz. As mentioned in the previous
sections they could be due to the idealization of the scatterer material and the possible differences in the geometry.

Some works [21,22] show that resonances can be used to increase the attenuation within BG frequency range using
resonators with the resonance near Bragg’s frequency. In this work the possibility to combine Bragg’s effect with the low
frequency multiple resonances is demonstrated, so that these phenomena are well separated in frequencies.

4. Experimental results

The experimental setup as well as the experimental validation of the theoretical predictions are described in this part of
the work.

4.1. Experimental setup

The experimental results have been obtained under controlled conditions in an echo-free chamber. Data acquisition is
performed by a prepolarized free-field microphone 1/2 in Type 4189 B&K. The microphone position is varied by using a
Cartesian robot which controls the movement along the three axes (OX, OY and OZ), installed in the ceiling of the echo-free
chamber. 3D Robotized e-Acoustic Measurement System (3DReAMS) has been designed to sweep the microphone through
a 3D grid of measuring points located on any trajectory inside the chamber. The source GENELEC 8040A is used to produce
white noise. This source is an active monitoring loudspeaker designed to produce high sound pressure level output, low
coloration and broad bandwidth in a small enclosure size. When the robotized system is turned off, the microphone
acquires the temporal signal. This signal is saved on a computer and then, using the fast Fourier transform (FFT), the power
spectra, the frequency response or the sound level measurements can be obtained. National Instruments cards PCI-4474
and PCI-7334 have been used together with the Sound and Vibration Toolkit and the Order Analysis Toolkit for LabVIEW
for both the data acquisition and the motion of the robot. Fig. 5 shows the experimental setup as it is placed in our echo-
free chamber.

The analysis of wall vibrations has been performed using a miniature accelerometer B&K Type 4393. This accelerometer
is made of Titanium whose weigh is 2.2 g (1.7 percent of the weight of the U-profiles). Type 4393 of B&K is suitable for



Fig. 5. Schematic view of the experimental setup.

Fig. 6. Measured absorption and reflection coefficient of the low density polyethylene foam. The thickness of the sample is 1.3 cm.
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measurements on lightweight structures and it was used to analyze the wall vibration of the U-profile scatterers. The
typical frequency response of the Type 4393 is a flat response from 200 Hz to 18 kHz.
4.2. Material properties: absorption and reflection coefficients of LDPF

Following the standard approaches in measuring acoustic properties [23], the reflection and the absorption coefficients
of the LDPF have been experimentally derived by means of the transfer function method using an impedance tube. In this
methodology, the complex reflection coefficient is given by

Rc ¼
H12�eiks

e�iks�H12
ei2kd, (9)

where H12 is the acoustic transfer function of pressure measured at the locations of two microphones, d is the distance
between the first microphone location and the test sample, and s is the microphone spacing. Using Eq. (9) the absorption
coefficient a is defined by

a¼ 1�9Rc9
2
: (10)

The experimental reflection and absorption coefficients of the LDPE foam are represented in Fig. 6. The results obtained for
the rectangular sample of thickness 1.3 cm are similar to those obtained in the previous works [24]. It is worth noting that
according to our experimental results the acoustical properties of LDPF analyzed, these are not sensitive to a small
variation of the sample thickness.

Fig. 6 shows that LDPF presents values of the absorption coefficient around 0.2 for all the complete range of frequencies
analyzed in this work. Thus, the differences in the base line of attenuation between the numerical predicted IL and
experimental one observed in Fig. 4 could be explained by this absorption of the material.
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4.3. Single scatterer

The experimental analysis of the single LDPF scatterers has been divided into two parts, i.e. acoustic and vibrational
analyzes.

In order to observe the resonances, both the vibration of the EB and the level pressure of the acoustic field inside the
cavity of the U-profile have been measured using the accelerometer and microphone, respectively. In Fig. 7a the vibration
of the EB for two different incidence directions of the acoustic wave is illustrated. Blue continuous line represents the
vibrations of the wall of the U-profile for the incident wave in the GX direction. Red dashed line represents the vibrations
of the walls for a wave impinging in the GJ direction. The vibration of the elastic walls of the U-profiles increases at the
resonant frequencies. Fig. 7a shows the increase in the wall vibrations in the resonance region of the EB and near the cavity
resonance independently of the incident direction of the acoustic wave.

Fig. 7b shows the pressure level inside the cavity of the LDPF obtained by moving the microphone with 3DReAMS in
0.01 m steps inside the cavity. The field measured inside the cavity is similar to the one numerically obtained. The
resonance of the cavity induces the wall vibration observed in Fig. 7a (see black arrow).

At this stage we would like to point out that the height of the U-profiles is 2 m, which is much longer than the
wavelength of the resonances analyzed in this work. However, we have experimentally analyzed the frequency response of
several U-profiles of lesser height, observing always the same response in frequency. This result shows that the
consideration of our structures as 2D is a good approximation.

4.4. Periodic array

4.4.1. Dependence on the number of resonators

One can expect that both the resonant and periodic effects depend on the number of scatterers in the array. To prove it,
experiments have been carried out with six configurations, everyone with a different number of rows. The largest structure
presents 6 rows of 10 scatterers per row. The IL has been measured at the same position for all six arrays with the number
of rows ranging from one to six. Fig. 8 shows these experimental results. The colored lines represent the IL measured in a
point located 1 m away from the edge of the complete SC. The IL of a structure made of 1 row of U-profiles for 01
(respectively, 301) of incidence are shown by blue dots in Fig. 8a and b. The IL of a structure made of six rows of U-profiles
for 01 (respectively, 301) of incidence are shown by the black squared lines.

It can be observed that the peak heights of IL corresponding to both resonances, the elastic and the cavity ones, depend
on the number of cylinders in the structure. Also, in the case of only one row, where there is no periodicity in 2D, the
resonance peaks are present in the attenuation spectrum whereas Bragg’s peaks do not appear. It is interesting to note that
these structures do not present ranges of frequencies with sound reinforcement in the range of frequencies of interest.

4.4.2. Dependence on the incidence direction

One of the main characteristics of the BG produced by the periodicity of the arrays is their dependence on the incident
direction of the wave. However, it is known that the resonant effects do not depend on the incidence direction.

Here, the dependence on the frequency response of a periodic array made of U-profiles on the direction of incidence is
investigated. The IL of a complete structure for several incident directions in between the two main symmetry directions
(01 and 301) has been measured. Fig. 9 shows these experimental results.

A weak dependence of the IL peaks produced by the EB and cavity resonances can be observed in Fig. 9. However, one
can see that the behavior of the attenuation peak due to array periodicity is strongly dependent on the incidence direction.
Fig. 7. Experimental results for a single scatterer. (a) Measurements of the LDPF scatterer wall vibrations. Blue line represents 01 of incidence and red

dashed line represents 301 of incidence. (b) Sound level map measured inside the cavity for the resonant frequency f¼1104 Hz. Step Dx¼Dy¼ 0:01 m.

(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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Fig. 9. Dependence of the measured IL of the complete array on the angle of incidence. Open colored circles represent the IL for four different directions,

01, 101, 201 and 301. IL is measured 1 m away from the edge of the complete structure (6 rows of 10 cylinders per row). All the IL have been measured in a

point placed 1 m away from the edge of the biggest structure (6 rows of 10 cylinders per row). (For interpretation of the references to color in this figure

caption, the reader is referred to the web version of this article.)
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5. Locally multi-resonant acoustic metamaterial

In LRAM, the sound speed is proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
keff=reff

p
, where keff and reff are the effective bulk modulus and the mass

density, respectively. Metamaterial frequency response depends on the values of these parameters. SC made of rigid
scatterers can be considered as an acoustic metamaterial showing real and positive effective properties [7]. However, some
interesting differences can appear in LRAM with negative values of the effective parameters [4]. Depending on the values
of these effective parameters several effects can be observed [25].

In order to have a propagating plane wave inside the medium, either both keff and reff must be positive or both of them
must be negative. These two combinations give a positive effective sound speed; however, there are significant differences
between the two cases. To see these differences the relative direction of the Poynting vector with respect to the wave
vector should be analyzed. The Poynting vector for a propagating plane wave is defined as

S¼
i

2orprpn¼
9p92

k

2or : (11)

If keff and reff are both positive, the Poynting vector, S, has the same direction as k and Snell’s law is normally
accomplished. However, if keff and reff are negative, S and k have opposite directions. Physically, the negativity of both keff



Fig. 10. Field distribution at frequencies of the (a) elastic, 700 Hz, and (b) cavity, 1155 Hz, resonances. Color scale represents the pressure field and

arrows represent the particle displacement velocity field. (For interpretation of the references to color in this figure caption, the reader is referred to the

web version of this article.)
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and reff means that the medium displays an anomalous response at some frequencies such that it expands upon
compression (negative bulk modulus) and moves to the left when being pushed to the right (negative density) at the same
time. These double negative materials present unique properties, such as negative refractive index and subwavelength
focusing [8].

However, if only one of these quantities is negative, the effective sound speed is complex valued, as is the wavenumber.
Thus, when the real part of the expression for the Poynting vector is negative and sufficiently large, a frequency range
where ReðkSÞo0 is observed. A direct consequence of such behavior is the exponential wave attenuation at these
frequencies. It has been previously shown that low frequency attenuation bands can be induced by an effective bulk
modulus that becomes negative near the resonance frequencies, giving rise to exponential decay of modes [5].

In the system studied here, the stop bands at low frequencies are independent of both the angle of incidence and the
lattice constant.1 Moreover, as has been previously shown there is no transmission of waves at the resonant frequencies,
i.e. we observe two attenuation bands for the resonant frequencies. Oppositely, we have not seen negative refraction or
subwavelength imaging near the resonance. Thus, it can be concluded that, as in the case of Ref. [5], the periodic structure
made of U-profile could be described as a LMRAM with one of the effective parameters being positive and the other one
negative at the resonant frequencies.

At this stage we would like to remark that a rigorous parameter retrieval procedure similar to those developed for
electromagnetic and acoustic cases needs to be implemented to obtain the keff and reff . But since in our case the structural
units of LMRAM are comparable in size with the wavelength of the operating system (l� a), i.e. some of the resonances in
our case are not far in the long wavelength regime, such a homogenization of all properties via effective medium
parameters is difficult. However, as it has been previously done for double negative metamaterials out of the long
wavelength regime in Ref. [8], we can follow the formalism previously applied to the electromagnetic metamaterial to
phenomenologically analyze the behavior of the system [5] due to the fact that our system satisfy the requirements to be a
single negative metamaterial as it has been previously described.

The negativity of the effective bulk modulus and the effective mass density in acoustic metamaterials is related to the
monopolar and the dipolar resonances, respectively. Several acoustic metamaterials made of solid and fluid unit mixtures
were proposed to obtain simultaneously negative effective mass density and bulk modulus [26]; however, the frequency
band where the double negativity is achieved is usually very narrow. On the other hand cavity resonances similar to ones
described in this work have been used in the previous works to design acoustic metamaterials [5,27] with negative real
part of the complex valued bulk modulus at the resonance frequencies (monopolar resonance). The elastic resonances of
the U-profiles correspond to vibrations of the two EB from inside to outside the cavity being the displacement practically
monopolar. The monopolar behavior of the elastic and cavity resonances of building blocks of our system are shown in
Fig. 10. Color scale represents the pressure field and arrows represent the particle displacement velocity field. Then, due to
the fact that the negativity of the bulk modulus corresponds to monopolar resonances one can use the effective bulk
modulus to describe the LMRAM. The agreement between the predictions and the experimental results shown in Fig. 11
justify the validity of this approach for the problem considered.

The acoustic properties of a 2D SC can be mapped into an electromagnetic counterpart, where p, v, r, k correspond to
Hz, E, e, m, respectively. Following the formalism of the electromagnetic metamaterials, one can consider that the systems
behave as a metamaterial with an effective bulk modulus keff ðoÞ in the form,

k�1
eff ðoÞ ¼

XNres

j ¼ 1

E

3ð1�2nÞ

� ��1

1�
Fo2

0j

o2�o2
0jþ iGo

 !
, (12)

where F is the filling fraction, o0j represents the resonant frequencies of the LDPF scatterer, G is the dissipation loss in the
resonating elements and Nres is the number of resonances of the scatterers. In our system Nres ¼ 2 and the resonant
1 We have also experimentally observed no dependence on the height of the U-profiles.



Fig. 11. Effective properties of the LMRAM. (a) Effective bulk modulus. Imaginary part is plotted in red dashed line whereas real part is plotted in blue

continuous line. (b) Dispersion relation. (c) Transmission coefficient for a slab of metamaterial with Leff ¼ 0:549 m. (d) Measured IL of an array of

U-profiles. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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frequencies can be obtained from Eqs. (A.3) and (A.4) as

o01 ¼

ffiffiffiffiffiffi
12
p

l2x

rlxt1

EI

� ��1=2

, (13)

o02 ¼
2pcair

4ðlxþdÞ
: (14)

In Fig. 11a, the effective bulk modulus of the material is presented. Its imaginary part presents a frequency-dependent
response which is essential to explain the appearance of stop bands in the same range of frequencies.

To obtain the transmission coefficient of a slab of metamaterial with the bulk modulus defined by Eq. (12), it is
necessary to determine the effective slab thickness. The filling fraction of the structure is

F ¼

PN
i ¼ 1 Acyl

Aeff
, (15)

where N is the number of scatterers, Acyl is the area of each scatterer and Aeff is the area occupied by the slab of the
homogeneous material. For a slab composed of N scatterers of area Acyl arranged in a lattice with unit cell area Auc, the
filling fraction is given by the following equation:

Acyl

Auc
¼

NAcyl

Aeff
: (16)

For the homogenized system with the rectangular shape considered in this work (6 rows of 10 scatterers with triangular
periodicity), the effective thickness Leff is

Leff ¼ 5

ffiffiffi
3
p

a

2
: (17)

For the parameters considered in this work, Leff ¼ 0:549 m.
Finally, the effective dynamic mass density,

reff

rh

¼
rhþrs�Fðrh�rsÞ

rhþrsþFðrh�rsÞ
, (18)

where rs is the density of the scatterer and rh is the density of the host material.
It would be interesting to know the dispersion for a medium with negative elastic bulk modulus. In the low frequency

range, the real (x¼ ReðkÞ) and imaginary (y¼�ImðkÞ) parts of the bulk modulus can be related to the propagation constant
of the media as [5]

ReðkÞ ¼ �
o
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

x2þy2

r
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

q
�xÞ1=2, (19)

ImðkÞ ¼
o
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

x2þy2

r
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

q
þxÞ1=2: (20)
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Using the effective elastic bulk modulus defined in Eq. (12) the dispersion relation can be calculated making use of Eqs.
(19) and (20). In Fig. 11b, one can see the dispersion relation obtained for the effective medium. Two spectral bands of non-
propagating modes are expected in the vicinity of the resonances of the structural units.

The transmission coefficient of a slab of 0.549 m of the acoustic metamaterial has been calculated as described in [28].
In Fig. 11c, the absolute value of the transmission coefficient is shown. One can observe a reduction in transmission around
the resonant frequencies.

In Fig. 11d, IL data for a periodic array of U-profiles arranged in a triangular lattice are presented. The attenuation peaks
predicted by the effective medium approximation correspond to those observed in experiments.
6. Applications: tunable acoustic filters

Sound manipulation is perhaps the most obvious application of the structures presented in this work. In the last years
the interest has been focused on the development of high technological tools for SC acoustic filters. Sánchez-Pérez et al.
[29] suggested for the first time an acoustic barrier based on periodic arrangements of rigid scatterers to block audible
noise. It has been also shown that natural SC made of periodic arrangement of trees [30] can be used to the same purpose.
Optimization techniques [31,32] and resonant scatterers [33] as well as absorbent scatterers [34] were also introduced in
the design of these systems to improve their attenuation properties. Recently other structures have been designed
including the control of the absorption phenomena [35] as well as the control on the reflections from the ground [36].

The results shown in this work present new possibilities for technological applications due to the tunability of both the
periodicity related effects and the resonances of the system. Thus, the arrays could be used to design tunable acoustic
filters in the long wavelength regime, being possible the design of tunable SC noise barriers. However, although the SC
noise barriers could be wider and more expensive (depending on the materials) than the conventional barriers, they can be
attractive for some applications due to transparency to water and wind, tunability of their acoustical properties and
seeming aesthetically and more pleasing than the classical ones.
7. Conclusions

In summary, the resonances of a scatterer with complex geometry have been studied both theoretically and
experimentally. The analysis needs both the study of a simplified geometry in order to understand the physical origin
of the resonances and the numerical solution of the elastic–acoustic problem for the real geometry. Elastic and cavity
resonances can be supported by the U-profile scatterer giving rise to attenuation peaks in the low frequency regime of the
periodic structure. Therefore such a structure behaves as an acoustic metamaterial with multiple resonances of different
physical origin. The theoretical predictions are in good agreement with the experimental results confirming the
conclusions about the nature of each resonance. Therefore the models developed can be used to design scatterers with
desired resonant frequencies. This gives a possibility of developing periodic structures with multiple tunable stop bands in
the low frequency range.
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Appendix A. Phenomenological analysis

The complexity of the U-profile geometry motivates the following phenomenological analysis to gain some insight into
the nature of the resonances of the U-profiles. We approximate the U-profiles by simple geometries. Thus, we consider an
U-profile made of the elastic beams B1 and B2 as shown in Fig. A1. The nature of both low attenuation peaks can be
understood by analyzing the acoustical properties of basic geometrical shapes such as the rectangular elastic beam B1 and
rectangular cavity generated by the elastic beams B1 and B2. In following, the resonances of both the elastic beam (elastic
resonances) and the rectangular cavity (cavity resonance) are analyzed.
A.1. Resonances of the elastic beam

Consider a 2D elastic beam (EB) made of LDPF with length lx and width t1 (see the schematic view in Fig. A1a) and
density r. Considering that the EB is fixed at one end (thick solid line in Fig. A1a), the vibration modes can be analyzed by



Table A1

Relative difference between analytical and numerical results ððf COMSOL�f analyticÞ=f COMSOL � 100Þ.

t1l�1
x

Euler Bernoulli,

f (Hz)

COMSOL,

f (Hz)

Relative

error (%)

0.01 45.7 45.8 0.22

0.05 229 228.4 0.26

0.1 458 455 0.65

0.15 687 677 1.47

0.2 916 892.9 2.58

0.3 1373 1300.5 5.57

0.5 2289 1998.7 14.52

0.75 3434 2653.6 29.41

Fig. A1. A simplified geometry of the U-profile used in the phenomenological analysis. B1 and B2 are rectangular elastic beams.
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means of the following equation as in Refs. [37–39]:

EI
q4vðxÞ

qx4
¼�lmo2

nvðxÞ, (A.1)

where lm ¼ rlxt1 is the linear mass density of the EB, E is Young’s modulus, on is the angular frequency of the mode n

related to the frequency as on ¼ 2pf n and I is the second moment of inertia. Harmonic time dependence in the form e�ıot is
assumed. The EI product is known as flexural rigidity.

The eigenfrequencies of the EB can be obtained from the following equation:

cosðknlxÞcoshðknlxÞþ1¼ 0, (A.2)

where kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

nrlxt1=EI4
p

.
For the beam made of LDPF, the resonance frequencies of the first and second modes are f1¼693.8 Hz (k1¼28.41 m�1)

and f 2 ¼ 4348 Hz (k2¼71.12 m�1), respectively. Using Taylor’s series, it is possible to approximate the first mode as

k1C

ffiffiffiffiffiffi
124
p

lx
: (A.3)

This first low frequency is particularly interesting for this work.
For further confirmation of this analytical approximation, we have compared the results obtained for the first resonance

peak with those obtained using COMSOL for several values of width–length ratio (t1l�1
x ). These values and the relative

differences between them are shown in Table A1. For the width–length ratio less than 0.15 the Euler–Bernoulli equation
gives the resonant frequency of the EB within 1 percent of the COMSOL results.

A.2. Cavity resonances

Another interesting property of U-profiles is the cavity resonance. The effect of cavity resonators in periodic structures
has been analyzed in several publications, showing low frequency stop bands produced by Helmholtz or split-ring
resonators as well as the BG corresponding to the periodicity [40,41].

The cavity of the U-profile has dimensions equal to lx¼0.066 m and L2¼0.04 m as shown in Fig. A1. It can be assumed
for simplicity that the walls of the U-profile are perfectly rigid. Thus, Neumann boundary conditions should be applied at
the boundaries, and Dirichlet conditions at the open side of the U-profile. The solution of the eigenvalue problem gives a
fundamental mode with frequency f r ¼ cair=ð4lxÞ. However, due to the fact that the air immediately outside the end of the
cavity takes part in the acoustic oscillations, the cavity appears to be somewhat longer than its physical size. This gives rise
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to a shift of the resonance. The end correction of the cavity [42] is used to account for this effect. In order to compute the
correct resonant frequency, this effective cavity length and the corresponding frequency correction have to be considered.
A more rigorous analysis of the cavity would be required to find the exact resonant frequencies, but it has been assumed
that the resonance is affected by the end correction of the U-profile cavity as follows:

f r ¼
cair

4ðlxþdÞ
, (A.4)

where d is the end correction. The end correction obtained by Norris et al. in Ref. [42] for cylindrical rigid resonators is

dC
2aa
p

log
2

a

� �
, (A.5)

where a is the angle of the aperture of the cylindrical Helmholtz resonator and a the radius of the cavity. Taking into
account that the resonant frequency of the 2D Helmholtz resonators depends on both the area and the aperture of the
cavity, this formula has been adapted to the case of a cylindrical resonator with the same area and aperture as the U-
profile. Then the equivalent radius and aperture angle are

ae ¼

ffiffiffiffiffiffiffiffi
lxL2

p

r
, (A.6)

ae ¼ 2 arcsin
L2

2ae

� �
: (A.7)

These definitions need additional conditions that make the aperture angle ae real. The condition 9sinðae=2Þ9r1 that gives
L2r4lx=p. With this, the end correction follows:

dC
2aeae

p
log

2

ae

� �
: (A.8)

Using this approximation, the cavity of dimensions previously shown support the first resonance at f r ¼ 1155 Hz.
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[36] V. Romero-Garcı́a, J.V. Sánchez-Pérez, L.M. Garcia-Raffi, Analytical model to predict the effect of a finite impedance surface on the propagation

properties of 2D Sonic Crystals, Journal of Physics D: Applied Physics 44 (2011) 265501.
[37] E. Voltera, E. Zachmanoglou, Dynamics of Vibrations, Columbus, Charles E. Merril Books, Inc., 1965.
[38] P. Morse, K. Inghard, Theoretical Acoustics, MacGraw-Hill, New York, 1968.
[39] J. Gere, S. Timoshenko, Mechanics of Materials, 4th ed. PWS Publishing Company, Boston, 1997.
[40] A.B. Movchan, S. Guenneau, Split-ring resonators and localized modes, Physical Review B 70 (2004) 125116.
[41] X. Hu, C.T. Chan, Jian Zi, Two-dimensional sonic crystals with Helmholtz resonators, Physical Review E 71 (2005) 055601. (R).
[42] A.N. Norris, G. Wickham, Elastic Helmholtz resonators, Journal of the Acoustical Society of America 93 (2) (1993) 617.


	Multi-resonant scatterers in sonic crystals: Locally multi-resonant acoustic metamaterial
	Introduction
	Motivation
	Numerical results
	FEM model: acousto-elastic coupling
	Scattering problem
	Single scatterer

	Infinite periodic array of U-profiles
	Finite periodic array of U-profiles


	Experimental results
	Experimental setup
	Material properties: absorption and reflection coefficients of LDPF
	Single scatterer
	Periodic array
	Dependence on the number of resonators
	Dependence on the incidence direction


	Locally multi-resonant acoustic metamaterial
	Applications: tunable acoustic filters
	Conclusions
	Acknowledgments
	Phenomenological analysis
	Resonances of the elastic beam
	Cavity resonances

	References




