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Angular Band Gaps in Sonic
Crystals: Evanescent Waves
and Spatial Complex
Dispersion Relation
Phononic crystals are artificial materials made of a periodic distribution of solid scatter-
ers embedded into a solid host medium with different physical properties. An interesting
case of phononic crystals, known as sonic crystals (SCs), appears when the solid scatter-
ers are periodically embedded in a fluid medium. In SCs only longitudinal modes are
allowed to propagate and both the theoretical and the experimental studies of the proper-
ties of the system are simplified without loss of generality. The most celebrated property
of these systems is perhaps the existence of spectral band gaps. However, the periodicity
of the system can also affect to the spatial dispersion, making possible the control of the
diffraction inside these structures. In this work we study the main features of the spatial
dispersion in SCs from a novel point of view taking into account the evanescent proper-
ties of the system, i.e., studying the complex spatial dispersion relations. The evanescent
behavior of the propagation of waves in the angular band gaps are theoretically and
experimentally observed in this work. Both the numerical predictions and the experimen-
tal results show the presence of angular band gaps in good agreement with the complex
spatial dispersion relation. The results shown in this work are independent of the spatial
scale of the structure, and in principle the fundamental role of the evanescent waves
could be also expected in micro- or nanoscale phononic crystals.
[DOI: 10.1115/1.4023832]

1 Introduction

The study of wave propagation in periodic media has a long
history in the field of vibrations and acoustics [1–3]. In recent
years, after the pioneering works of Yablonovitch [4] and John
[5], who discovered simultaneously the possibilities to control the
light flow in periodic distribution of dielectric materials, an
increasing interest appeared in the analogous structures to control
both the elastic and acoustic waves using the well-known pho-
nonic crystals (PC). Several theoretical works started the analysis
of periodic arrays made of isotropic solids embedded in an iso-
tropic elastic background [6–11]. By analogy with the photonic
case, these periodic arrangements present acoustic band gaps
(BGs), defined as frequency ranges where vibrations, sound and
phonons are forbidden. A particular case of PC, is the sonic crys-
tal (SC) [12,13] which consist of solid scatterers embedded in a
fluid host medium. In this case an important simplification without
loss of generality arises in this system, which allows considering
the propagation of only longitudinal waves. SC are specially
relevant due to the experimental possibilities as for example
measurements inside the crystal.

The measurements of the sound attenuation by a sculpture,
designed by Eusebio Sempere and exhibited at the Juan March
Foundation in Madrid, constituted the first experimental evidence
of the presence of BG in a SC [12]. The work of Martı́nez-Sala
et al. [12] experimentally showed that the repetition of rigid
cylinder rods (2D), inhibited the sound transmission for certain
frequency ranges related to this periodic modulation, just as pho-
tonic crystals do with light. The subsequent theoretical predictions
[13,14] and experimental results [15] were motivated by these
experimental results in order to explain the propagation properties
of this sculpture that could filter noise.

Since these acoustical properties were measured in that mini-
malist sculpture, a great research interest, both experimental and
theoretical, have been focused on the exploitation of the particular
dispersion relation of these periodic structures revealing very
interesting physical properties, showing a resurgence of funda-
mental and applied importance in condensed matter physics. The
existence of complete elastic/acoustic BG, the possibilities of real
applications, such as elastic/acoustic filters [16], or even as noise
control devices [17,18], improvements in the design of trans-
ducers [19,20], or testing fundamental pure physics phenomena
[21–31] are several examples that motivated this growing interest.

The influence of the spatial periodicity on the spectral disper-
sion of such systems is represented by the spectral dispersion,
however it has come out that the spatial periodicity can affect not
only this temporal dispersion, but also the spatial one making pos-
sible the control of the diffraction inside the periodic structures.
Due to that, one can observe different behavior depending on the
spatial dispersion relation, i.e., on the curvature of the isofre-
quency contours [32]. The so-called self-collimation effect, due to
flat isofrequency contours, consists of the propagation of a beam
in the periodic system without apparent diffraction keeping its
original size. This phenomenon has been experimentally demon-
strated to date at different ranges of frequency for both electro-
magnetic waves [33,34] and acoustic waves [35,36] in photonic
and sonic crystals, respectively. Conversely, when the curvature
of the isofrequency contour is negative, one can observe focusing
due to the all angle negative refraction phenomenon, which has
been also observed in both electromagnetics [37,38] and acoustics
[39–41].

The previous spatial effects, the self-collimation and all angle
negative refraction, occur for connected (continuous) isofre-
quency contours, however, there are frequencies in which the iso-
frequency lines are discontinuous in the Brillouin zone, making
possible the existence of angles in which no isolines exist and, as
a consequence, there is not propagation of waves. These ranges of
angles are called angular band gaps [32,35].
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In this work we introduce the imaginary part of the relation
dispersion, traditionally not considered, to theoretically and exper-
imentally interpret the spatial dispersion in SC, specially to inter-
pret the presence of the angular band gaps. From the complex
dispersion relation, k(x), we pay attention to the existence of
evanescent waves along the angles in which angular band gaps are
predicted. Novel representation of the complex isofrequency
curves, i.e., the dependence of the real and imaginary longitudinal
component of the propagation constant versus the real and imagi-
nary transverse component, kk ¼ kkðk?Þ, are introduced in this
work to interpret the angular band gaps. Experimental results, in
good agreement with the predictions of both the multiple scatter-
ing and complex dispersion relation, are also shown here.

This work is organized as follows. First of all, in Sec. 2, we
introduce the complex dispersion relation, k(x). We will show the
procedure to represent the complex isofrequency contours (spatial
complex dispersion relation), paying attention to the case
analyzed in this work in which angular band gaps appear. After
that, Sec. 3 shows the experimental set up we use to analyze the
angular band gaps. Section 4 shows the numerical and the experi-
mental evidences of the angular band gaps, but also, in order to be
a self-consistent work the several effects of the spectral dispersion
are also briefly summarized. The concluding remarks are shown
in Sec. 5.

2 k(x) Complex Relation Dispersion

Due to the periodicity of the system, the relation dispersion has
been traditionally obtained from solving the following eigenvalue
problem using the plane wave expanssion (PWE) procedure [10]

X
~G0

ð~k þ ~GÞrkð~G� ~G0Þð~k þ ~G0Þ � x2g~kð~G� ~G0Þ
� �

p~kð~G
0Þ ¼ 0

(1)

For ~G, being the reciprocal vector and taking all the possible
values, Eq. (1) constitutes a set of linear, homogeneous equations

for the eigenvectors p~kð~GÞ and the eigenfrequencies xð~kÞ. How-

ever, this relation dispersion, xð~kÞ does not take into account the
evanescent waves, as only real values can be obtained.

However, if one solve the inverse problem, k(x), the solutions
are not necessarily forced to be real, and they could be also com-
plex, introducing the evanescent waves in the interpretation of the
dispersion relation of sonic crystals [42,43]. The inverse problem
can be formulated in terms of the extended plane wave expansion
(EPWE) as [44]
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This equation represents a generalized eigenvalue problem with
2N eigenvalues k. The complex spectral relation dispersion in an
incidence direction ~a can be obtained by solving the eigenvalue
equation for a discrete number of frequencies and then sorted by
continuity of k. However the complex spatial dispersion can be
obtained by solving the problem for a fixed frequency in all the
incident directions.

Figure 1(a) shows the real part of the band structure for the SC
we are dealing with in this work. We consider a SC with square
periodicity, which lattice constant is, a¼ 11 cm. In this case the
filling fraction is f¼ 0.1. Along with the work, we will use the
normalized units; therefore the normalized frequency is
W ¼ �a=chost. The horizontal dashed line represents the frequency
under study in this work. The imaginary part of the complex
band structures has been recently exploited to obtain the evanes-
cent properties for the spectral dispersion relation in SC
[27,31,42,44–46]. In this work we are not interested in the imagi-
nary part of the spectral dispersion relation but in the imaginary
part of the spatial dispersion relation. Figures 1(b) and 1(c) show
the real and the imaginary parts of the isofrequency contours at
the frequency under study, respectively. We notice that imaginary
isofrequency curves appear for the ranges of angles where no real
isofrequency lines are predicted. As a consequence, an angular
BG appears from the real part of the isofrequency contours and its
evanescent behavior is characterized by the imaginary part. It is
worth noting that the real part of the spatial dispersion relation
obtained using EPWE, coincides with the real part obtained using
PWE.

Due to the presence of this imaginary part of the isofrequency
contours, an exponential decay appears at this angle where decay
rate depends on the imaginary part of the value of the wave vector
(of the isofrequency contours). Thus, one can expect for finite
structures a dependence of the attenuation properties at the angu-
lar BG on the number of rows of the SC, as will be discussed
below.

3 Experimental Setup

All the experimental results shown in this work have been
measured under controlled conditions in an anechoic chamber.

Fig. 1 Analysis of the eigenvalue problem using EPWE. (a) Real part of the complex band structure
for a square array of rigid cylinders embedded in air. Horizontal dashed line represents the studied fre-
quency. Real (b) and imaginary (c) parts of the isofrequency contours at m. Analysis of the scattering
problem at the selected frequency.
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The analyzed SC is made of aluminum cylinders embedded in air,
with the same filling fraction as in the theoretical predictions
shown in Sec. 4.

All the acoustic measurements were recorded using a free-field
microphone 1=2 in. type 4189 B&K. The microphone was con-
trolled by a 3D robotized e-acoustic measurement system
(3DReAMS), which is a Cartesian robot with three axes (X, Y, Z)
installed in the ceiling of the anechoic chamber. The robot was
designed to sweep the microphone through a 3D grid of measuring
points located at any trajectory inside the echo-free chamber. The
robot includes a rotatory column installed on the ceiling of the
anechoic chamber, where the periodic arrays are hung in a frame
[47].

The National Instruments cards PCI-4474 and NI PCI-7334
together with the sound and vibration toolkit and the order analy-
sis toolkit for LabVIEW were used for both the data acquisition
and the motion of the robot. Once the robotized system is turned
off and both the acoustic source and the microphone are turned
on, the microphone acquires the temporal signal. From this tempo-
ral signal, one can obtain the power spectra, the frequency
response or the sound-level measurement.

4 Spatial Complex Dispersion

In modulated materials waves acquire different phases depend-
ing on the angles of propagation inside the periodic system
because the curvature of the complex isofrequency contours
depends on the propagating angle. This is the milestone of the
geometric interpretation of the spatial dispersion. The geometrical
interpretation of wave diffraction is as follows: wave beams of
arbitrary shape can be Fourier decomposed into plane waves,
which in propagation acquire phase shifts depending on their
propagation angles. This dephasing of the plane wave components
results in a diffractive broadening of the beams. Figure 3(a)
(below) illustrates normal diffraction in propagation through a
homogeneous material, where the longitudinal component of the
wave vector depends trivially on the propagation angle. In gen-
eral, the normal or positive diffraction means that the surfaces of
constant frequency are concave in the wave vector domain as
illustrated in Fig. 3(a). Negative diffraction, as illustrated in
Fig. 3(b), geometrically implies that the surfaces of constant

frequency are convex in the wave vector domain. The intermedi-
ate case of the vanishing diffraction is illustrated in Fig. 3(c),
where zero diffraction is supposed to occur at a particular point in
k-space where the curvature of the surfaces of constant frequency
becomes exactly zero. Zero diffraction physically means that
beams of arbitrary width can propagate without diffractive broad-
ening. Therefore, the comprehensive study of the isofrequency
surfaces provide crucial information to properly understand dif-
fraction inside crystals for sound frequencies outside the BG. This
allows the management of spatial dispersion, i.e., the diffraction
properties of narrow beams.

4.1 Negative Curvature: All Angle Negative Refraction. A
negative refraction index would allow a flat slab of a material to
behave with special properties as, for example, a left-handed
material or as a lens. Concerning periodic structures, one can
achieve negative refraction in two different ways. The first way is
based on the double negativity of the effective parameters [48,49]
in metamaterials. The other way arises from the negative curva-
ture of the isofrequency contours [37,38], in which the periodic
structure have an effective refractive index controlled by the band
structures. The properties of the SC in the range of frequencies
above the first BG, where the wavelengths are much smaller than
the lattice constant in SC, were used by Yang et al. [39] to intro-
duce the negative refractive index in the field of the SC. The
authors claim that the relationship between the phase velocity and
the wave vector in the second band suggests that both focusing
and large negative refraction phenomena may occur. The negative
refraction behavior and imaging effect in periodic structures have
been also experimentally observed [40]. Negative-refraction and
imaging effects of surface water waves by a periodic structure
were also theoretically and experimentally demonstrated recently
[50]. The anomalous features of negative refraction open the door
to a variety of applications.

It has been observed that one can also obtain imaging without
negative refraction index. At the end of the first band, near the
band edge, the band becomes curved and, as a consequence, group
velocity inside the crystal is a function of frequency. At this stage
the spatial dispersion relation is relevant. At these frequencies all-
angle negative refraction has been observed without negative
effective index around the CM (45 deg) direction. At the M point,

Fig. 2 Analysis of the scattering problem using multiple scattering theory. (a), (b), and (c) represent
the pattern of the absolute value of the pressure for a linear source, a linear source inside (in the mid-
dle of the SC) a 6 3 6 PC and a linear source inside a 16 3 16 PC, respectively. (d), (e), and (f) show the
polar profiles of the absolute value of the pressure for different radial distances from the source in
each SC.
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the curvature of the isofrequency contour (@2x=@ki@kj) is nega-
tive, i.e., the contour is convex and represents inward-pointing
group velocities. As a consequence, for frequencies corresponding
to all-convex contours, negative refraction occurs. Then, negative
refraction can be observed also in the first band where neither a
negative group velocity nor a negative effective index is a prereq-
uisite for negative refraction. The phenomenon of the all-angle
negative refraction in SC was observed, showing a strong depend-
ence on the frequency and on the incidence angles [41].

4.2 Flat Isofrequency Contours: Self-Collimation or Zero
Diffraction. The propagation of waves through a periodic system
is mainly characterized by dispersion, leading to a strong scatter-
ing of the waves in multiple directions, but there is a fascinating
effect, originally named self-collimation or subdiffraction in
which a beam propagates in the periodic system without apparent
diffraction keeping its original size. Usually, this phenomenon
appears at high propagating bands, where flat isofrequency con-
tours can be obtained. This phenomenon has been experimentally
demonstrated to date for different frequency ranges of electromag-
netic waves, in particular in the optical [33] and microwave [34]
regimes. In the acoustic counterpart, subdiffractive propagation of
sonic waves in phononic (or sonic) crystals was reported to occur
in 2D SCs [35,36]. It is worth noting that this subdiffractive sonic
beams are supported by crystals with perfect symmetry, and there-
fore do not require the presence of defects that are different from
other waveguiding phenomena previously reported. Experimental
realization of the acoustic self-collimation of an ultrasonic beam
inside a three-dimensional 3D sonic crystal was also reported. The
crystal is formed by two crossed steel cylinders structures in a
woodpile-like geometry disposed in water. Measurements of the
3D field distribution show that a narrow beam, which diffractively
spreads in the absence of the sonic crystal, is strongly collimated
in propagation inside the crystal, demonstrating the 3D self-
collimation effect.

4.3 Angular Band Gaps. In addition to BG in the band
structure (spectral dispersion relation), the periodic structure can
also modify the spatial dispersion, allowing the managing of the
diffractive broadening of beams [32,35,36]. The interaction of the
spatial spectrum of the incident wave with the isofrequency curves
of the modulated material can produce different focusing regimes
depending on the curvature of the isolines in ~k-space, one example
is the self-collimation discussed above. On the other hand, there
are angles in which no isolines exist in the ~k-space and this results
in angular BGs.

Due to the fact that there are no isolines for certain angles, no
projection of the wave vector of the incident wave on the isofre-
quency line is achieved. As a consequence, propagation is not
allowed at these angles for a given frequency. These angular BGs
have been usually interpreted with the classical isofrequency lines
obtained from the xð~kÞ relations. Figure 3(d) shows a schematic
interpretation of the angular BG. There are frequencies in which
the wave vectors of the incident wave do not reach any isofre-
quency contour, therefore this wave vector cannot excite the
Bloch mode. The region covered by the red area in Fig. 3(d) corre-
sponds to this situation, and it represents the forbidden angles
(BGs in space spectra domain), which constitutes the interest of
this section.

As in the case of spectral BGs, angular BGs exist because of
the presence of evanescent waves. In this section we study these
evanescent waves. We solve the inverted problem k(x) and we
compare both theoretically and experimentally the values of the
scattering problem in finite structures. The eigenvalue problem is
solved using the EPWE [42,43,46,51] and the scattering problem
is solved using the multiple scattering theory [52,53]. We obtain
complex isofrequency contours at angles in which angular BGs
are predicted. As we have previously discussed, due to the com-
plex value of the wavevector in periodic media, the isofrequency

contours can be represented in terms of the real and imaginary
part of ~k. The real part is related with the propagating properties
of the wave whereas the imaginary part is related with the evanes-
cent properties.

We start with the analysis of the finite structures using multiple
scattering theory. Figures 2(a)–2(c) show the maps of absolute
value of the pressure (amplitude) at W¼ 0.58 for three different
cases: (a) an isolated line source (b) a line source in the middle of
a 6� 6 SC and (c) a line source in the middle of a 16� 16 SC,
respectively. For these three cases we show in Figs. 3(d)–3(f) the
polar plots. Note that, as we increase the number of rows, there
are angles at which the attenuation increases. This can be inter-
preted by the presence of evanescent waves in such directions.

Now we recover the isofrequency contours obtained in Sec. 2.
We pay special attention to the imaginary part of the spatial dis-
persion relation. At some given directions evanescent lobes
appear, corresponding to angles in which attenuation occurs. Due
to the presence of evanescent waves, attenuation is expected to
increase as the number of rows in the SC increases.

The next step consists of comparing both Fig. 1(c) with the
insets in Fig. 2. On the one hand we observe that for angles at
which an evanescent lobe is predicted, a strong amplitude
decrease at the polar plot appears. Moreover, the larger the num-
ber of rows the deeper the trough in amplitude. On the other hand,
we can also observe a focused beam at the CM direction, due to
the convexity of the isofrequency contours at point M (as we have
explained in the previous section). Therefore, at the CM direction
a focused beam appears but around this focused beam, one can
clearly see the angular BGs.

In order to experimentally assess the presence of evanescent
waves at different directions of propagation, we use a 2D SC
composed by a square lattice of cylindrical scatterers truncated
in a triangular outer shape. The source is oriented at the CM direc-
tion (45 deg) of the crystal. The microphone positions are con-
trolled by 3DReAMs (see Sec. 3) in order to measure at the points
located in a circular trajectory around the SC. These positions cor-
respond to different directions of propagation in the crystal.

The experimental polar maps of the values of pressure for the
case of a SC made of 9 rows is shown in Fig. 4(a). This polar map

Fig. 3 Geometrical interpretation of diffraction of waves prop-
agating along the z axis (a) positive, or normal diffraction in
propagation through homogeneous materials (b) negative, or
anomalous diffraction (c) zero diffraction. The area of negligible
diffraction (for evaluation of the minimum size of the nondiffrac-
tive beam) is indicated [35]. (d) Different regimes considered: a
broad beams with spatial spectra inside the parabolic area of
the spatial dispersion curve, b beams of intermediate width,
with spatial spectra filling the full width of the isoline of the
given band, c narrow beams with the spatial spectra extending
over isolines from the neighboring bands, and thus overlapping
the band gaps in angular domain. The region denoted by d cor-
responds to the forbidden angles (band gaps in space spectra
domain). (d) Schematic representation of the angular BG.
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represents the frequency response of a finite periodic array. Each
radial line represents the sound pressure level (SPL) spectrum for
a given incidence angle. Normalized units with respect to both the
lattice constant and the host material are used in the representation
(W ¼ �a=chost). It is worth highlighting the complexity shown in
the polar map of the finite structure and how we can identify for
example the spectral band gap due to the spectral dispersion rela-
tion. But our interest in this work is focused on the spatial disper-
sion relation. In this sense, one can observe the effect of the
evanescent behavior in the direction where an angular band gap is
predicted by theory (shown by black arrows). Three different con-
figurations have been measured by removing rows of scatterers in
the crystal, 5 rows, 7 rows, and 9 rows. The angular cuts of SPL
for these three cases are shown in Fig. 4(b) using red continuous
line with red circles, blue continuous lines with blue squares, and
brown continuous lines with brown triangles, respectively. One
can see the troughs in the sound pressure level in the position of
the angular BGs. On the other hand, the decreasing of the values
of the SPL at this direction as we increase the number of rows is a
clear effect of the presence of evanescent waves. Thus, experi-
mental results show that there is a close relation between evanes-
cent waves and the presence of the angular (spatial) filtering.

5 Conclusions

The presence of the evanescent waves has been found to be of
fundamental interest to theoretically and experimentally interpret
phenomena based on the spatial complex relation dispersion, such
us the presence of angular band gaps. Then, both the propagating
(real part of the complex relation dispersion) and the evanescent

(imaginary part) properties of these systems are necessary to
explain the control of the diffraction and the diffusion of acoustic
waves with periodic structures. Finally, the properties of these
systems are independent of the spatial scale of the structure, and
as a consequence the control of phonons by means of periodic sys-
tems could be a promising area [54–57]. Therefore, in principle,
all phenomena could be observed in micro- or nanoscale phononic
(so called hypersonic [58]) crystals, and evanescent waves can
play an important role. At these scales phonons are intimately
related to thermal effects and the ideas presented in this work
could find relevance also for heat management in acoustical or
acousto-optical devices.
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Nomenclature

j ¼ bulk modulus
� ¼ frequency
W ¼ normalized frequency
q ¼ density
x ¼ angular frequency
a ¼ lattice constant

BG ¼ band gap
c ¼ sound velocity

EPWE ¼ extended plane wave expansion
f ¼ filling fraction
k ¼ wave number

MST ¼ multiple scattering theory
PC ¼ phononic crystal

PWE ¼ plane wave expansion
r ¼ radius of the scatterer

SC ¼ sonic crystal
SPL ¼ sound pressure level
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