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We study the propagation of waves in a periodic array of absorbing layers. We report an anomalous

increase of wave transmission through the structure related to a decrease of the absorption around the

Bragg frequencies. The effect is first discussed in terms of a generic coupled wave model extended to

include losses, and its predictions can be applied to different types of waves propagating in media with

periodic modulation of the losses at the wavelength scale. The particular case of sound waves in an

array of porous layers embedded in air is considered. An experiment designed to test the predictions

demonstrates the existence of the enhanced transmission band. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4902387]

Wave propagation in periodic media has become a sub-

ject of intensive study with numerous applications in differ-

ent fields. The simplest form of periodic media consist of

alternating material layers with different properties (such as

the refraction index in optics, or the density, or elasticity pa-

rameters in acoustics) forming a layered medium, also

referred as 1D crystal or superlattice. Originally formulated

to explain the propagation of electrons in solids,1 the basic

theory of wave propagation in layered media was soon

extended to optics2 and acoustics.3,4 Most of the previous

work on periodic media focused on conservative systems

where waves can be reflected (at the bandgaps), deflected,

scattered, or even localized inside the crystal. However,

waves cannot be absorbed unless dissipation is considered in

the system. While dissipation is an inherent property of all

forms of matter, little attention has been paid to its effects in

periodic media. Moreover, especially in real experiments, of-

ten one or more of the constituent materials present some

non-negligible losses in the frequency range of interest.

Light and sound waves behave in the same manner in

linear media, obeying similar wave equations. This has

inspired a number of analogies between both fields.

However, the motivation for the study of losses in acoustics

and optics may be different. In optics, where efforts are

devoted to minimize losses, dissipation in periodic systems

has been considered recently.5–10 While in Refs. 5 and 6,

absorption is reduced in a multilayered magneto-photonic

crystal; in Refs. 7 and 8, enhanced transmission through a

stack of dielectric layers having contrast only in attenuation

is reported. Extensions to two-dimensional (2D) modulation

of losses have shown to provide nontrivial light beam propa-

gation effects, analogous to flat photonic crystal lensing

reported in conservative systems.9,10 In acoustics, the situa-

tion is different, since achieving maximum absorption is of-

ten the goal. The effect of viscoelastic losses on phononic

crystals was first discussed in Ref. 11, and more recently in

Refs. 12–14, in terms of the modification of dispersion rela-

tions. Damping of elastic waves in solids phononic crystals

has also been discussed in Refs. 15 and 16. In the audible re-

gime, viscothermal losses dominate, and absorption is

mainly achieved by using resonators or porous materials.17

The behaviour of lossy periodic media for waves near Bragg

resonances is much less known than the long-wavelength

limit. In this regime, there are studies about wave propaga-

tion in acoustic absorbing media with rigid periodic inclu-

sions,18 and in 2D arrays made of absorbent19 and, absorbent

and resonant scatterers embedded in air.20 The combination

of periodicity and absorption in substructured materials pro-

duces complete absorption of sound with a broadband

response and functional for any direction of incident

radiation.21

In this work, we investigate the wave propagation within

a layered material with periodically distributed losses. We

show how the periodicity of the absorbing media can modify

the global absorption of the system as well as its reflection

and transmission properties. The main prediction is a simul-

taneous increase of transmission and reflection around the

Bragg frequency, an anomalous behavior in contrast to clas-

sical, conservative bandgaps that always result in a decrease

of transmission. First, a generic model based on the coupled-

mode theory and valid for different types of waves (light,

sound, or matter waves) and media is presented, and its

transmission/reflection characteristics are analytically deter-

mined. Next, we particularize the study to the case of sound

waves propagating in a 1D periodic structure of porous

layers embedded in air, which is theoretically and experi-

mentally examined. The anomalous of transmission band

around bandgap frequencies is experimentally observed,

showing good agreement with theory even for a minimal

number of layers.
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Waves in layered media can be studied by using differ-

ent theoretical tools. One approach very popular in photonics

is the coupled-mode theory.22 Here, we extend the theory to

include the effect of losses, and calculate its influence in the

transmission/reflection spectrum. Consider a medium formed

by a finite number of lossy parallel identical and equidistant

layers irradiated by an incident plane wave. The total field is

composed of forward and backward propagating waves

P ¼ AðxÞeikBx�ixt þ BðxÞe�ikBx�ixt þ c:c:, which amplitudes

are normalized so that their absolute square is proportional

to the energy flux in the corresponding direction. kB¼p/a is

the Bragg wavenumber (at the edge of the Brillouin zone,

being a the lattice constant of the system) and x is the fre-

quency. Forward and backward waves are coupled by the

modulation. If the contrast of impedances between layers is

small, and for frequencies near a Bragg resonance, the dy-

namics of the forward and backward waves can be approxi-

mately described by the dissipative coupled-mode equations

dA

dx
¼ iDkAþ mBþ cA;

� dB

dx
¼ iDkBþ mAþ cB;

(1)

where Dk¼ k� kB is the detuning from the Bragg wavenum-

ber, m is the coupling between forward and backward waves

which is generally complex: real for reflections from con-

servative (rigid or penetrable without losses) materials, and

imaginary for reflections from purely absorptive media. A

complex value of m allows representing any realistic mate-

rial. The coupling coefficient m is related to the impedance

mismatch between the absorber and the host medium. If the

reflection coefficient from medium 1 to medium 2 is r12 and

r21¼�r12, and considering the same acoustic thickness (or

equivalently, the optical path) d for both materials, the cou-

pling coefficient is: m¼ (r12� r21)/d¼ 2r12/d. For the case

of an acoustic wave: r12¼ (Z2�Z1)/(Z2þ Z1), where Zi

stands for the impedance of the i-th medium. Finally, c is the

gain coefficient, being negative for the case of a lossy media.

It is worth noting that c is always negative for an acoustic

media (c< 0, since there are no gain acoustic materials).

Note that the following relation holds jcj> jIm(m)j.
The solutions of Eq. (1) are exponentially growing/

decaying oscillating waves, A(x), B(x)¼ ekx, where k are the

complex eigenvalues of the matrix of the coefficients of

Eq. (1), which read

k6 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcþ iDkÞ2 þ m2

q
: (2)

For a finite system of length L, formed by N layers, trans-

mission and reflection coefficients can be obtained analyti-

cally by imposing boundary conditions at the entrance face

(x¼ 0) for the forward field, A(x¼ 0)¼ 0, and at the rear face

(x¼ L) for the backward field B(x¼ L)¼ 0. This leads to

T ¼ k

kcosh kLð Þ � cþ iDkð Þsinh kLð Þ
; (3)

R ¼ msinh kLð Þ
kcosh kLð Þ � cþ iDkð Þsinh kLð Þ

; (4)

with k given by Eq. (2) with the negative sign (physical solu-

tions of the problem).

These expressions can be used to evaluate the response

of the structure in two opposite cases: the well-known con-

servative periodic system c¼ 0 and pure real modulations

parameter and a fictional material called here purely absorp-

tive material, that is, a medium with the same real part of the

impedance as the host, but a non-null imaginary part, i.e.,

pure imaginary m and negative c. The latter case is analo-

gous to that considered for photonics in Refs. 7 and 8. As it

is well known, for conservative periodic materials, the waves

around the Bragg frequency fB¼ c/2a (being c the velocity

of the wave in the medium) are efficiently back reflected due

to Bragg resonance and transmission is correspondingly

reduced, as shown in Fig. 1(a).

However, in the case of lossy periodic media, the situa-

tion is different since the material parameters may have a

complex value due to dissipation. In the ideal case of a

purely absorbent material, we observe that an anomalous

transmission is maximum at Bragg resonance (Dk¼ 0), as

observed in Fig. 1(b). The origin of such anomalous phe-

nomenon is explained in Figs. 1(c) and 1(d), where the field

distribution along the structure is shown for both cases. For a

purely absorbent structured material, at these frequencies,

the total field within the structure partially forms a standing

FIG. 1. Transmission (solid lines) reflection (black dotted lines) and absorp-

tion (gray dotted lines) spectra for waves in a periodic structure (5 periods,

L=a¼ 5) as calculated from Eqs. (3) and (4) for (a) conservative system

(with coupling ma¼ 0.125 and no losses ca¼ 0) showing the well known

band-gaps, (b) periodic system (with pure imaginary coupling valued

ma¼ i0.125 and losses ca¼�0.2) predicting the anomalous transmission.

(c) and (d) show the total intensity at the Bragg frequency, Dk¼ 0, for the

configurations shown in (a) and (b), respectively. Grey areas represent the

absorbing material in (d).
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wave, with the nodes of the particle velocity (maximum val-

ues of the field) located precisely inside the absorbing media.

As the nodes correspond to low particle velocity, there is

few energy to be absorbed. As a consequence, such a config-

uration results in smaller absorption: both forward as well as

backward waves are less absorbed, and the overall transmis-

sion is increased as well as the absorption is reduced, as

shown in Fig. 1(b).

The coupled wave formulation presented above is inde-

pendent of the particular type of wave. Then, the coefficients

are generic and do not contain information on the physical

characteristics of the considered system. We concentrate

now in the particular case of sound waves propagating

through periodically spaced porous layers, of thickness D
embedded in a fluid media (air) being a the distance between

the center of two consecutive layers (lattice constant). This

study will be used to check the predictions of the general

model as well as to compare with experiments.

An experiment was designed to check the predictions of

anomalous transmission around Bragg frequencies. The setup

consists of a set of three to five parallel porous layers of

D¼ 8 mm thickness embedded in air, as shown in Fig. (2). The

lattice constant was chosen as a¼ 20 cm. A loudspeaker was

placed in front of the first layer in such a way that the plane

waves propagate through the system. All the measurements

were conducted in an anechoic chamber in order to avoid

unwanted reflections. The coefficients (reflection, transmission

and absorption) were calculated from the acoustic pressure

measurements registered by two microphones, in both sides of

the periodic structure. The spectral characteristics were meas-

ured using the above described experimental scheme.

Experimentally, we determined the intensity coefficients by

measuring the sound field before (reflection R) and after

(transmission T) the structure. Finally, by energy balance, the

absorption coefficient is obtained as a¼ 1� jRj2� jTj2.
We consider here the most general case in which the

frame of the porous material presents an elastic behaviour,

so Biot’s theory can be used to characterize the porous mate-

rial. The layered material used in experiments is analytically

characterized by the transfer matrix method (TMM)

described in Ref. 17. We consider that the layered structure

is laterally infinite (1D) and made of homogeneous and iso-

tropic porous layers embedded in air. We calculate the trans-

fer matrices in the porous medium where two compressional

waves and one shear wave can be supported and in the fluid

medium with only one compressional wave. All these waves

are coupled by the boundary conditions and the result is a

global transfer matrix, which gives the propagation proper-

ties of the stratified media made of N layers, and, in particu-

lar, its reflection and transmission coefficients.

In a first step, the material has been characterized.

Parameters of the material are shown in Table I. These pa-

rameters have been used to evaluate the transmission and

absorption coefficients of the porous layer using the TMM.

These properties are shown in the inset of Fig. 3(d), showing

FIG. 2. (a) Experimental setup, consisting in an array of four plates of po-

rous material; showing the source, a loudspeaker located in front of the

structure, and the microphone to measure intensity at either side of the struc-

ture. (b) View of the system from a different angle.

TABLE I. Physical parameters of the porous material used in the experi-

ments and numerics.

Densitiy (kg/m3), q 50

Porosity, / 0.97

Young’s modulus (kPa), E 150

Poisson’s coefficient 0.35

Tortuosity, a1 1

Flow resistivity, r 13 000

Characteristic length (m), K 120� 10�6

Characteristic thermal length (m), K0 200� 10�6

FIG. 3. (a)–(c) Dependence of the absorption, reflection, and transmission

coefficients on the thickness of the porous layer and on the frequency for the

stratified media, calculated with TMM for N¼ 3 layers. (d) Reflection (blue

continuous), transmission (green dashed line), and absorption (red dotted

line) of our system (corresponding to the white dashed line in (a)–(c)).

Continuous lines represent the theoretical predictions and circles represent

the experimental results. Inset shows the reflection (blue continuous line)

and absorption (red dotted line) coefficients of a single porous layer for its

characterization using the ISO-10534-2.
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that the parameters of Table I represent in good agreement

the transmission and absorption properties obtained using

the standard ISO-10534-2. We can see that the absorption of

the porous material is very low; therefore, the effective im-

pedance of the porous layer is similar to that of the air. This

situation is optimal to allow transmission with small but

enough losses to induce the anomalous properties of a lay-

ered media made of layers of this porous material.

Once the material is characterized, we use the TMM to

evaluate the properties of a layered material made of three

porous layers embedded in air. The dependence of the

absorption, a, reflection, jRj2, and transmission, jTj2, coeffi-

cients on the thickness of the porous layer, d, and on the fre-

quency, f, are shown in Figs. 3(a)–3(c), respectively. We can

observe, as predicted previously by the general coupled-

mode model, the usual increase of the reflection in the band-

gap and the anomalous increase (decrease) of the transmis-

sion (absorption) at frequencies around the band gap

(fB¼ 850 Hz (fB¼ 1700 Hz) for the first (second) band gap).

Finally, we particularize for the case we have in the ex-

perimental setup. Figure 3(d) shows the comparison between

the numerical predictions, obtained by applying the TMM

and the experimental results. As predicted, maxima of trans-

mission and reflection are observed at Bragg frequencies

and, as a consequence, at these frequencies the structure is

absorbing less energy.

We determine transmission and reflection of waves in a

general layered lossy structure and measure it experimentally

in a particular acoustic system. The study indicates the exis-

tence of spectral regions of enhanced and reduced overall

absorption with anomalous transmission around the band gap.

A simple couple mode theory is proposed to explain these

results, which is essentially a forward wave linearly coupled

with the backward wave. Depending on the character of the

systems (rigid, lossy, or complex), the coupling coefficient is

set (real, imaginary, or complex), which also captures the

above predicted and measured spectral characteristics. In

good agreement with the TMM predictions, we experimen-

tally observe that the transmission of sound waves trough a

periodic arrangement of absorbing plates is enhanced at reso-

nance. Such anti-bandgap effect is expected to be generic for

any kind of waves in a periodic modulation of losses on the

wavelength scale, at the Bragg frequency.
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