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1. Introduction

The propagation of acoustic waves through an inhomoge-
neous medium made of N obstacles or scatterers embedded 
in a fluid is a broad topic with applications in different fields 
[1, 2]. Such obstacles can be considered either as penetrable 
[3] or not penetrable [4]. Also, their spatial distribution can be 
ordered [5], as in some artificial materials as e.g. photonic or 
sonic/phononic crystals, or disordered [6], as some complex 
media found in nature as bubbly fluids or fish schools. It is 
general a complex problem involving many variables, but on 
the other hand it offers many possibilities to engineer wave 
propagation or to extract information about the medium.

During the last years, attention has been mostly paid to 
periodic systems, presenting unique dispersion properties. 
Those are mainly photonic crystals [7] for electromagnetic 
waves, sonic and phononic crystals [8, 9] for acoustic and 

elastic waves respectively, as well as periodic media for more 
exotic waves (plasmons, Bose–Einstein condensates (BECs) 
etc) have been also considered.

The paralelism with electromagnetic waves is often used 
to predict new phenomena in acoustics, based on the analogy 
between the theoretical description of both systems, since 
both waves obey, in some limits, similar scalar wave equa-
tions. It has been the case, for example, with bandgaps, nega-
tive refraction, self-collimation, etc.

Photonic cystals can be built to present low or high index 
contrast, using dielectric or metallic elements respectively. 
The former represents the case of a penetrable system, where 
waves can propagate inside the scatterer and resonate within 
it, while the latter is a case of not penetrable system, where 
the wave propagates only in the host medium. Most of the 
studies in optics have considered dielectric crystals, where 
applications based on the phenomena mentioned above have 
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been proposed. In acoustics, contrarily, the interest has been 
focused mostly on the case of rigid scatterers [10], with a high 
impedance contrast with the surrounding medium, and less 
attention has been paid to the case of penetrable scatterers. 
However, the relevance of penetrable scatterers in acoustics is 
recovering a renewed interest, where applications as enhanced 
transmission through gratings [11] or the control of waves 
using arrays of penetrable cylinders in waveguides [12] have 
been recently proposed. Special interest appears for the case 
of low contrast systems [13].

Solid scatterers can be assumed to behave as rigid elements 
for acoustic waves when its reflectivity, which depends on the 
contrast of impedances of the scatterer and the host material, 
is high. On the contrary, if the impedance contrast is low (for 
example, the case of Al in water), a substantial part of the wave 
can propagate through the scatterer, which is considered as a 
penetrable element. In acoustics, this brings some additional 
complexities. Penetrability may break the analogy with the 
case of electromagnetic waves, since as the wave penetrates 
in the solid the sound-structure interaction becomes relevant, 
and transverse waves, corresponding to vibrations modes of 
the scatterers, can be easily excited, something like that has no 
analogue in electromagnetic wave systems. As a consequence, 
the assumption of longitudinal wave propagation becomes no 
more valid, and the dispersive characteristics of the system are 
altered [14].

Strictly speaking, dealing with only scalar sound waves 
under conditions of penetrability requires the use of fluid–
fluid systems, i.e. fluid scatterers embedded in a fluid host. 
However, fluid–fluid composites present some drawbacks 
that makes them difficult to design, and are hardly realistic 
for experimental studies. There are still some proposals as 
composites made of mercury and water disposed in a boron 
nitride lattice, as presented in [9]. Another proposal consists 
of inserting a fluid inclusion into a latex bladder, but it is diffi-
cult to keep the structural integrity, and also some resonances 
can appear, arising from the elastic latex shell, that can perturb 
the properties of the system. And still a possibility is to imple-
ment such systems by porous scatterers with low absorp-
tion embedded in air, since porous materials can be treated 
as fluid-like materials over a wide range of frequencies [15]. 
However, the absorption due to the viscothermal losses, even 
being small, represents an inconvenient because they tend to 
drastically reduce the phenomena due to periodicity [16].

Here we show a physically realizable proposal to build 
a fluid-like, acoustically penetrable periodic system, over-
coming some of the limitations of the above proposal. In the 
long wavelength regime, homogenization theories applied to 
periodic arrays of rigid inclusions embedded in a fluid medium 
allow to obtain the effective properties of the composite 
[17, 18]. In this regime, a cluster of rigid cylinders embedded 
in a fluid behaves like an equivalent fluid with effective mass 
density and sound velocity determined by the filling fraction 
of the cluster with small losses [19]. In this work, we propose 
a novel acoustic structure formed by a periodic distribution of 
such fluid-like scatterers in a fluid host medium. The resulting 
composite becomes a powerful alternative to develop fluid–
fluid composites with high tunable properties of the medium 

within the penetrable scatterer. Structures based on a similar 
bottom–up approach, with an effective value of the perme-
ability in the visible spectral domain, have been recently 
reported for optical waves [20, 21].

In the first part of this work, in section 2.1, we present the 
structure made of penetrable fluid-like structures and the ana-
lytical and numerical techniques used to study its behaviour. In 
section 2.2 we analyze both the scattering and the eigenvalue 
problems of a composite, and compare with the experimental 
results with a structure designed according the discussed theo-
retical assumptions. We find a good agreement that validates 
the main hypothesis. As an example of applicability of the 
proposed structure, in the remaining sections we present the 
acoustic analogues of two photonic phenomena: the focusing 
of unlocked evanescent waves [22] in section 3 and the cou-
pled resonator waveguide [23] in section 4. Finally, the sum-
mary and conclusions of the work are discussed in section 5.

2. Acoustically penetrable sonic crystals

2.1. The penetrable structure

The proposed fluid-like structure consists of a periodic arrange-
ment of clusters (large scale (mesoscopic) scatterers) made 
of a periodic distribution of N identical rigid scatterers, all 
embedded in a fluid. In the long wavelength regime (λ > > as, 
being λ the wavelength and as the distance between the rigid 
scatterers within the cluster) the cluster can be approximated 
as a fluid-like cylinder for acoustic waves with the following 
effective properties [19]

 =
+
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c
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,
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where ρ0 and c0 are the density and sound velocity in the host 
material respectively and fs = Ss/Sc is the filling fraction of the 
cluster. Ss is the total area filled by the scatterers and Sc the 
area of the cluster. Therefore, by changing the filling fraction 
of the cluster, its mesoscopic physical properties such as the 
density and the wave velocity can be adjusted. The range of 
validity of such expressions are discussed in [19].

A possible scheme of a penetrable sonic crystal is shown 
in figure 1, where the scatterers are cylindrical clusters, each 
one formed by a small-scale periodic distribution of rigid 
square-rod scatterers. The system is embedded in a fluid. In 
this example, we have chosen the cylindrical clusters made of 
square rod scatterers, but it is worth noting that both the clus-
ters and the scatterers can present different shapes. In this kind 
of structure the periodicities at both scales are characterized 
by two different lattice constants and two filling fractions. In 
the particular case shown in figure 1 we define the lattice con-
stant, a, and filling fraction, f = π R2/a2, related to the arrange-
ment of the cluster of radius R defining the sonic crystal, and 
the lattice constant, as, and the filling fraction =f l a/s s s

2 2 
corresponding to the periodic structure of rigid square-rod 
scatterers with side length ls. If the condition a  >  >  as is 
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satisfied, the phenomena related to both scales of periodicity 
are uncoupled. Under this condition, for the range of frequen-
cies in which λ ≃ a, the mesoscopic structure behaves like a 
fluid–fluid band gap material made of fluid-like clusters which 
properties can be easily tuned by changing fs using equa-
tions (1) and (2). The main feature of the system is that it has 
double-periodicity, one in the long wavelength regime which 
determines the physical properties of the equivalent fluid of 
the clusters, and another one in the strongly dispersive regime 
that fixes the Bragg frequency and, more generally, the disper-
sion relation.

Through this work three different techniques have been 
used to evaluate the dispersion relations (eigenvalue problem) 
for different structures. We will solve both the ω (k) [24] and 
the k(ω) [25, 26] problems by means of different techniques 
based on plane wave expansion (PWE) [24–26] and finite ele-
ment methods (FEM) [27]. In the case of periodic eigenvalue 
problem, the properties of the Bloch states constrain the solu-
tion to a unit cell with Bloch vectors in the first Brillouin zone. 
On the other hand, the scattering problem by an arrangement 
of penetrable cylinders is analyzed in this work using both 
the multiple scattering theory (MST) [2, 28] and the FEM. 
Either in the eigenvalue and the scattering problems, the con-
tinuity of both the pressure and velocity at the boundary of 
each scatterer is considered. Specifically for the case of the 
scattering problem, the T matrix for the multiple scattering 
of a penetrable fluid cylinder can be obtained considering the 
propagation of wave inside the scatterer [28].

2.2. Dispersion relation and scattering

Once the basic structure is introduced, in the following we 
show, numerically and experimentally, that the periodic 
arrangement of clusters behaves like a periodic fluid–fluid 
system. Notice that the concept of penetrable sonic crystal 

shown in this work is only restricted by the condition a > > as. 
Therefore independently of the mesoscopic lattice and the 
shape of the cluster or the inner periodicity, the concept is 
valid if the condition a > > as is accomplished.

The structure presented in the previous section  is too 
complex for an experimental design, since it contains a large 
number of elements. In order to make a simpler experimental 
arrangement, using a minimum number of elements, we con-
sider a squared shape for the clusters (mesoscopic scatterers), 
while the small-scale elements (inner scatterers in the cluster) 
present cylindrical shape as shown in figure  2(a). Now the 
mesoscopic scatterer is a square cluster made of rigid, thin 
cylindrical rods with radius rs, embedded in a air. Each cluster 
is an array of 4  ×  4 rods, arranged in a square lattice with 
period as = a/5, being the filling fraction π= =f r a/ 0.4s s s

2 2 . 
We notice that at this condition, the wavelength of the Bragg 
frequency for the mesoscopic scale, governed by a, is 5 times 
bigger than that of the small inner scale, governed by as. 
Therefore, considering the limits given in the [19], the cluster 
used here is in the long wavelength regime at normalized fre-
quencies lower than 5/4. In this case, we study the behavior 
of the system up to the normalized frequency equal to 0.75. 
Then, the effective parameters of the cluster can be obtained 
from equations  (1) and (2) and the effective properties are 
ceff = 0.8452 c0 and ρeff = 2.33ρ0. Using these parameters, we 
calculated the band structure of a square periodic distribu-
tion of these effective fluid square scatterers of length side 
l = 3as + 2rs with lattice constant a (see figure 2(b)), using 
the PWE method. We use this side length l because it defines 
the surface that interacts with the incident wave. Black con-
tinuous line in figure 2(c), represents the dispersion relation, 
i.e. the band structures calculated from the unit cell shown 
in figure 2(b). They are represented in normalized units with 
respect to both the lattice constant, a, and the properties of the 
host material presenting the band gap in the range [0.41, 0.5]. 
On the other hand, using FEM, we have calculated the band 
structure of the periodic distribution of the cluster of rigid 
scatterers, i.e. using the unit cell shown in figure 2(a). Red 
circles in figure 2(c) represent this band structure showing the 
band gap at [0.41, 0.5]. By comparison of these two results 
we conclude that the periodic distribution of clusters can 
be considered as a periodic fluid–fluid system. Moreover, 
in order to highlight the differences between fluid-like, and 
rigid-fluid composites, we also represent the band structures 
obtained for the cluster being acoustically rigid (red dashed 
lines) showing the different width of the band gap ([0.33, 
0.56]) due to different contrast of impedance. Finally, for the 
sake of completeness we represent the band structure of the 
small scale periodic structure inside the cluster (blue dotted 
line), showing its linear part at low frequency regime and as 
a consequence the proof that validates its homogenization. To 
have a best comparison with respect to the band structure of 
the cluster, the Bloch vector has been normalized to as, so the 
x-axis for this band is shown in the upper horizontal axis (in 
blue), while the frequencies are normalized to the periodicity 
of the clusters, a.

The structure was designed experimentally. In particular, 
the cluster is made of aluminium cylinders of radius rs = 2 cm 

Figure 1. Scheme of the penetrable fluid–fluid system presented in 
this work. In this example we consider a two dimensional square 
array with lattice constant a and cylindrical inclusions of radius R. 
The inclusions are clusters of rigid square-rod scatterers with lattice 
constant as and length side ls.

J. Phys. D: Appl. Phys. 48 (2015) 025501
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embedded in air with an inner periodicity as = 5.5 cm. The 
periodicity of the square array of cluster is a = 5as. Details of 
the experimental set-up can be found in [6]. We have experi-
mentally and theoretically (by means of MST) evaluated the 
Insertion Loss (IL) of the structure. The IL spectrum of an 
arrangement of scatterers is obtained measuring transmitted 
sound pressure levels, with and without the sample, at the 
same point. IL is determined as

 =IL
P x

P x
20 log

( )

( )
,10

0
(3)

where P0(x) (P(x)) is the incident pressure (total pressure with 
the sample) calculated at x. In this work x = 3a to avoid the 
edge diffraction effect.

Figure 2(d) shows the theoretical (continuous blue line) 
and experimental (blue dashed line with open circles) IL of 
a periodic array of 4 × 4 clusters with a unit cell as shown 
in figure  2(a). Note the agreement, in spite of the small 
number of elements used to build the structure. We observe an 
increase of the IL at frequencies [0.39, 0.52]. This attenuation 
band is narrower than that predicted for the rigid-fluid system 
(dashed red lines in figure  2(c)) but very close to the band 
gap predicted for the fluid–fluid composite (continuous line 
in figure 2(c)). This supports the hypothesis that the periodic 
distribution of clusters of scatterers actually behaves as a peri-
odic fluid–fluid composite.

In what follows we report two acoustical phenomena which 
are expected to occur only in penetrable structures. Both have 
been discussed in the photonic case, however a realization in 
acoustic case requires of using fluid–fluid like structures as 
those proposed in this work.

3. Focusing of evanescent waves

It is commonly accepted that evanescent waves in band gaps 
lay at the edges of the Brillouin Zone (BZ), i.e. the period of 
the decaying field oscillations lock to the period of the crystal 
[5, 7]. Locking means that, as the frequency changes within 
the band gap, the real part of the wavevector remains fixed 
and takes the value at the edge of the BZ (only the phase of 
the mode is allowed to change). We recently showed [22] 
that, in photonics, besides the conventional locked evanescent 
waves, a new class of unlocked evanescent solutions exists in 
two-dimensional (2D) systems with low index contrast. The 
wave-vectors of these waves have a non zero imaginary part 
(responsible for the evanescent behaviour), but its real part 
(denoting its modulation) is not locked to the crystal but it also 
changes with the frequency within the gap. Additionally, the 
real part of wavevector shows a curved isofrequency contour, 
which has been related to different spatial effects on beam 
propagation [29–31]. Particularly, for the case of the unlocked 

Figure 2. (a) Scheme of the unit cell of 2D square array of clusters. (b) Equivalent unit cell from the effective properties of the cluster 
shown in (a). (c) Band structures in the ΓX direction. The continuous black line (red dots) represents the band structure for the equivalent 
fluid–fluid structure (for the periodic arrays of clusters). Dashed red lines represent the band structures for the case in which the clusters are 
considered acoustically rigid. Blue dotted lines represent the band structure for the periodicity inside the cluster. We note that for this case 
the Bloch vector is normalized with respect to as, so the x-axis for this band is shown in the upper axis (in blue). (d) The continuous line 
represent the theoretical IL evaluated at x = 3a of the fluid fluid composite, while open blue dots represent the experimental results.

J. Phys. D: Appl. Phys. 48 (2015) 025501
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evanescent waves one expects that beams propagating at fre-
quencies within the bandgap show focusing, in addition to 
evanescence. Therefore, these waves could be observed in a 
low contrast sonic crystal, and find its relevance in thin slabs 
of periodic materials. The goal of this section is to show the 
existence of unlocked evanescent waves in acoustics for pen-
etrable periodic structures, and to show the focusing effect 
behind thin slabs produced by the unlocked real part of the 
wave vector. We will consider the analysis of a fluid–fluid 
structure, having in mind the structure proposed in the pre-
vious section.

3.1. Complex band structures

In a recent previous work, the problem of focalization of eva-
nescent fields in a photonic crystal was discussed [22], and the 
parameters of the structure required to observe the phenom-
enon were estimated. Here we adapt the previous study to the 
acoustical case, and consider a square array of fluid cylinders 

of radius R with properties ρeff/ρ0 = 12.3 and ceff/c0 = 0.73. 
Figure 3(a) shows the solution of the ω (k) problem using PWE 
method for the system with a filling fraction f = π(R/a)2 = 0.63 
in the ΓM direction (see inset of figure 3(a)). This solution 
is shown with continuous black line, and it reveals a band 
gap in the range [0.45, 0.61] in normalized frequency units. 
Moreover, the complex band structures obtained from the 
problem k(ω), shown with blue and red dots, is a bit different. 
It is worth noting here that the overall number of bands at each 
frequency is preserved being the number of real bands equal 
to the number of imaginary ones. The complex band struc-
tures reproduce (k(ω) problem) the real-valued bands obtained 
from the ω (k) but it yields the appearance of additional 
unlocked evanescent modes in the range of frequencies [0.55, 
0.61] (shadowed area in figure 3(a)), where the real part of k 
is not constant, but depends on frequency. A careful inspec-
tion of figure 3(a) shows that at the lower part of the band 
gap the evanescent mode remains locked, while increasing 
the frequency the attenuation rates (imaginary part) of two 

Figure 3. Dispersion relation of a square periodic fluid–fluid system (ρeff/ρ0 = 12.3 and ceff/c0 = 0.73). The filling fraction is f = π 
R2/a2 = 0.63. The normalized frequency ν a/c0 and wave-vector ka/2π are depicted. (a) Complex band structures. Blue dots in left panel 
show the real part and red dots in the right panel show the imaginary part obtained using the k(ω)-methods (EPWE). For comparison, the 
continuous line in the left panel shows the band structures obtained using the ω(k)-method (PWE). Purple open circles show the band 
structures of the systems calculated with the real cluster of rigid cylinders. (b) and (c) show real and imaginary parts of the complex 
isofrequency contours respectively for the normalized frequency ν a/c0 = 0.58. Black dots represents pure real eigenvectors, while blue 
and red dots represent the real and the imaginary parts of the complex wave-vectors respectively. (d) and (e) show the pressure field in the 
unit cell for the eigenvalue of the first band at point M [(kx, ky) = (π, π)] calculated with the equivalent fluid–fluid system and with the real 
cluster of rigid cylinders, respectively.
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locked evanescent modes approach and merge, resulting in 
the appearance of an unlocked evanescent mode (shadowed 
area in figure 3(a)). This kind of evanescent modes connects 
the closest points of the dispersion curves from two adjacent 
propagation bands. However, if the frequency maxima and 
minima from both bands do not lay at high symmetry points 
of the Brillouin zone, as is the case for the locked evanescent 
waves, the modes become unlocked and cross the Brillouin 
zone as shown in figure 3(a).

Up to now, all the results have been discussed for the 
case of real fluid–fluid systems. Next, we use the periodic 
system of clusters to analyze its properties. For that, we con-
sider a composite made of a cluster of cylinders with the 
following filling fractions: f = 0.63 and fs = 0.8. The filling 
fraction f is the same as in the previous fluid–fluid system, 
shown in figure  3(a), and fs reproduces the same sound 
velocity and density ratio as for the fluid–fluid system. Using 
the square rod scatterers, arranged in a square periodicity 
inside the cluster, we construct a quasi cylindrical inclusion 
(see figure  3(e) for the unit cell) with the desired physical 
properties. At this stage, we check that the periodic distri-
bution of clusters reproduces the same properties as the 
fluid–fluid composite previously analyzed. Purple open dots 
in figure 3(a) show the band structures calculated from the 
ω (k) problem for the system made of clusters. Notice that 
the band structure calculated with the fluid–fluid composite 
and that corresponding with the periodic distribution of clus-
ters are in good agreement. The discrepancies in the second 
band around the Γ point are due to two reasons. On one hand 
the non perfect cylindrical shape of the cluster and, on the 
other hand, that the filling fraction used for the cluster is near 
to the upper limit of validity of the equations  (1) and (2). 
Figures 3(d) and (e) show the pressure field in the unit cell for 
the eigenvalue of the first band at point M [(kx, ky) = (π, π)] 
calculated with the fluid scatterer and with the cluster of rigid 
square-rod scatterers respectively. The agreement between 
the two eigen-fields is good.

In order to study the spatial effects of the non zero real part 
of the unlocked evanescent waves in the band gap, we have 
analyzed the complex isofrequency contours for the central 
frequency of the unlocked evanescent mode. As shown in 
[32], the spatially modulated materials, in addition to modify 
the temporal dispersion, are known also to modify the spatial 
dispersion (also called diffraction), allowing the managing of 
the diffractive broadening of the beams. Figures 3(b) and (c) 
show the real and the imaginary part of the complex isofre-
quency contours at the normalized frequency ν a/c0 = 0.58 
respectively. Note that the real part of the isofrequency con-
tour presents, along the ΓM (diagonal) direction, a region 
in which the curvature is positive. Positive curvatures in 
k-space (the convex case) introduce negative diffraction 
inside the periodic medium, which is afterwards compen-
sated at some distance after the crystal by normal (positive) 
diffractive propagation in the surrounding fluid [29–31]. That 
distance is the focalization distance, so the system acts as a 
flat lens. Then, waves constructed from such unlocked eva-
nescent modes can have a sufficient propagation freedom in 
order to develop curved wave-fronts. Then, we expenct that 

evanescent waves can be focused behind a thin flat–flat inter-
face slice of periodic material.

3.2. Focusing of unlocked evanescent waves

The predicted focusing of evanescent beams is now dem-
onstrated by direct numerical simulations using MST. The 
positive curvature of the real part of the isofrequency con-
tours along the ΓM direction indicates that focusing of an 
evanescent beam behind a thin fluid–fluid system can be 
expected. To observe that, we consider a line source placed 
5a from the crystal which end is placed at x = 0 and we eval-
uate the acoustic field behind several slabs with different 
number of rows.

Figures 4(a) and (b) show the acoustic pressure field, ∣p∣, 
behind two slabs with 3 and 11 rows respectively. Notice 
that in both cases the end of the crystal corresponds to 
x = 0. One can clearly see both the focusing behaviour for 
the case of 3 rows and the decay of the amplitude of the 
focus as we increase the number of rows in the crystal, obvi-
ously because the effect is mediated by evanescent waves. 
Therefore the wider the crystal is, the smaller the amplitude 
of the focus is. During the process of calculation we have 
analyzed the acoustic profile shown in figures 4(a) and (b) 
for structures made of different number of columns, i.e. for 
more extended crystal in the y-direction. We have evidenced 
that the shape of the acoustic profile for a given number of 
rows does not change with the number of columns, so the 
effect of focusing by these structures is not an edge diffrac-
tion one but arising from the phase compensation outside 
the crystal creating the focus.

Figures 4(c) and (d) show the longitudinal and transversal 
cuts for different slabs with several number of rows. Due to 
the fact that the effect is due to evanescent waves, we can 
clearly see in the plots that an increasing of the number of 
rows implies a decreasing of the magnitude of the focus. As 
shown in [34] this decay is mediated by the imaginary part 
of the Bloch mode that characterized this evanescent mode. 
For the case of the 11 rows, we cannot talk about focusing 
because the evanescent mode is already attenuated through 
propagation in the crystal. However, even with 9 rows the 
magnitude of the focus is relevant and can have an effect 
behind the crystal.

4. Coupled resonator acoustical waveguide (CRAW)

The guiding of waves in periodic structures, making use of the 
presence of the band gap, is relevant in different applications 
in electromagnetism, optics and acoustics. As an example,  
a photonic crystal waveguide, formed by a line defect inside 
the crystal, can guide the light with high transmission effi-
ciency in the sub-micron scale [7], which is very difficult 
to achieve for a dielectric waveguide. However due to the 
strong dependence of the band gap on the geometry of the 
system, the waveguiding using these mechanisms presents 
some disadvantages. A strong bend of the waveguide in the 
periodic structure implies large interior reflections and, as a 
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consequence, a reduction of the efficiency of the waveguide. 
Moreover, the path of the waveguide must follow the specific 
lattice orientation of the periodic background and should be 
embedded in a wide enough periodic media to avoid the prop-
agation loss, so the waveguide occupies much space in the 
transverse dimension [35, 36].

A different type of optical waveguide named coupled res-
onator optical waveguide (CROW) has been proposed [23].  
A CROW consists of an array of coupled resonators with high 
quality factor (Q-factor), and the guiding of light is due to 
photon hopping [37] along the successive resonators. In this 
section, we study the transmission properties of an alternative 
kind of waveguides based on the distribution of penetrable 
acoustic scatterers that use index guiding mechanism [23]. 
The waveguide is formed by aligning a 1D array of penetrable 
scatterers in a fluid medium. This can be considered as an 
acoustic analogue of the CROW, so we call the system a cou-
pled resonator acoustical waveguide (CRAW).

We analyze a 1D arrangement of fluid-like cylindrical clus-
ters f radius r = 0.4a, where a is the distance between them 
in the array (lattice constant). The properties of the clusters 
are determined by the inner filling fraction, fs  =  0.5, there-
fore ceff/chost = 0.82 and ρeff/ρhost = 3.04. These properties have 

been chosen to be in the limit of validity of equations (1) and 
(2). Whit that, the cluster present a resonance at the normal-
ized frequency ν a/c  =  0.78, which corresponds to the first 
resonant mode of the penetrable scatterer shown in the inset 
of figure 5(a).

We excite the waveguide with the acoustic field shown 
in figure 5(a) at the normalized frequency ν a/c = 0.78. The 
source is a piston-like with a radiating length of the order 
of the lattice constant of the array, a. Figure 5(b) shows the 
propagation of the acoustic field through the array of clusters. 
We can observe that the resonance is excited in all the clus-
ters producing a propagation of the acoustic field through the 
array due to the coupling of the resonators in the array. In this 
system the coupling between resonators is strongly depending 
on the distance between the scatterers because the excited 
mode has a leakage to the free space. In figure 5(c) we show 
the profile along the the x-direction at y/a = 0. Blue line cor-
respond to the case shown in the figure 5. We notice here that 
all the resonators are excited with almost the same amplitude 
along the array. Red and black lines show the cases of 1D 
arrays with the distance between scatterers equal to 4a and 8a 
respectively. We can observe that for these cases the resonant 
mode is excited in all the resonators but now the amplitude in 

Figure 4. Transmission properties of several periodic slabs of the fluid–fluid system predicted by MST. (a) and (b) show the pressure field, 
∣p∣, for two slabs of 3 rows and 11 rows. (c) and (d) show the longitudinal and transversal cuts along the x-axis and y-axis, respectively, of  
(a) for different slabs with different numbers of rows.
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each resonator is reduced along the array, producing a small 
propagation of the acoustic field as the distance between scat-
terers is bigger.

To finish this section we show the possibility of guiding a 
wave through bended paths using a CRAW. Without loss of 
generality, we analyze a waveguide that has a input at y/a = 0 
and the output is at y/a = 2 as shown in figure 5(c). Figure 5(c) 
shows the transmission through the waveguide by the activation 
of the index guiding mechanism for the first resonant frequency.

We can see in both cases that at the excitation frequency, 
the resonance of the penetrable scatterers is excited through 
the waveguide so the index guiding mechanism is activated 
and waves are transmitted through the waveguide. It is worth 
noting here that, as in the case of the optical counterpart 
(CROW), we assume sufficiently large separation between 
the individual resonators that the resonators has a weakly near 
field coupling. Consequently, we expect and we observe in 
figures 5(b) and (d) that the transmitted mode in such a cou-
pled-resonator waveguide remains essentially the same as the 
mode in a single resonator (inset in figure 5(a)). At the same 
time, the far field coupling must be taken into account which 
is the responsible of the coupling in the array analyzed in this 
section. Such coupling is based on evanescent-field coupling, 
between the individual modes to explain the transmission of 
waves. Therefore, the coupling between the scatterers strongly 
depends on the distance between them as shown in figure 5(c). 
This coupling is an analogue of the tight-binding limit in con-
densed-matter physics, [33] in which the overlap of atomic 

wave functions is large enough that corrections to the picture 
of isolated atoms are required. The individual resonators in 
our waveguide are the analogue of the isolated atoms, and the 
resonant mode in the resonators corresponds to the atomic 
wave function.

5. Concluding remarks

We have proposed a periodic structure made of penetrable 
scatterers for scalar waves, the penetrable sonic crystals. The 
approach is based on the fluid-like behaviour of a cluster made 
of rigid scatterers. These clusters have their physical proper-
ties managed by the filling fraction of the micro-structure. 
Therefore, we propose here a double periodicity composite 
made of a periodic distribution of fluid-like clusters; one peri-
odicity corresponds to large scale arrangement of the clusters, 
and the other periodicity corresponds to the small scale inside 
the cluster. Therefore the inner periodicity controls the phys-
ical properties of the fluid-like scatterer and the size and the 
distribution of the clusters the propagation properties of the 
penetrable sonic crystals. Analytical and numerical simula-
tions show that the periodic distribution of clusters embedded 
in fluid is equivalent to the case of fluid–fluid periodic system 
with penetrable scatterers. Using this main property, we show 
here that the proposed structure can be used to observe the 
presence of unlocked evanescent waves and to design a cou-
pled resonator waveguide for scalar waves. These fluid–fluid 

Figure 5. (a) Incident acoustic field at ν a/chost = 0.78. Inset shows the resonant mode of the fluid scatterer at ν a/chost = 0.78. (b) Guided 
waves at the resonant frequency, ν a/chost = 0.78, by a straight discrete distribution of 28 penetrable scatterers. (c) Longitudinal cuts of 
acoustic pressure, ∣p∣, along the x-direction at y/a = 0 for the structure analyzed in (b) (blue continuous line), and for two 1D arrays where 
the lattice constants are 4a (red line) and 8a (black line), respectively. (d) Guided waves at the resonant frequency, ν a/chost = 0.78, by a 
bended discrete distribution of 28 penetrable scatterers. Color scale in maps show the values of ∣p∣.
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systems could in practice pave the way to show several wave 
control phenomena in different branches of science and tech-
nology and extensions of this work can be developed to ana-
lyze periodic structures made of anisotropic scatterers.

Acknowledgments

We acknowledge financial support by Spanish Ministerio de 
Economia y Competitividad and European Union FEDER 
through project FIS2011-29731-C02-01 and -02. VRG is 
grateful for the financial support of the post-doctoral grant 
from the “Pays de la Loire”. ACR is grateful for the support of 
the Programa de Ayudas e Iniciativas de Investigacin (PAID) 
of the UPV.

References

 [1] Chew W C 1995 Waves and Fields in Inhomogeneous Media 
(New York: IEEE)

 [2] Martin P 2006 Multiple Scattering: Interaction of Time-
Harmonic Waves with N Obstacles (Cambridge: Cambridge 
University)

 [3] Maurel A, Mercier J-F and Felix S 2014 J. Acoust. Soc. Am. 
135 165 

 [4] Martínez-Sala R, Sancho J, Sánchez J V, Gómez V, Llinares J 
and Meseguer F 1995 Nature 378 241 

 [5] Brillouin L 1953 Wave Propagation in Periodic Structures 2nd 
edn (New York: Dover)

 [6] Romero-García V, Sánchez-Pérez J V, Garcia-Raffi L M, 
Herrero J M, García-Nieto S and Blasco X 2009 J. Acoust. 
Soc. Am. 125 3774–83

 [7] Joannopoulos J, Johnson S, Winn J and Meade R 2008 
Photonic Crystals: Molding the Flow of Light (Princeton, 
NJ: Princeton University)

 [8] Sigalas M, Kushwaha M S, Economou E N, Kafesaki M, 
Psarobas I E and Steurer W 2005 Z. Kristallogr. 
220 765–809

 [9] Pennec Y, Vasseur J O, Djafari-Rouhani B, Dobrzyski L and 
Deymier P A 2010 Surf. Sci. Rep. 65 229–91

 [10] Sánchez-Pérez J V, Caballero D, Martínez-Sala R, Rubio C, 
Sánchez-Dehesa J, Meseguer F, Llinares J and Gálvez F 
1998 Phys. Rev. Lett. 80 5325–8

 [11] Maurel A, Mercier J-F and Felix S 2013 Phys. Rev. B 
88 115416 

 [12] Cai L W, Dacol D K, Calvo D C and Orris G J 2007 J. Acoust. 
Soc. Am. 122 1340 

 [13] Maurel A and Mercier J-F 2012 J. Acoust. Soc. Am. 131 1874 
 [14] Li F-L, Wang Y-S and Zhang C 2011 Phys. Scr. 84 055402 
 [15] Allard J-F and Atalla N 2009 Propagation of Sound in Porous 

Media: Modelling Sound Absorbing Materials 2nd edn 
(London: Wiley)

 [16] Umnova O, Attenborough K and Linton C M 2006 J. Acoust. 
Soc. Am. 119 278 

 [17] Barryman J G 1980 J. Acoust. Soc. Am. 68 1809 
 [18] Mei J, Liu Z, Wen W and Sheng P 2006 Phys. Rev. Lett. 

96 024301 
 [19] Torrent D and Sanchez-Dehesa J 2006 Phys. Rev. B 74 

224305 
 [20] Rockstuhl C, Lederer F, Etrich C, Pertsch T and Scharf T 2007 

Phys. Rev. Lett. 99 017401 
 [21] Yannopapas V and Vanakaras A G 2011 Phys. Rev. B 

84 085119 
 [22] Botey M, Cheng Y-C, Romero-García V, Picó R, Herrero R, 

Sánchez-Morcillo V and Staliunas K 2013 Opt. Lett. 
38 1890–2

 [23] Yariv A, Xu Y, Lee R K and Scherer A 1999 Opt. Lett. 24 711 
 [24] Kushwaha M, Halevi P, Martnez G, Dobrzynski L and  

Djafari-Rouhani B 1994 Phys. Rev. B 49 2313 
 [25] Romero-García V, Sánchez-Pérez J and Garcia-Raffi L 2010 

J. Appl. Phys. 108 044907 
 [26] Laude V, Achaoui Y, Benchabane S and Khelif A 2009 

Phys. Rev. B 80 092301 
 [27] Ihlenburg F 1998 Finite Element Analysis of Acoustic 

Scattering (New York: Springer)
 [28] Chen Y, Ye Z 2001 Phys. Rev. E 64 036616  
  Chen Y and Ye Z 2001 Phys. Rev. Lett. 87 1843011
 [29] Notomi M 2000 Phys. Rev. B 62 10696 
 [30] Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, 

Sato T and Kawakami S 1999 Appl. Phys. Lett. 74 1212 
 [31] Pérez-Arjona I, Sánchez-Morcillo V J, Redondo J, Espinosa V 

and Staliunas K 2007 Phys. Rev. B 75 014304 
 [32] Sánchez-Morcillo V J, Staliunas K, Espinosa V,  

Pérez-Arjona I, Redondo J and Soliveres E 2009  
Phys. Rev. B 80 134303

 [33] Ashcroft N W and Mermin N D 1976 Solid State Physics 
(Philadelphia, PA: Saunders)

 [34] Romero-García V, Sánchez Pérez J V, Castiñeira Ibáñnez S 
and Garcia Raffi L M 2010 Appl. Phys. Lett. 96 1241021

 [35] Zhang M, Zhong W and Zhang X 2012 J. Appl. Phys. 
111 104314 

 [36] Escalante J M, Martínez A and Laude V 2014 J. Phys. D: 
Appl. Phys. 46 475301 

 [37] Bayindir M, Temelkuran B and Ozbay E 2000 Phys. Rev. B 
61 R11855–8

J. Phys. D: Appl. Phys. 48 (2015) 025501

http://dx.doi.org/10.1121/1.4836075
http://dx.doi.org/10.1121/1.4836075
http://dx.doi.org/10.1038/378241a0
http://dx.doi.org/10.1038/378241a0
http://dx.doi.org/10.1121/1.3126948
http://dx.doi.org/10.1121/1.3126948
http://dx.doi.org/10.1121/1.3126948
http://dx.doi.org/10.1016/j.surfrep.2010.08.002
http://dx.doi.org/10.1016/j.surfrep.2010.08.002
http://dx.doi.org/10.1016/j.surfrep.2010.08.002
http://dx.doi.org/10.1103/PhysRevLett.80.5325
http://dx.doi.org/10.1103/PhysRevLett.80.5325
http://dx.doi.org/10.1103/PhysRevLett.80.5325
http://dx.doi.org/10.1103/PhysRevB.88.115416
http://dx.doi.org/10.1103/PhysRevB.88.115416
http://dx.doi.org/10.1121/1.2747207
http://dx.doi.org/10.1121/1.2747207
http://dx.doi.org/10.1121/1.3682037
http://dx.doi.org/10.1121/1.3682037
http://dx.doi.org/10.1088/0031-8949/84/05/055402
http://dx.doi.org/10.1088/0031-8949/84/05/055402
http://dx.doi.org/10.1121/1.2133715
http://dx.doi.org/10.1121/1.2133715
http://dx.doi.org/10.1121/1.385171
http://dx.doi.org/10.1121/1.385171
http://dx.doi.org/10.1103/PhysRevLett.96.024301
http://dx.doi.org/10.1103/PhysRevLett.96.024301
http://dx.doi.org/10.1103/PhysRevB.74.224305
http://dx.doi.org/10.1103/PhysRevB.74.224305
http://dx.doi.org/10.1103/PhysRevLett.99.017401
http://dx.doi.org/10.1103/PhysRevLett.99.017401
http://dx.doi.org/10.1103/PhysRevB.84.085119
http://dx.doi.org/10.1103/PhysRevB.84.085119
http://dx.doi.org/10.1364/OL.38.001890
http://dx.doi.org/10.1364/OL.38.001890
http://dx.doi.org/10.1364/OL.38.001890
http://dx.doi.org/10.1364/OL.24.000711
http://dx.doi.org/10.1364/OL.24.000711
http://dx.doi.org/10.1103/PhysRevB.49.2313
http://dx.doi.org/10.1103/PhysRevB.49.2313
http://dx.doi.org/10.1063/1.3466988
http://dx.doi.org/10.1063/1.3466988
http://dx.doi.org/10.1103/PhysRevB.80.092301
http://dx.doi.org/10.1103/PhysRevB.80.092301
http://dx.doi.org/10.1103/PhysRevE.64.036616
http://dx.doi.org/10.1103/PhysRevE.64.036616
http://dx.doi.org/10.1103/PhysRevB.62.10696
http://dx.doi.org/10.1103/PhysRevB.62.10696
http://dx.doi.org/10.1063/1.123502
http://dx.doi.org/10.1063/1.123502
http://dx.doi.org/10.1103/PhysRevB.75.014304
http://dx.doi.org/10.1103/PhysRevB.75.014304
http://dx.doi.org/10.1063/1.4721372
http://dx.doi.org/10.1063/1.4721372
http://dx.doi.org/10.1088/0022-3727/46/47/475301
http://dx.doi.org/10.1088/0022-3727/46/47/475301
http://dx.doi.org/10.1103/PhysRevB.61.R11855
http://dx.doi.org/10.1103/PhysRevB.61.R11855
http://dx.doi.org/10.1103/PhysRevB.61.R11855

