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(Received 20 October 2015; revised 17 January 2016; accepted 14 February 2016; published online
30 June 2016)

The reflection of sound of frequency below 1 kHz, by a rigid-backed structure that contains sub-

wavelength resonators is studied in this work. In particular, only single mode reflected waves

are considered, an approximation which is accurate in this low frequency regime. A method of

analysis of absorption that uses the structure of the reflection coefficient in the complex fre-

quency plane is proposed. In the absence of losses, the reflection coefficient supports pairs of

poles and zeros that are complex conjugate and which have imaginary parts linked to the energy

leakage by radiation. When losses are introduced and balanced to the leakage, the critical cou-

pling condition is satisfied and total absorption is obtained. Examples of a slot resonator and

of multiple Helmholtz resonators are analyzed to obtain both narrow and broadband total

absorption. VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4950708]

[MRH] Pages: 3395–3403

I. INTRODUCTION

In acoustics the control of noise is of particular interest

leading to the design of new materials and structures for dif-

ferent applications: room acoustics,1 duct mufflers,2 urban

and environmental acoustics,3,4 acoustic medical devices,5

and high amplitude scattering (launch fairings,6 for exam-

ple). Among all these applications, absorption of audible

sound takes an important position since excessive noise ex-

posure becomes a major public health concern. Thus, thin

and lightweight absorbers that are both easily installed and

capable to absorb sound over a wide frequency range are

strongly desired.

Numerous works deal with the design of new struc-

tured materials to improve the sound absorption for a large

range of frequencies and different solutions have been

implemented to achieve this purpose (for a review see

Ref. 7). For audible frequencies above 1 kHz, porous mate-

rials as thin as 10 cm are excellent candidates to achieve

this goal.8 Nevertheless, most irritating noise belongs to the

low frequency regime (in audible frequencies typically

below 1 kHz), where thin porous materials are inefficient.

Structures based on sub-wavelength resonances provide an

ideal solution to design thin and low frequency absorbing

materials.

As an example, the combination of porous materials

with backed structures like tunable cavities,8 perforated

plates,9 Helmholtz resonators,10 or rigid multi-irregularities

gratings11 show excellent absorption properties in the low

frequency range. Similarly, Helmholtz resonator panels,12

panels of Schroeder diffusers combined with perforated

plates,7 perforated plates combined with tunable cavities13–15

or Helmholtz resonators,16 sonic crystals slabs with resonant

scatterers17–20 or periodic groove structures21 can be

excellent alternative solutions to achieve efficient sound

absorbing structures in the low frequency regime. A very

efficient solution is also to use micro-perforations instead of

porous materials22 or slow sound structures.23,24

In most of these applications, the common solution to

enhance the frequency broadness of the low-frequency

absorption is to build unit cells with frequency-overlapped

resonant modes (each of them with an absorption peak close

to one). So, the achievement of very efficient low-frequency,

broadband absorption is the result of a fine tuning of the

attenuation properties with resonances characteristics of the

structure that leads to the critical coupling of the resonant

modes.25–27

This work introduces the complex frequency plane of

the reflection coefficient as an efficient tool to design broad-

band acoustic absorbers in the low frequency range. Other

approaches based on the Smith chart have been used in solv-

ing problems with transmission lines or matched systems in

electronics for the radio frequency.28–30 In our case, fine tun-

ing of the losses and of the geometric characteristics of the

sub-wavelength resonators leads to the crossing of the com-

plex zeros of the reflection coefficient with the real axis

which signifies the perfect absorption condition.31 The paper

is constructed as follows: first, the simple case of a slot

which is a quarter wavelength resonator is presented. Very

simple analytical expressions of the complex zero and pole

of the reflection coefficient are derived for small radiation

leakage and small losses. Then, it is shown that the addition

of a purely resistive coating at the back of the slot can lead

to perfect absorption. Second, the case of a lossy Helmholtz

resonator (HR) loaded at the end of a waveguide is studied

using an analytical calculation for the case of the weak cou-

pling of the HR with the waveguide (perturbative regime)

and using numerical simulation for the strong coupling case.

As a result, the stronger the coupling of the HR with the

waveguide is, the broader the absorption peak is. Finally,a)Electronic mail: virogar1@mat.upv.es
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using the complex frequency plane method, a broadband per-

fect absorber is designed by arranging four properly tuned

HRs.

II. COMPLEX FREQUENCY PLANE

This section introduces the concept of the zeros and the

poles of the reflection coefficient in the complex frequency

plane as a tool to interpret the perfect absorption. It starts

with the simple case of a slot which is related with the con-

cept of coiling up space for constructing sub-wavelength

acoustic metamaterials. Then the complexity of the analysis

is increased by studying the case of the HR, widely used

in the literature of acoustic metamaterials. A toy model is

developed to obtain analytical expressions of the complex

frequencies of the zeros and poles of the reflection coeffi-

cient for these systems in the perturbative regime. The sec-

tion ends with a realistic case, considering the full

expression for the viscothermal losses in the walls of the res-

onators and adding porous materials.

A. Simple case: Slot resonator

Consider the simple case of a slot with a quarter wave-

length resonance. Since the interest is in the low frequency

regime, only single-mode reflected waves are considered. In

other words, attention is paid to the range of frequencies, f,
smaller than the cutoff frequency of the waveguide; there-

fore the problem can be considered as 1D. This one-mode

approximation allows us to illustrate with very simple ana-

lytic expressions the appearance of the zeros and poles of the

reflection coefficient. The geometry of interest is displayed

in Fig. 1(a): it corresponds both to an incident wave on a slot

of length L and section S2 at the end of a waveguide of sec-

tion S1 or to a wave normally incident on a wall with peri-

odic slots. The slot may be coiled as shown in Fig. 1(b) to

become a sub-wavelength resonator.

In this paper, the time dependence convention of the

harmonic regime is e�ixt, and it will be omitted in the fol-

lowing. A plane wave is incident from the left such that an

standing wave of the form

p ¼ eikx þ re�ikx (1)

is created in x< 0. The wavenumber is k ¼ x=c with c the

acoustic wave speed and r is the reflection coefficient.

1. Lossless case

For a rigid wall at the end of the slot p0ðLÞ ¼ 0 and thus

p0ð0þÞ=pð0þÞ ¼ k tanðkLÞ, with the prime denoting differen-

tiation with respect to x. Then, assuming a one-mode approx-

imation, the continuity conditions are pð0�Þ ¼ pð0þÞ and

S1p0ð0�Þ ¼ S2p0ð0þÞ. That leads to the expression of the

reflection coefficient,

r ¼ cot kLð Þ þ i S2=S1

cot kLð Þ � i S2=S1

: (2)

For a real frequency (k real), jrj ¼ 1 is recognized as dictated

by energy conservation. Going to the complex frequency

plane (complex k), Eq. (2) shows that r satisfies rðkÞ ¼ 1=
rð�kÞ where rðkÞ and �k represent the complex conjugate of

r(k) and k, respectively. The reflection coefficient has pairs

of poles and zeros that are complex conjugate, where the

poles have a negative imaginary part and the zeros have a

positive imaginary part. These properties are general;33 they

come from the structure of the wave equation (Helmholtz

equation) and are not dependent on the one-mode approxi-

mation used in this calculation. Note nevertheless that the

sign of the imaginary parts of poles and zeros depend on the

time convention, here e�ixt.

From Eq. (2), the poles correspond to cotðkLÞ � i S2=S1

¼ 0 and the zeros to cotðkLÞ þ i S2=S1 ¼ 0. Assuming that

the slot is thin (S2=S1 � 1), the expression of the first pole-

zero pair is given by

kLð Þpole ¼
p
2
� i

S2

S1

; (3)

kLð Þzero ¼
p
2
þ i

S2

S1

: (4)

Next pairs of pole-zero are just shifted by mp (m� 1) and

will not be regarded in the following. The complex pole of

Eq. (3) corresponds to a complex resonance frequency of the

slot with an open end at x¼ 0. The imaginary part (S2=S1)

represents the leakage due to the radiation at the open end to-

ward the exterior of the slot. With the convention of time de-

pendence used in this work, the wave at the resonance

frequency decreases as eImðxpoleÞt [where xpole ¼ ðkLÞpolec=L],

thus the decay time, sleak, can be related with the quality fac-

tor due to the leakage as,

Qleak ¼
Re xpoleð Þsleak

2
¼

Re xpoleð Þ
2Im xpoleð Þ

; (5)

where the leakage rate can be defined as Cleak ¼ 1=sleak

¼ ImðxpoleÞ. The jrj in the complex frequency plane is shown
FIG. 1. (Color online) (a) Scheme of the slot. (b) Representation of the slot

using the concept of coiling up space.
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in Fig. 2(a). According to the theory, there is a pole with

negative imaginary part and a zero which is its complex

conjugate. In the neighborhood of the pole-zero pair, r is

just given by r¼ ðkL�p=2� iS2=S1Þ=ðkL�p=2þ iS2=S1Þ.
Consequently, for real frequency (k real), although jrj ¼ 1, the

complex resonance frequency is seen as a rapid phase change

of the reflection coefficient around kL¼ p=2. The imaginary

part, which is related with the leakage rate of energy from the

slot to the surrounding space, is equal to S2=S1, and it gives

the quality factor of this rapid phase change.

2. Lossy case

Now a lossy coating at the end of the slot, such that p0ðLÞ
¼ kY0 pðLÞ where ImðY0Þ > 0 is considered. The reduced ad-

mittance Y0 has a positive imaginary part that corresponds to

the loss of the coating. By using p0ð0þÞ=pð0þÞ ¼ ðk tanðkLÞ
þ p0ðLÞ=pðLÞÞð1� tanðkLÞ=k � p0ðLÞ=pðLÞÞ, the reflection

coefficient is changed from Eq. (2) to

r ¼ cot kLð Þ � Y0 þ i S2=S1 1þ Y0cot kLð Þð Þ
cot kLð Þ � Y0 � i S2=S1 1þ Y0cot kLð Þð Þ : (6)

Because of the loss (ImðY0Þ > 0), jrj < 1 for real frequency

k. Besides, the pole-zero pair is now shifted in the complex k
plane. For thin slot and small coating (Y0 ¼ OðS2=S1Þ � 1),

the pair is given analytically by

kLð Þpole ¼
p
2
� i

S2

S1

� Y0; (7)

kLð Þzero ¼
p
2
þ i

S2

S1

� Y0: (8)

By comparing Eqs. (3) and (4) and Eqs. (7) and (8) the effect

of the lossy coating is explicit: the pole and the zero are

shifted downward in the complex frequency plane by Y0.

This shift is illustrated in Fig. 2(b) for a purely resistive ad-

mittance Y0 ¼ iA with A> 0.

From the point of view of absorption defined as

a ¼ 1� jrj2, all that has decisive consequences: the zero of r
coincides with the real frequency axis (k real) of the complex

plane when

S2=S1 ¼ ImðY0Þ: (9)

Then, there is total absorption (for a real frequency) and it

corresponds to the critical coupling where the leakage

(S2=S1) is balanced by the loss (ImðY0Þ). It is worthwhile to

emphasize here that the narrowband or broadband character

of this absorption peak is only governed by the radiation

leakage through the distance between the pole and the zero

in the complex frequency plane. The loss just shifts the pole-

zero pair [see the differences between Eqs. (3) and (4) and

Eqs. (7) and (8)].

B. Helmholtz resonator

Now, the case of a closed cylindrical waveguide filled

with air and loaded with a HR at the end of the waveguide is

considered (see Fig. 3). The waveguide has a section St,

while the HR is composed of a cylindrical neck, with section

Sn and length ln, and a cylindrical cavity, with section Sc and

length lc. As before, a plane wave is incident from the left.

Once again, the one-mode approximation is considered since

attention is paid in the range of frequencies, f, smaller than

the cutoff frequency of the waveguide. The reflection coeffi-

cient of this system reads as

r ¼ ZHR � 1

ZHR þ 1
; (10)

where ZHR is the normalized impedance of the HR with

respect to the characteristic impedance of the waveguide, Zt.

FIG. 2. (Color online) Analysis of the complex plane for the slot. (a)

Representation of the 20 logðjrjÞ in the complex frequency plane for the loss-

less case. The analyzed slot has the following parameters L¼ 25 cm, S2=S1

¼ 0:1. The dot and the star represent the zero and the pole, respectively,

obtained considering the low frequency approximation [Eqs. (3) and (4)]. (b)

Dependence of the complex frequency of the zero (continuous line) and the

pole (dashed line) on the losses added to the system. Arrows show the direction

of the trajectory of the pole as the losses are increased. Filled symbols represent

the lossless case and open symbols represent the last considered lossy case.

FIG. 3. Scheme of the system made of a HR parallel loaded to a waveguide

filled with air. The waveguide has a cross section St, while the HR is charac-

terized by a neck, with cross section Sn and length ln, and a cavity, with

cross section Sc and length of lc. Eventually, a layer of porous material of

thickness lp can be considered. The incident wave, eikx propagates in the

waveguide and reflected wave, re�ikx, is produced by the presence of the HR

and the rigid termination.
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The normalized impedance of the HR is given by the

following expression,32

ZHR ¼ i
Zn

Zt

Zc=Zn � tan kclcð Þtan knlnð Þ
Zc=Znð Þtan knlnð Þ þ tan kclcð Þ ; (11)

where Zi, ki are the characteristic impedances and wavenum-

bers of each part of the system with i¼ t for the waveguide,

i¼ n for the neck, and i¼ c for the cavity of the HRs.

1. Lossless case

In the lossless low frequency limit, one can consider

that kili � 1 and ki ¼ k ¼ x=c with Zi ¼ qc=Si (where Si

¼ pR2
i are the cross sections of each part of the system and

q the density of air). In this case the impedance of the HR

reads as

ZLF
HR ¼ ib

k2
HR � k2

k

� �
; (12)

with

b ¼ lcln

Sn

St

Sn

Sc
ln þ lc

� � ; (13)

kHR ¼
ffiffiffiffiffiffiffiffiffiffiffi

Sn

Sclcln

r
; (14)

where kHR is the resonance wavenumber of the HR and b is a

parameter related with the leakage. By substituting Eq. (12)

in Eq. (10), the following complex frequencies of the zeros,

klossless
zero , and poles, klossless

pole , of the reflection coefficient are

found

klossless
zero ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

HR �
1

4b2

s
þ i

1

2b
; (15)

klossless
pole ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

HR �
1

4b2

s
� i

1

2b
: (16)

As explained above, the zero and the pole are complex con-

jugates. The imaginary part of the complex frequency of the

pole is related with the leakage rate of energy from the reso-

nator to the waveguide defined as Cleak ¼ ImðxpoleÞ ¼ c=2b.

The real part of the complex frequency of the zero (or the

pole) is related with the resonance frequency of the system.

However, the real part of this complex resonance depends

also on the leakage between the HR and the waveguide.

Figure 4(a) represents the reflection coefficient in the

complex frequency plane for a specific HR having a small

leakage rate, i.e., weak coupling with the waveguide (see

Fig. 4 for more details). Since we study the lossless case, the

reflection coefficient in the real frequency axis is 1 for all the

frequencies. The color map shows the reflection coefficient

calculated from the whole expression of r, Eq. (10), while

the dot and star represent the zero and the pole in the low

frequency approximation from the Eqs. (15) and (16),

respectively.

2. Lossy case

The presence of losses in the system generally induces a

real part in the impedance of the system. This real part will

be introduced for example, by adding a lossy coating at the

end of the HR, as it is previously done for the case of the

slot, or by considering the viscothermal losses into the sys-

tem. Here, for simplicity, the toy model is built using a con-

stant real part, X, in the impedance of the HR [Eqs. (11) and

(12)]. In the low frequency limit, and considering weak leak-

age between the HR and the waveguide, the zero and the

pole read as

klossy
zero ¼ kHR þ i

1

2b
1� Xð Þ; (17)

klossy
pole ¼ kHR � i

1

2b
1þ Xð Þ: (18)

Figures 4(b) represents the shift of the zero of the reflection

coefficient by adding losses into the HR. Both the zero and

the pole are down shifted as shown by Eqs. (17) and (18).

Interestingly, for the case in which X¼ 1, i.e., when the im-

pedance matching is fulfilled, the zero of the reflection coef-

ficient crosses the real axis. This happens when the loss

FIG. 4. (Color online) Analysis of the complex plane for a weak coupling

between the HR and the waveguide (small leakage). (a) Representation of

the 20 logðjrjÞ in the complex frequency plane for the lossless case. The an-

alyzed HR has the following parameters St¼ 314 cm2, ln¼ 4 cm, lc¼ 6 cm,

Sn¼ 0.39 cm2, Sc¼ 9.8 cm2. The dot and the star represent the zero and the

pole obtained considering the low frequency approximation [Eqs. (15) and

(16)]. (b) Dependence of the complex frequency of the zero (continuous

line) and the pole (dashed line) on the losses added to the system. Arrows

show the direction of the trajectory of both the zero and the pole as the

losses are increased. (c) Evaluation of the absorption coefficient of three dif-

ferent configurations with different amount of losses. Symbols in the inset

of (b), i.e., blue square, red circle and black triangle represent the position of

the zero on the three configurations analyzed in (c).
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factor added to the system, X=2b, is exactly the leakage of

the HR. Once again, this is the well known critical coupling

condition. Figure 4(c) represents the absorption coefficient

for three different cases analyzing the two extreme cases of

small and large losses as well as the balanced case (critical

coupling). When the losses balance the leakage of the HR,

the imaginary part is zero and the real part coincides with

the resonant frequency of the HR producing perfect absorp-

tion. It is worth noting here that for the case X¼ 4, in which

the losses are much bigger than in the critical coupling con-

dition, this nonintuitive result is due to the non balanced

leakage with respect to the inherent losses of the system.

Now, we turn to the case of strong leakage between the

HR and the waveguide (see caption of Fig. 5 for details

about the HR parameters). In the low frequency limit, the

zero and the pole read as

klossy
zero ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

HR �
1� Xð Þ2

4b2

s
þ i

1

2b
1� Xð Þ; (19)

klossy
pole ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

HR �
1� Xð Þ2

4b2

s
� i

1

2b
1þ Xð Þ: (20)

Figure 5(a) shows the pole and zero in the complex frequency

plane in the lossless case. Note that the main difference with

respect to the case with small leakage is that now the

resonance presents larger imaginary part of the zero and the

pole. Figure 5(b) represents the shift of the zero and pole of

the reflection coefficient by adding losses into the HR. Again

for the case in which X¼ 1 the zero of the reflection coeffi-

cient reaches the real axis activating the condition of perfect

absorption. In this case, the main difference with respect

to the small leakage case is that the real part of the zero

presents a second order correction. Figure 5(c) represents

the absorption coefficient for three different cases analyzing

the two extreme cases of small and large losses as well as

the balanced case. Notice here that, as the lossless resonant

modes have more leakage than in the previous case analyzed

in Fig. 4, the absorption peaks become broader.

C. Realistic case: Lossy HR with porous material

In Sec. II B, we introduced a toy model that takes into

account the losses in the HR by adding a real, constant part

on the HR impedance. Now, we deal with a more realistic

model by considering both the viscothermal losses in the HR

and the possibility to introduce a porous layer of length lp at

the end of the cavity of the HR is considered (see gray region

in Fig. 3).

Viscothermal losses in the HR are taken into account by

considering a complex expression for the acoustic wave

number in the neck and in the cavity. The losses are modeled

by using Ref. 34, namely, the wave number and the impe-

dances are replaced by the following expressions

ki ¼
x
c

1þ j
si

1þ c� 1ð Þ=v
� �� �

; (21)

Zi ¼
qc

Si
1þ j

si
1� c� 1ð Þ=v
� �� �

; (22)

by setting si ¼ Ri=d where Ri the radius considered in each

tube and d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l=q0x

p
the viscous boundary layer thick-

ness with l being the viscosity of air. v ¼
ffiffiffiffiffi
Pr

p
with Pr the

Prandtl number at atmospheric pressure, j ¼ ð1þ iÞ=
ffiffiffi
2
p

and c ¼ 1:4 the heat capacity ratio of air. On the other hand,

the length correction of the HR is coming from the addition

of two correction lengths Dl ¼ lcorr
1 þ lcorr

2 , which are given

by35,36

lcorr
1 ¼ 0:82½1� 1:35Rn=Rc þ 0:31ðRn=RcÞ3�Rn; (23)

lcorr
2 ¼ 0:82½1� 0:235Rn=Rt � 1:32ðRn=RtÞ2

þ1:54ðRn=RtÞ3 � 0:86ðRn=RtÞ4�Rn: (24)

The length correction of Eq. (23) is due to the pressure radia-

tion at the discontinuity from the neck to the cavity of the

HR,36 while the length correction of Eq. (24) is due to the

radiation at the discontinuity from the neck to the principal

waveguide.35

The wave propagation in the porous layer will be

described by the classical Johnson, Champoux, Allard, and

Lafarge model8 that introduces the effective complex wave

number, kp, and impedance, Zp, of the porous material. The

physical parameters used in this work for the properties of

FIG. 5. (Color online) Analysis of the complex plane for a strong coupling

between the HR and the waveguide. (a) Representation of the 20 logðjrjÞ in

the complex frequency plane for the lossless case. The analyzed HR has the

following parameters St¼ 314 cm2, ln¼ 4 cm, lc¼ 30 cm, Sn¼ 6.3 cm2,

Sc¼ 157 cm2. The dot and the star represent the zero and pole obtained con-

sidering the low frequency approximation [Eqs. (19) and (20)]. (b)

Dependence of the complex frequency of the zero (continuous line) and the

pole (dashed line) on the losses added to the system. Arrows show the direc-

tion of the trajectory both of the zero and the pole as the losses are

increased. (c) Evaluation of absorption coefficient of three different configu-

rations with different amount of losses. Symbols in the inset of (b), i.e., blue

square, red circle, and black triangle represent the position of the zero on the

three configurations analyzed in (c).
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air (viscosity g, specific heat ratio c, Prandtl number Pr,

static pressure of the fluid at rest P0 and kinematic viscosity

of air, l) and for the macroscopic parameters of the porous

medium (porosity /, tortuosity a1, air flow resistivity r, vis-

cous characteristic length K, and thermal characteristic

length K0) are shown in Table I. These parameters corre-

spond to Glass wool.8,37

With all the previous elements, the normalized imped-

ance of the HR with the layer of porous material, can be

obtained as

ZHRP¼ i
Zn

Zt

�
1�Zc

Zp
tctp�

Zn

Zc
tntc�

Zn

Zp
tptn�kDlZn

tc

Zc
þ tp

Zp

� �

tn�
Zc

Zp
tctptnþ

Zn

Zc
tcþ

Zn

Zp
tp�kDlZn

tctn
Zc
þ tptn

Zp

� � ;
(25)

where the notation ti ¼ tanðkiliÞ with i ¼ n; c; t; p is used.

Notice that Eq. (11) is recovered by setting lp¼ 0 m (no po-

rous material) and Dl¼ 0 m (no length correction).

By using Eq. (25), the reflection coefficient is evaluated

in the complex frequency plane. Figure 6(a) represents the

pole and the zero of the reflection coefficient by considering

only the viscothermal losses in the problem, i.e., by consid-

ering lp¼ 0 m. For the chosen HR (see Fig. 6 for more

details), the viscothermal losses are not enough to shift the

zero to the real axis and produce perfect absorption. Thus, an

additional amount of losses have to be added, for example,

by adding porous material, to reach the perfect absorption.

Figure 6(c) shows the trajectory of the zero (continuous line)

and the pole (dashed line) as the thickness of the porous

layer is increased. The configuration at which the zero is

in the real axis, the complex frequency plane is shown in

Fig. 6(b). In this case the analysis is out of the perturbative

regime, therefore the trajectories of the zero and pole in the

complex plane are more complicated than the ones obtained

with the toy model in Sec. II B 2.

The real part of the impedance that is responsible for the

losses in the system can be defined as X ¼ ReðZðHRPðxzÞÞÞ.
Figure 6(d) represents the absorption coefficient for the case

without porous material (dashed line), for the perfect absorp-

tion (red continuous line) and for a case with large losses

(more than the needed ones for the perfect absorption).

Again, the condition X¼ 1 is accomplished for the perfect

absorption case.

III. BROADBAND ABSORPTION BY COUPLING
PERFECT ABSORPTION PEAKS

This section describes the possibility to design broad-

band absorbers by using multiple critically coupled resonan-

ces. In particular, a structure analogous to the one used in

Sec. II, but now having four HRs loaded to the cylindrical

closed waveguide is considered. A side view of the setup is

shown in Fig. 7. In this system the total impedance can be

obtained by

1

Ztotal

¼
X4

n¼1

1

Zn
HRP

; (26)

where Zn
HRP is the impedance of nth HR with a porous layer,

given by Eq. (25).

In addition to the 1D model previously discussed, this

section also shows 3D numerical simulations using finite

element method (FEM). In the FEM model, the effective

expressions for the complex wavevectors and impedances

of each part of the system are used to take into account

the viscothermal losses in both the HR and the porous layer.

The waveguide and the HRs are considered acoustically

rigid using the Neumann boundary condition. A plane wave

traveling from the left to the right in the waveguide is also

considered. The 3D domain has been meshed with 5456

TABLE I. Properties of air and macroscopic properties of porous layer

(meter–kilogram–second system).

Air properties at normal conditions

Macroscopic parameters of the

porous material

g 1.983 10�5 kg/m s / 0.7

c 1.4 a1 1

Pr 0.702 r 1 100 000 Nm�4s

P0 101 320 N/m2 K 10 10�6 m

l 15.68 10�6 m2/s K0 20 10�6 m

FIG. 6. (Color online) Analysis of the complex plane for a realistic case. The

analyzed HR has the following parameters St¼ 314 cm2, ln¼ 1.5 cm, lc¼ 8 cm,

Sn¼ 0.57 cm2, Sc¼ 9.8 cm2. (b) Representation of the 20 logðjrjÞ in the com-

plex frequency plane only considering the viscothermal losses, (lp¼ 0 mm,

X¼ 0.37). (b) Representation of the 20 logðjrjÞ in the complex frequency plane

for the critical coupled case, (lp¼ 7.75 mm, X¼ 1). (c) Trajectories of the zero

(continuous line) and of the pole (dashed line) in the complex frequency plane

as the porous layer increases. (d) Evaluation of the absorption coefficient

for different configurations. Dashed line represents the case without porous

material, therefore considering only the viscothermal losses in the tubes.

Continuous line corresponds to the critically couple case, with a porous layer

of lp¼ 7.75 mm. Dot dashed line represents the case with large losses in the

system introduced by a porous layer of lp¼ 2 cm.
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tetrahedral elements. Continuity of the pressure and of the

velocity fields is imposed at the interfaces of the porous ma-

terial and in each change of section in the system. The reflec-

tion coefficient is obtained directly from the numerical

analysis, and then it is used to evaluate the absorption coeffi-

cient which is compared with the one calculated using the

1D analytics.

The dimensions of the HR used in this work are shown

in Table II. They are chosen to have their resonant frequen-

cies between 300 and 600 Hz. Dashed line and open circles

in Fig. 8(a) represent the analytical and numerical absorption

coefficient, respectively, for the whole system considering

only the viscothermal losses of the HRs without porous ma-

terial. In this case, the resulting absorption of the structure is

not efficient.

Following the previous procedure, the right amount of

porous materials is added to have each HR individually crit-

ically coupled (see Fig. 8 for more details). Then, the whole

structure is considered (with all the four HRs side loaded)

and the reflection coefficient is calculated in the complex

frequency plane. The distribution of the zeros of the reflec-

tion coefficient is plotted in Fig. 8(b). For this case, Fig. 8(a)

shows the analytical (dot dashed line) and numerical

(crosses) absorption coefficient. Perfect absorption peaks are

present at the frequencies at which the zeros lie at the real

frequency axis. The slight differences between the numerical

results and the analytical ones are basically due to two

effects. On one hand, the impedance of the Helmholtz reso-

nators used in the analytical model considers an approxi-

mated length correction, which depends on the geometry of

the resonator. However, the numerical model considers the

real geometry and this can introduce discrepancies with

respect to the approximated length correction used in the an-

alytical model. On the other hand, the theory considered

here does not take into account the direct interaction of the

HRs due to the evanescent coupling but only the indirect

through their interference at the waveguide. This direct cou-

pling is inherently considered in the numerical model, so this

could also introduce some differences with respect to the

theory.

The interaction of the HRs through the interference in

the waveguide can be interpreted in the complex frequency

plane as an interaction of the poles of the reflection coeffi-

cient. Recently, this kind of interference between HRs has

been used to generate resonances with high quality factor

that can be used to control the acoustic absorption in 1D

scattering systems.27 It is worth it mention here, that the four

zeros of the reflection coefficient of the proposed structure

TABLE II. Dimensions of HRs and of the porous material for the broadband

absorption. The radius of the waveguide is St¼ 314 cm2.

HR 1 HR 2

ln1 Sn1 lc1 Sc1 ln2 Sn1 lc2 Sc2

1.5 cm 0.57 cm2 8 cm 9.8 cm2 2.3 cm 1.6 cm2 10 cm 9.8 cm2

HR 3 HR 4

ln3 Sn3 lc3 Sc3 ln4 Sn4 lc4 Sc4

4 cm 6.6 cm2 9 cm 9.8 cm2 5 cm 5.7 cm2 8.7 cm 9.8 cm2

FIG. 8. (Color online) Analysis of the system with four HRs. (a) Absorption

coefficient analytically (lines) and numerically (symbols) calculated for

each case. Dashed line and open circles represent the absorption coefficient

for the configurations without porous material. Dot dashed line and crosses

represent the absorption coefficient for the configurations with the 4 HR crit-

ically coupled individually. Continuous and open squares represent the

absorption coefficient for the case with the 4 HR critically coupled simulta-

neously covering a broadband range of frequencies. (b) Representation of

20 log jrj in the complex frequency plane for the case with the each HR crit-

ically coupled individually. In this case the thickness of the porous layer for

each HR are lp1¼ 0.65 cm, lp2¼ 1.15 cm, lp3¼ 1.3 cm, lp4¼ 3.3 cm. White

continuous line represents the trajectory of the zero in the complex fre-

quency plane as the thickness of the porous material is increased. (c)

Representation of 20 log jrj in the complex frequency plane for the case with

broadband absorption with the 4 HRs simultaneously critically coupled. In

this case the thickness of the porous layer for each HR are lp1¼ 0.65 cm,

lp2¼ 1.15 cm, lp3¼ 1.5 cm, lp4¼ 1.9 cm. White continuous line represents

the trajectory of the zero in the complex frequency plane as the thickness of

the porous material is increased. The pressure distributions at the frequen-

cies with the perfect absorption are shown in Fig. 9.

FIG. 7. (Color online) Setup made of 4 HR resonator loaded to a

waveguide.

J. Acoust. Soc. Am. 139 (6), June 2016 Romero-Garc�ıa et al. 3401



are still on the real frequency axis at the same position as if

they were isolated, therefore preserving the perfect absorp-

tion condition. This means that the resonance frequency of

each resonator is separated enough from its neighbor reso-

nance which results in a weak interaction between them.

However, the zero that corresponds to the HR4 is out of the

frequency range of our interest. By decreasing the porous

material in the HR4, its resonance is shifted to the one of the

HR3. Then, one can make use of the interaction between

them to have both zeros of the reflection coefficient in the

real frequency axis. In more details, as shown in Sec. II (see

Fig. 6) if the amount of porous material is increased

(decreased) in the resonator, the real part of the zero of the

reflection coefficient increases (decreases). Then, if the

amount of porous material in HR4 is reduced, its resonant

frequency will be shifted to the one of the HR3 and can acti-

vate its interaction. First, the trajectory of the zero of the

reflection coefficient is analyzed for the case of HR4 side

loaded alone to the waveguide. Continuous line in Fig. 8(b)

shows the trajectory of the zero of the HR4 when it is iso-

lated from the rest HRs. The arrows show the direction of

the trajectory as the porous material is reduced in the HR4. It

is worth noting here that the zero of the reflection coefficient

of the isolated HR only crosses the real axis at the frequency

where it is critically coupled, in good agreement with the

zero of the reflection coefficient of the whole configuration.

In order to understand the interaction between HR3 and

HR4, the trajectory of the zero of the reflection coefficient

that corresponds to the HR4, when all the four HRs are pres-

ent in the structure, is analyzed [see the continuous line in

Fig. 8(c)]. Arrows represent the direction of the trajectory of

the zero of the reflection coefficient as the porous material is

reduced. Interestingly, as the zero of the HR4 approaches the

zero of the HR3, instead of going away from the real axis, it

goes back and crosses again the real axis, activating the per-

fect absorption condition close the to resonance frequency of

the HR3. If the reflection coefficient is calculated for the

configuration considering the amount of losses in HR4 that

produces this crossing near the resonance of the HR3, it

results in the color map of Fig. 8(c) (see inset of Fig. 8 for

more details about the geometry). It is worth noting here that

the presence of HR4 also influences the behavior of HR3, so

its losses have also to slightly be modified in order to have

the four zeros in the real frequency axis. Figure 8(a) shows

the analytical (continuous line) and numerical (open squares)

absorption coefficient showing the perfect absorption at the

frequencies where the zeros are in the real frequency axis.

Thus, the overlap of the four perfect absorption peaks pro-

ducing a broadband absorption in the frequency range of

interest.

In order to visualize the interaction between the HR3

and the HR4, the acoustic field distribution, jpj inside the

structure at the frequencies of the perfect absorption peaks is

analyzed. Figure 9(a)–9(d) show the acoustic field at the fre-

quencies of the four peaks in the absorption. For the first and

second peak, most of the acoustic field is concentrated in the

HR1 and HR2, respectively. This proves the weak coupling

of the HRs around these frequencies. Thus, in order to

achieve perfect absorption, one can consider these HRs as if

they were isolated. However, looking the acoustic field dis-

tribution, jpj, around the third and fourth peak, see Figs. 9(c)

and 9(d), one can observe that there is a stronger coupling

between these HRs since the acoustic field is not only con-

centrated in the HR3 or in the HR4. At these frequencies,

and due to the geometry of the HR3 and HR4, there is stron-

ger coupling between these HRs with the waveguide. In this

case, as in the discussion of Eq. (5), the quality factors are

small which represent resonances that have larger leakage.

This leads to stronger interferences and to an indirect cou-

pling between them.

IV. CONCLUSIONS

The design of broadband and efficient absorbers in the

low frequency regime is strongly desired. A plethora of con-

figurations have been proposed during the last years, using

ideas from the field of acoustic metamaterials and in particu-

lar, using different sub-wavelength resonators, such as coiled

slots or Helmholtz resonators (HRs). However, in most of

the cases, the obtained configurations were designed only

considering the resonant frequency and after that the absorp-

tion coefficient is evaluated. In this work, using simple struc-

tures and a method of analysis of absorption using the

complex frequency plane, the main mechanisms that can

lead to perfect and broadband absorption for the problem of

low frequency reflection by rigid backed structures are

revealed. It is shown that ignoring losses, the reflection coef-

ficient has pairs of pole and zero that are complex conjugate

and which have imaginary parts linked to the leakage by

radiation. When losses are introduced and balanced by the

leakage, critical coupling occurs and leads to total absorption

peak. The broadness of this peak is directly related with the

strength of the leakage. Once the main mechanisms that lead

to single perfect absorption peak are revealed, more compli-

cated structures with multiple critically coupled sub-

wavelength resonators are designed. Another important

mechanism is revealed in this case, the possible coupling

between HRs. Taking all these mechanisms into account,

FIG. 9. (Color online) Acoustic field distribution, jpj, for the resonances of

each HR represented in the case of Fig. 9(c). Acoustic field distribution at

frequencies (a) 316, (b) 380, (c) 463, and (d) 554 Hz.
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efficient broadband absorbers in the low frequency regime

are obtained.
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