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1LUNAM Université, Université du Maine, CNRS, LAUM UMR 6613, Av. O. Messiaen,
72085 Le Mans, France
2Instituto de Investigación para la Gestión Integrada de zonas Costeras,
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This work theoretically analyzes the sound absorption properties of a chirped
multi-layer porous material including transmission, in particular showing the broad-
band unidirectional absorption properties of the system. Using the combination
of the impedance matching condition and the balance between the leakage and
the intrinsic losses, the system is designed to have broadband unidirectional and
quasi perfect absorption. The transfer and scattering matrix formalism, together
with numerical simulations based on the finite element method are used to demon-
strate the results showing excellent agreement between them. The proposed sys-
tem allows to construct broadband sound absorbers with improved absorption
in the low frequency regime using less amount of material than the complete
bulk porous layer. © 2016 Author(s). All article content, except where other-
wise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4971274]

I. INTRODUCTION

Absorption is a major issue in acoustics and wave physics in general. The design of a perfect
absorber is not a trivial matter since a twofold problem should be tackled. On one hand, the absorbent
should present a perfect impedance matching in order to eliminate the sound reflection and, on
the other hand, it should also have the amount of losses to absorb the energy of the wave without
changing the impedance matching condition. More precisely, one can consider a perfect absorber as
a lossy material that absorbs all the incoming waves (independent of its frequency and the impinging
direction), whose impedance perfectly matches the surrounding media, avoiding the reflection. Perfect
absorption (PA) is recently receiving an increasing interest.1–6

Chirped or graded materials are widely used in the wave physics community due to their pos-
sibilities to manipulate the wave propagation. These artificial materials are emerging as promising
tools for potential applications in several branches of research and technology.7 Several applications
for focusing,8,9 trapping,10–12 bending waves,13 opening of wide full band gaps14 and controlling
the spatial dispersion beams in reflection15 have been developed. Recently, some of us presented a
system with acoustic wave enhancement due to the progressive decrease of the group velocity along
the propagation direction.11,16 Chirped structures have also been used as efficiently absorbers. In the
electromagnetic counterpart, an omnidirectional absorber has received a significant attention recently.
It was shown that nearly total angle absorption of incident waves can be achieved using a cylindrical
or a spherical device comprised of an absorbing core surrounded by a layer with dielectric constant
varying with the distance r to the device center.17 The structure captures the incident radiation and
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guides it towards the absorbing core where the energy is dissipated. At the boundary between this
layer and the absorbing core a nearly perfect impedance matching is achieved as well as at the air/layer
interface, so the reflections are minimized. Acoustic analogues of this omnidirectional light absorber
that works for airborne sound have been also proposed.18,19

In this work we focus on a 1D chirped multi-layer porous material. This system, contrary to the
previous absorbing acoustic materials based on graded structures, does not has an absorbing core. By
progressively varying the acoustical properties along the incident direction, the structure presents a
quasi impedance matching condition that allows the penetration of the wave without reflection. As
the waves propagate inside the material, the intrinsic viscothermal losses of the porous layers absorb
the waves. The losses are tuned by changing the thickness of the porous layers, in such a way that the
intrinsic losses compensate the leakage of the system, accordingly to the critical coupling condition.
This activates the perfect absorption.

We use the theoretical framework provided by the transfer and scattering matrix formulation
in order to study the reflection and transmission properties of the system. By using the eigenvalues
of the scattering matrix in the complex frequency plane,3–5 the intrinsic losses can be determined
in order to compensate the leakage of the system to produce prefect absorption conditions. The
chirped multi-layer porous material analyzed in this work behaves as a resonant Fabry-Pérot cavity.
Its resonances present a very low quality factor and they overlap to create a broadband unidirectional
perfect absorber.

The work is organized as follows. Section II shows the setup and the main ingredients to create a
chirp structure similar to the one we develop here. The theoretical framework based on the transfer and
scattering matrices is shown in Section III. Section IV shows the main analytical results obtained in
this work. The results presented in this work have been validated numerically using wave simulations
based on a finite element approach of the 1D system, showing good agreement with the analytical
results. The concluding remarks are shown in Section V.

II. CHIRPED MULTILAYERED POROUS STRUCTURE

In this work we deal with a discrete 1D structure made of N layers (or unit cells). Each layer
is formed by two sublayers of porous materials or air, see Fig. 1. The spatial distribution of porous
and air sublayers is given by a linear chirped recurrence relation, aj

i+1 = aj
0 − µ

j∆xj
i , with i= 1, ..., N

representing the layer number and j = p,0 the material being p for the porous material and 0 for air;
µj is the adimensional chirp parameter, aj

i is the width of the i-th sublayer made of the material j,

aj
0 the width of the first sublayer of the chirp of material J, and ∆xj

i is the total width of material j
used up to the i-th layer. Through this work, we consider the chirp direction in the positive x-axis, in
such a way that if µj < 0 (µj > 0), the layer thickness is increased (decreased) in the chirp direction.
The lattice constant of the i-th layer of the chirped structure is given by the addition of the width of

FIG. 1. Scheme of the chirped multilayered porous structure. Shifted by xj = xj − xj
0, to have the structure starting in xj

0 = 0.
Blue (Red) arrows represent the 1D reflection transmission problem produced by a plane wave radiating from the negative
(positive) side of the structure. Black arrows represent the schematic representation for the amplitudes in the scattering matrix
formulation.
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TABLE I. Values of the physical parameters of the porous material.

φp α∞ Λ (µm) Λ′ (µm) σ (Pa s)

0.97 1.06 41 2Λ 51200

the i-th sublayers of air and porous materials, ai = a0
i + ap

i . The total length of the system is given
by L =

∑N
i=1 ai. This produces an asymmetric reciprocal structure. We consider a chirped structure

produced by the recurrence relations with ap
0 =∆xp

1 = 1.9 cm and µp =−0.2 for the porous material
and a0

0 =∆x0
1 = 3.0 cm with µ0 = 0 for air. In this way, the sublayers of air have a constant width, a0

0,
and the porous sublayers increase their width all along the length of the structure, as shown in Fig. 1.

These parameters have been obtained by nonlinear constrained optimization techniques20 where
the cost function to minimize was e= ∫

f2
f1

1 − α(f )df , with f 1 = 20 and f 2 = 2000 Hz, i.e. maximize
the acoustic absorption of the system, α, in the frequency range 20-2000 Hz. With these parameters,
the structure made of N = 10 layers has a total length of L = 34.9 cm. It is worth noting here that the
optimization of the geometrical parameters of the structure plays a fundamental role in the absorption
of the system. On one hand, if the parameter µp excess from the optimal, the layer thickness grows
abruptly and some reflection, R, is observed at the first layers due to impedance mismatch. On the
other hand, if the parameter µp is lower than the optimal, the layer thickness grows slowly with
distance. In this situation the structure can be phase matched at the first layers if the parameter ap

0 is
also low enough, i.e., in a structure composed by thin porous layers the reflection is absent. However,
for a finite structure, transmission T, is observed due to the lack of losses at the end of the structure.
To summarize, if the parameter µp is far from the optimal, some reflection or some transmission is
produced and therefore, the absorption α = 1 − |R|2 − |T |2 cannot be perfect.

The porous material will be characterized by using the Johnson-Champoux-Allard (JCA)
model21,22 that gives the expressions for the dynamic effective densities and bulk modulus of a
porous material saturated by a fluid of density ρ0 and bulk modulus K0 considering a rigid frame.
The porous material is characterized by its porosity, φp, its tortuosity, α∞, its flow resistivity, σ,
and the thermal and viscous characteristic lengths, Λ and Λ′ respectively. Table I gives the values
of the static physical parameters of the porous material used in this work, which match those of a
conventional rock-wool porous absorber.23 The dynamic effective density and bulk modulus given
by the JCA model are

ρp = α∞ρ0


1 − ı

σφp

ωρ0α∞

√
1 + ı

4α2
∞ηρ0ω

σ2Λ2φ2
p


, (1)

Kp =
γP0

γ − (γ − 1)
[
1 − ı 8η

Λ′2Prωρ0

√
1 + ıρ0ωPrΛ′2

16η

]−1
, (2)

where ı=
√
−1 and ω the angular frequency. Considering that the saturating fluid is air,

ρ0 = 1.213 kg m−3, Pr = 0.71 is the Prandtl number, γ = 1.4 is the ratio of the specific heats,
P0 = 101325 Pa is the atmospheric pressure and η = 1.839 10−5 kg m−1s−1 is the dynamic viscosity. It
is worth noting here that the sound velocity in air is given by c0 =

√
γP0/ρ0. With these expressions

one can obtain both the effective wavenumber in the porous material, by using kp =ω/cp =ω
√
ρp/Kp,

where cp is the effective sound speed in the porous material, and the acoustic impedance, Zp =
√
ρpKp.

III. TRANSFER AND SCATTERING MATRICES

The system described before can be analyzed either by using the transfer matrix or by using the
scattering matrix. The two matrices are related and can give directly the reflection and transmission
coefficients of the analyzed materials as well as its effective parameters among other properties. In
this Section we briefly present the two methods and the relations between them.
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The transfer matrix between the two faces of the homogeneous and isotropic material j, tj,
extending from x = 0 to certain thickness x = l, is used to relate the sound pressure, P, and normal
acoustic particle velocity, V, between its two faces, i.e.,



P

V

x=0

= tj



P

V

x=l

=



tj
11 tj

12

tj
21 tj

22





P

V

x=l

=



cos(kjl) ıZj sin(kjl)

ı sin(kjl)/Zj cos(kjl)





P

V

x=l

, (3)

where j = p,0 in our system (see Fig. 1). Then the transfer matrix of the i-th layer, Ti, that is formed
by two sublayers of air and porous material can be defined as follows,

Ti =



cos
(

k0a0
i

2

)
ıZ0 sin

(
k0a0

i
2

)
ı

sin

(
k0a0

i
2

)
Z0

cos
(

k0a0
i

2

)




cos
(
kpap

i

)
ıZp sin

(
kpap

i

)
ı

sin(kpap
i )

Zp
cos

(
kpap

i

)




cos
(

k0a0
i

2

)
ıZ0 sin

(
k0a0

i
2

)
ı

sin

(
k0a0

i
2

)
Z0

cos
(

k0a0
i

2

)


. (4)

Therefore the total transfer matrix of the whole system, T, can be obtained by the product of the
transfer matrices of each layer of the chirped material. Thus, the total transfer matrix is given by

T=
[
T11 T12

T21 T22

]
=

N∏
i=1

Ti. (5)

The reflection and transmission coefficients can be directly calculated from the elements of the
matrix given in Eq. (5) as

T =
2eıkL

T11 + T12/Z0 + Z0T21 + T22
, (6)

R− =
T11 + T12/Z0 − Z0T21 − T22

T11 + T12/Z0 + Z0T21 + T22
, (7)

R+ =
−T11 + T12/Z0 − Z0T21 + T22

T11 + T12/Z0 + Z0T21 + T22
, (8)

where the superscripts (+,�) denote the incidence direction, i.e., the positive and negative x-axis
incidence respectively (see Fig. 1). We notice that, if the system was symmetric, then, T11 = T22,
and as a consequence, R+ =R−. However, this property is not retained by the asymmetric chirped
structure. The reciprocal behaviour of the system can be seen from the fact that the transfer matrix is
unitary, i.e., its determinant is one (T11T22 �T12T21 = 1).

On the other hand, the scattering matrix, S, relates the amplitudes of the incoming waves to
the system with those of the out-coming waves. The S-matrix is widely used in wave physics to
characterize the wave scattering. The poles and zeros of the S-matrix in the complex-frequency plane
provide very rich information as they are identified with bound states, virtual states or resonances.

We consider that the total pressure in a point xa < 0 (xb > L) is given by p(xa)=Ae−ıkxa + Beıkxa

[p(xb)=Ce−ıkxb +Deıkxb ]. Then the relation between the amplitudes is given by the scattering matrix
as

[
A
D

]
=

[
S11 S12

S21 S22

] [
C
B

]
=

[
T R−

R+ T

] [
C
B

]
. (9)

The relation between T and S is then given by the Eqs. (6)–(9).
In order to calculate the effective parameters of the i-th layer, we consider that each layer can be

characterized as a slab of effective material with effective wavenumber, ki
eff, and effective impedance,

Z i
eff. Then,



T i
11 T i

12

T i
21 T i

22


=



cos(ki
eff L) ıZ i

eff sin(keff L)

ı sin(ki
eff L)/Z i

eff cos(ki
eff L)


. (10)
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The effective parameters of the i-th layer can be obtained from its transfer matrix as follows

ki
eff =

1
L

cos−1 *
,

T i
11 + T i

22

2
+
-

, Z i
eff =

√√
T i

12

T i
21

. (11)

IV. RESULTS

Using the transfer and matrix formalisms presented above, we analyze the wave propagation
trough the chirped multi-layer porous material previously introduced. In order to validate the results
we use a numerical approach based on the Finite Element Method (FEM). For solving the problem
using FEM, it is necessary to define the symmetry, discretize the domain and consider the bound-
ary conditions. In the boundary of each layer both the continuity of the pressure and the velocity
are imposed, the properties of the porous media come from the JCA model as previously men-
tioned. Plane waves radiate the structure and perfectly matched layers (PML) are used to simulate
the Sommerfeld conditions in the bounds of the numerical domain. In our simulations the number
of degrees of freedom was 2069 and the computational time for the whole range of frequencies
was 20 s.

A. Local parameters

We start by analyzing the wave propagation inside the chirped multi-layer material. The chirped
distribution allows the system to have a soft variation of the physical properties all along the chirped
direction, in such a way that the local physical properties at the i-th layer, can be considered as those
of an infinite system made of the periodic distribution of the i-th layer.

Figure 2 shows the frequency dependent effective parameters for each layer in the chirped multi-
layer system. The properties of the first layer, i.e., k1

eff , c1
eff and Z1

eff/Z0, are close to ones of the
surrounding medium (air, dashed lines) for a broadband range of frequencies starting from 500 Hz.
This results in a quasi-matching impedance condition at the entrance of the system for a whole range
of frequencies. However as the wave propagates inside the multi-layer system, the local properties
adiabatically change producing slow sound conditions (decreasing value of the effective velocity all
along the structure) and introducing losses (increasing of the real part of the impedance all along
the structure) due to the increasing amount of the porous material in each layer. At the end of the

FIG. 2. Analysis of the effective physical parameters. (a) Effective normalized wave number in terms of frequency for each
layer of the system. (b) Effective sound speed in terms of frequency for each layer. (c) and (d) the real and imaginary parts of
the normalized acoustic impedance for each layer, respectively. In all the cases the reference values of air are represented by
the dashed blue lines.
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system, there is a mismatch condition but, as we will see later, the losses in the structure are high
enough to efficiently absorb the acoustic waves in the direction of the chirp for a broadband range of
frequencies avoiding reflection of waves.

B. Impedance matching condition

Figure 3 shows the analysis of the reflection and transmission problems. The results obtained
using the transmission matrix model are in perfect agreement with the results obtained using the FEM
simulations. Figure 3(a) shows the reflection and transmission coefficients of the chirped structure
along the two incidence directions and those of the bulky porous material with the same thickness,
L, and material properties than the chirped multi-layer structure. First of all we notice that, the
transmission coefficients from both sides of the chirped structure are identical. However, and as a
consequence of the asymmetry of the problem, we can see differences between the values for the
reflection coefficient from each side. On the other hand, the reflection coefficient from the negative
side of the structure presents very low values. This effect can be explained by analyzing the impedance
of the whole system.

The acoustic impedance from each side of the system can be reconstructed from the reflection
and transmission coefficients as follows24,25

Z [+,−]
chirp =Z0

√√√√√√ (
1 + R[+,−]

chirp

)2
− T2

chirp(
R[+,−]

chirp − 1
)2
− T2

chirp

. (12)

Figure 3(b) shows the impedances of the chirped and the bulk material. Results clearly show that
the chirped structure is closer to the impedance matching condition (Z/Z0 = 1 + 0ı) than the bulk

FIG. 3. (a) Reflection and Transmission coefficients. Red thick continuous (dashed) line represents the reflection coefficient,
|R−chirp |

2 ( |R+chirp |
2), of the chirped structure along the (opposite) direction of the chirp. Black thin dotted line represents the

reflection coefficient of a bulk porous material with the same thickness and material properties than the chirped multi-layer
structure. Blue thick line represent the transmission, |Tchirp |

2, through the chirped and blue dotted-dashed the bulky porous
material. In all the cases the markers (×) represent the numerical results from the FEM model. (b) Acoustic impedances of the
whole system. Red (blue) lines represent the real (imaginary) part of the total impedance of the system. Continuous lines show
impedances for the chirped structure for the (−) incident direction, dashed lines the positive (+) direction and dotted lines the
impedance of the bulk porous material. (c) Acoustic intensity along the system from both sides at 750 Hz. Red continuous
(blue) line represent the intensity profile due to an plane wave incidence along (opposite) the chirp direction. Black dotted line
shows the acoustic intensity of the bulk porous material with the same dimensions as the chirp. Vertical shaded areas show
the position of the porous sublayers of the chirp.
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material above 500 Hz. This will explain, first of all, that the reflection coefficients from both sides
of the chirped structure are smaller than that of the bulk material. Moreover, if one pay attention
to the impedances from each side of the structure, the impedance from the chirped direction has an
imaginary part, Im(Z−chirp), closer to zero, i.e., a smaller reactance than along the opposite direction.
Also, the real part of the impedance from the chirped direction, Re(Z−chirp), has a value closer to
one than the corresponding along the opposite direction. This combined behavior of the real and
imaginary parts of Z−chirp for a broadband range of frequencies (above 500 Hz), produces a quasi
impedance broadband matching condition along the chirped direction, so soft reflections from the
negative part, i.e., near zero values of R−chirp.

In order to observe the effect of the acoustic field of these soft reflections, Fig. 3(c) shows
the acoustic intensity profile for the different sides at 750 Hz. At this frequency, |R−chirp |

2 = 0.015,

|R+chirp |
2 = 0.13, |Rbulk |

2 = 0.3. The impedance condition in the negative part of the structure produces
a soft oscillation around I/I0 = 1 for the case of the chirped structure excited with a plane wave coming
from the negative part. Contrary, the oscillations of the intensity for the other two cases are more
pronounced due the impedance mismatching.

C. Unidirectional quasi perfect absorption. Analysis in the complex frequency plane

The chirped structure is an open cavity that can present two types of losses. Firstly, due to the fact
that the system is open, the leakage of energy out of the cavity exists. Secondly, the cavity can have
intrinsic losses due to the viscothermal dissipation in the porous materials. Recently in acoustics,
the balance of these two kind of losses, known as critical coupling condition, has been exploited to
obtain perfect absorption in the subwavelength regime.3–6 Here, we will use this critical coupling to
see that the absorption produced by the chirped is an accumulation of cavity modes. These critically
coupled resonances present a small quality factor and therefore overlap to produce a broadband
absorption.

We start by analyzing the absorption produced in the system. We study the absorption coefficient
from each side of the structure, considering that α(+,−) = 1 − |T |2 − |R(+,−) |2. Figure 4(a) shows the
comparison between the absorption coefficient from each side of the chirped structure and that of a
bulk porous material with the same thickness as the proposed chirped structure. The absorption of the
chirped structure from both sides is always bigger than the absorption of the bulk material due to the
fact that the chirped structure presents better impedance matching conditions than the bulk material.

In order to interpret the results concerning the absorption, we analyze the eigenvalues of the
scattering matrix in the complex frequency plane, solving the problem for complex frequencies of

the form f = fr + ıfi. The two eigenvalues are λj =T ±
√

R+chirpR−chirp. with j = 1,2. First, we artificially

neglect losses in the system by setting Im(Kp)= Im(ρp)= 0. We notice that, due to the properties of

FIG. 4. Analysis of the absorption coefficient. Blue thick continuous (red dashed) line represents the absorption coefficient
of the chirp structure along the (opposite) direction of the chirp. Black thin dotted line represent the absorption coefficient
for a bulk porous material with the same dimensions of the chirped multi-layer structure. Markers (×) shows the results
obtained by using the FEM. (b-c) Representation of the eigenvalues of the scattering matrix in the complex frequency plane,
1
2
∑2

j=1 log( |λj |). (b) Artificial lossless case by setting Im(Kp)= Im(ρp)= 0. (c) Lossy case.
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the scattering matrix, the poles and zeros of these eigenvalues are symmetric with respect to the real
axis, as shown in Fig. 4(b). Obviously, in the lossless case the eigenvalues on the real axis are the
unity and no absorption is possible. In our case, these poles and zeros are associated to the resonances
of the whole system (Fabry-Pérot resonances). The distance of the poles (zeros) to the real axis in
the lossless case is related to the leakage of energy at the resonances.

Finally, since the losses are introduced, the structure of poles and zeros is shifted to the real axis
allowing some zeros eventually cross the real axis5 as shown in Fig. 4(c). The case of having a zero

in the real axis implies
√

R+chirpR−chirp =T . In our system, we have previously seen that T ' 0 for the

range of the working frequencies of the chirped structure, therefore, R+chirpR−chirp ' 0. Which means
that, at the frequencies where the zero is in the real axis, either R+chirp = 0 or R−chirp = 0. Due to the
impedance conditions previously discussed, we have seen that R−chirp ' 0 at these frequencies, and
as a consequence, α− = 1. In this situation the intrinsic losses compensate the leakage of the system
and the energy remains trapped in the cavity, i.e., the acoustic energy is completely absorbed being
transformed in thermal energy at the resonance frequency.

V. CONCLUSIONS

In this work we have theoretically analyzed the acoustical properties of a chirped multi-layer
porous material in transmission. The adiabatic variation of the physical properties inside the structure
allows us to characterize the system with local effective parameters, and then to design the system to
have particular behavior. In this case, we use the combination of the impedance matching condition
with the intrinsic losses of the porous layers to design a broadband unidirectional quasi perfect
absorber. Using the formalism of the transfer and scattering matrix method, we have characterized
the transmission and reflection properties. Particularly, we have seen, using the eigenvalues of the
scattering matrix in the complex frequency plane, how the intrinsic losses can be used to compensate
the leakage of the system to produce prefect absorption conditions. The chirped multi-layer porous
material analyzed in this work behaves as a resonant cavity, which resonances have a very low quality
factor and they overlap to create a broadband unidirectional perfect absorbers. We also show that
the chirped structure presents an improvement if compared to a bulky porous structure: using less
amount of material the absorption reaches higher values and, in particular, low frequency sound
is more efficiently absorbed. Therefore, structures as the one presented here could be of particular
interest in civil engineering applications.
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