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The complex dispersion relation of surface acoustic waves (SAWs) at a lossy resonant metasurface

is theoretically and experimentally reported. The metasurface consists of the periodic arrangement

of borehole resonators in a rigid substrate. The theoretical model relies on a boundary layer

approach that provides the effective metasurface admittance governing the complex dispersion

relation in the presence of viscous and thermal losses. The model is experimentally validated by

measurements in the semi-anechoic chamber. The complex SAW dispersion relation is experimen-

tally retrieved from the analysis of the spatial Laplace transform of the pressure scanned along a

line at the metasurface. The geometrical spreading of the energy from the speaker is accounted for,

and both the real and imaginary parts of the SAW wavenumber are obtained. The results show that

the strong reduction of the SAW group velocity occurs jointly with a drastic attenuation of the

wave, leading to the confinement of the field close to the source and preventing the efficient propa-

gation of such slow-sound surface modes. The method opens perspectives to theoretically predict

and experimentally characterize both the dispersion and the attenuation of surface waves at struc-

tured surfaces. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4975120]

While surface waves propagating at the interfaces

between two propagative media or at impedance surfaces

have been studied theoretically1–4 and investigated experi-

mentally,5 they have also been shown to emerge at the sur-

face of impervious media when structured with resonant

grooves6 or boreholes.7 The parallel between such surface

waves and surface plasmons7 has paved the way to novel

applications in imaging,8,9 focusing,10 or lensing,11 for

which the dispersion relation of the surface waves can be

tuned by designing the micro-structure properties. However,

while the dispersion relation of such “spoof surface

plasmon” is usually presented for real wavenumbers12 with-

out accounting for losses, the surface wavenumber is actually

a complex quantity, the imaginary part of which accounts for

the attenuation of the waves induced by the losses. These lat-

ter are unavoidable in practice and govern the magnitude of

resonances that can be responsible for bandgaps. If methods

to predict theoretically6,7 the real part of the surface wave-

number and retrieve it experimentally, e.g., from spatial

Fourier transform,13 are now sufficiently robust, retrieving

the imaginary part of it can be challenging,14 notably

because it requires to distinguish the attenuation of the wave

induced by the losses from that induced by the geometrical

spreading of energy in space.

Here, the propagation of surface acoustic waves (SAWs)

at a metasurface is investigated both theoretically and experi-

mentally to predict and retrieve in a systematic method both

the real and imaginary parts of the complex SAW wavenumber

in the presence of the viscous and thermal losses. The theoreti-

cal model is based on a Boundary Layer (BL) approach using

plane wave expansion, and its predictions are used to validate

the complex dispersion relation retrieved experimentally. The

metasurface C under study consists of the two-dimensional

R-periodic repetition of circular borehole resonators with the

radius a and the depth h, at the otherwise rigid plane surface

(see Fig. 1). The resonators are arranged in a square lattice,

with the lattice constant ‘, and the unit lattice vectors (e1, e2).

Denoting e3 ¼ e1 � e2 the out-of-plane unit vector directed at

air, the position vector reads x ¼ xC þ x3e3, where xC ¼ x1e1

þx2e2 is the projection of x on C. The SAW propagation at the

surface C is studied in the linear harmonic regime at the circu-

lar frequency x (time convention e�ixt), and under the ambient

conditions, with the air density qe, the atmospheric pressure Pe,

the adiabatic constant c, the viscosity g, the Prandtl number Pr,

the sound speed c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cPe=qe

p
, and the air wavenumber

k0¼x/c. The BL analysis is performed for the SAW with the

pressure p ¼ Peik�xC�bx3 , where P is the complex amplitude,

k ¼ kea is the in-plane wave-vector with the complex wave-

number k and the in-plane unit vector ea, which makes the

angle a counted from e1, and where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

0

p
is the com-

plex attenuation parameter in the direction e3. For actual

FIG. 1. Schematic of the R-periodic metasurface and details of the unit cell

(lattice size ‘) bearing a 2a-diameter and h-deep borehole resonator. e1 and

e2 are the unit lattice vectors; e3 is the normal vector; and ea gives the direc-

tion of the SAW propagation.a)Electronic mail: logan.schwan@gmail.com
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propagation along ea and wave attenuation, the following con-

ditions hold: Re ðkÞ � 0; Im ðkÞ � 0 and Re ðbÞ � 0.

When excited by p, the resonators act as mutually inter-

acting secondary sources that prescribe the distribution of

normal velocity vCe3 at the surface C. Emitted by the peri-

odic lattice while forced by the SAW, the velocity vC is

locally R-periodic, while modulated by the factor eik�xC .

Since the SAW cannot resolve the array periodicity on its

own, locally R-periodic perturbations localized in the vicin-

ity of C are induced, which can be described in the low fre-

quency range (typically k0‘< 2p) by a BL15,16 with the

pressure p? in the form

p? ¼
X

ðn;qÞ6¼ð0;0Þ
P?nqeiðkþGnqÞ�xC�b?nqx3 ; (1)

where n and q are integers, P?nq are complex scattering coeffi-

cients, Gnq ¼ 2pðne1 þ qe2Þ=‘ are the reciprocal lattice

vectors, and b?nq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþGnqÞ2 � k2

0

q
are the complex out-

of-plane attenuation parameters with Re ðb?nqÞ � 0. The

dispersion relation is found from the following boundary

conditions that have to be satisfied by the superposition of

the surface wave p and the BL pressure p?. At the reference

cell R, the surface is rigid, except for the borehole aperture S
at its center, where a uniform particle velocity vo e3 is

assumed in the long-wavelength approximation.17 The veloc-

ity vo is then related to the mean value hpþ p?i ¼ jSj�1Ð
Sðpþ p?Þ dS of the pressure pþ p? acting at the aperture S

through the frequency-dependent admittance Y of the resona-

tor, that is, vo ¼ Yhpþ p?i. For the quarter-wavelength reso-

nator, the admittance Y takes the form (see supplementary

material for details)

Y ¼ i tan ðxh=
ffiffiffiffiffiffiffiffiffiffiffiffi
B�=q�

p
Þ=

ffiffiffiffiffiffiffiffiffiffi
q�B�

p
; (2)

where q* and B* are the complex effective density and bulk

modulus in the resonator. They account for the viscous and

thermal losses in the circular borehole and are classically

given by18,19

q� ¼ qe

1� F
ffiffiffiffi
2i
p a

dv

� � ; B� ¼ cPe

1þ c� 1ð ÞF
ffiffiffiffi
2i
p a

dt

� � ; (3)

where dv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=ðqexÞ

p
and dt ¼ dv=

ffiffiffiffiffi
Pr
p

are viscous and

thermal skin-depths, and FðyÞ ¼ 2J1ðyÞ=½yJ0ðyÞ� is a form

function18,19 with Jn the Bessel function of order n. The

admittance Y is thus complex for the lossy resonators. Now,

denoting PS the gate function equal to 1 over S and 0 else-

where at R, the boundary conditions at the reference cell can

be summarized as

@ pþ p?ð Þ
@x3

¼ ik0qecYhpþ p?iPS at R: (4)

First, the mean pressure over the aperture S reads

hpþ p?i ¼ PH00 þ
X

ðn;qÞ6¼ð0;0Þ
P?nqHnq; (5)

where the structure factorsHnq are given by

Hnq ¼
1

jSj

ð
S

ei kþGnqð Þ�xC dS ¼ J1 Knqað Þ
Knqa=2

; (6)

with Knq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþGnqÞ2

q
. Next, multiplying Eq. (4) by

e�iðkþGmsÞ�xC , where (m, s) are integers, and taking the mean

value over the period R yield Equations (7a) and (7b) for

(m, s)¼ (0, 0) and (m, s) 6¼ (0, 0), respectively

�bP ¼ ik0

qecYjSj
jRj hpþ p?iF 00; (7a)

�b?msP
?
ms ¼ ik0

qecYjSj
jRj hpþ p?iFms; (7b)

where the structure factors Fms read

Fms ¼
1

jSj

ð
S

e�i kþGmsð Þ�xC dS ¼ J1 Kmsað Þ
Kmsa=2

: (8)

Combining Eqs. (5) and (7b) provides the equation satis-

fied by the BL scattering coefficients. Re-arranging the

double-indexation (n, q) 6¼ (0, 0) into a single indexation, the

following vectors are defined, fP?g ¼ vectðP?nqÞ; fHg
¼ vectðHnqÞ, and fFg ¼ vectðF nqÞ, and the diagonal matrix

½b?� ¼ diagðb?nqÞ. With those notations, the BL scattering

coefficients are given by

P?f g ¼ �ik0

qecYjSj
jRj H00P B?½ ��1 Ff g; (9)

where the matrix ½B?� reads, with � the tensor product

B?½ � ¼ b?½ � þ ik0

qecYjSj
jRj Ff g � Hf g: (10)

Combining Eqs. (5), (7a) and (9), the boundary condition for

the SAW takes the form @p=@x3 ¼ �ixqe!p at C, where the

effective normalized admittance is

qec! ¼ �qecYjSj
jRj 1� ik0d?

qecYS

jRj

� �
F 00H00; (11)

with the scalar d? ¼ fHg � f½B?��1fFgg having the dimen-

sion of a length. More details about the derivation of Eqs.

(9)–(11) are provided in the supplementary material. Eq.

(11) provides the micro/macro relation between the resonator

properties and the effective admittance actually resolved by

the SAW. The SAW dispersion relation is found by solving

for k in the equation b ¼ ik0qec!, which shows that b and

hence the wavenumber k are complex quantities when the

admittance ! is not purely imaginary, which is the case for

lossy resonators.

In the experiments, the resonators consist of circular

boreholes with the radius a¼ 18 6 0.5 mm and the depth

h¼ 40.5 6 0.5 mm drilled with the lattice size ‘ in a rigid

wooden substrate. Such quarter-wavelength resonator,

with the undamped eigenfrequency xo=ð2pÞ ¼ c=ð4hÞ
	 2117 Hz, has been characterized in the impedance tube

with the square cross-section R¼ 42 mm� 42 mm that ena-

bles to emulate plane wave reflection at normal incidence on
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the metasurface with an infinite extent. Noting that the effec-

tive admittance qec! is also valid for plane wave reflection,

the reflection coefficient measured experimentally is com-

pared with the theoretical one R ¼ ½1� qec!�=½1þ qec!� in
Fig. 2(a). The results confirm the accuracy of Eqs. (2) and

(11) to describe the lossy resonators and the effective meta-

surface admittance.

To investigate the SAW propagation at the metasurface,

semi-anechoic chamber measurements have been performed.

The metasurface consists of 1160 resonators (40 along

e1� 29 along e2) drilled periodically with the lattice size

‘¼ 50 6 1 mm in a 2 m� 2 m rigid wooden board (see Fig.

2(b)). The speaker has been positioned at the center of the

smaller edge (x1¼ 0¼ x2) with the center of its membrane at

zs	 7.5 cm above the metasurface. The system has been

excited with a sine-sweep signal over the frequency range

[0.1; 1.6] kHz, in order to focus on the frequency range,

wherein the SAW mode theoretically exists according to the

BL model (see Fig. 3). The pressure field has been measured

with the microphone secured to a motorized linear stage.

The experimental spectra have been recorded with the

Dynamic Signal Analyzer (Stanford Research Systems type

SR785) every 0.5 cm along the line x2¼ 0 at the distance x1

2 [x0; L]¼ [5; 180] cm from the speaker and at x3	 1 cm

above the surface.

Due to the geometrical spreading of the field from the

speaker, the experimental set-up is modelled as a point-

source above the metasurface admittance. Hence, the sound

field consists of the pressure psðxÞ ¼ A0G0ðxÞ þ AsGsðxÞ,
where A0 and As are complex amplitudes, G0 is the Green

function for the point source above the rigid surface, and Gs

is the perturbation produced by the metasurface admittance,

including the SAW3

G0 ¼ eik0R1=ð4pR1Þ þ eik0R2=ð4pR2Þ; (12a)

FIG. 2. (a) Comparison of the real and imaginary parts of the reflection coefficient provided by the impedance tube measurements—exp.—on a 42 mm

� 42 mm unit cell (see inset) and those provided by the theoretical effective admittance—theo.—(b) Experimental set-up for characterisation of SAW

propagation at the metasurface prototype. (c) Model of the experimental set-up by a point source and a microphone—Mic.—above the metasurface

admittance.

FIG. 3. Comparison between theoretical (theo.) and experimental (exp.) results. Plotted against the normalized frequency x/xo are: (a) the real part and (c) the

imaginary part of the air and SAW wavenumbers; (b) the normalized group velocity; (d) the amplitude ratio between the SAW and the air modes. Plotted

against the normalized distance x1/‘ from the speaker are: (e)–(g) the pressure profile along the scan-line at three frequencies. (a) and (c) have the same legend

as (b). (f) and (g) have the same legend as (e). The inset in (a) shows the spatial Fourier transform of the experimental pressure against the frequency and the

dispersion relations retrieved from the SLaTCoW method.
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Gs ¼ �k0 erfcð�iwÞHð1Þ0 ðkrÞe�bðx3þzsÞ=4: (12b)

Here, the geometrical parameters R1, R2, and r are defined

in Fig. 2(c); erfc is the complementary error function; H
ð1Þ
0 is

the Hankel function of the first kind and order 0; and w ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ik0R2 � ikr þ bðx3 þ zsÞ

p
is the numerical distance. Eq. (12)

shows that the field ps(x) vanishes as the distance from the

speaker increases: the field G0 decreases typically as 1/R1,

while the term H
ð1Þ
0 ðkrÞe�bðx3þzsÞ in the expression of Gs

decreases as 1=
ffiffi
r
p

. Using the pressure ps(x) as the ansatz field,

and hence accounting for the geometrical spreading from the

source, the real and imaginary parts of the wavenumbers k0 and

k, and the complex amplitudes A0 and As are retrieved from the

experimental data by means of the Spatial Laplace Transform
for Complex Wavenumbers—SLaTCoW—method14 (see sup-

plementary material for more details about the SLaTCoW pro-

cedure). The experimental results are compared with those

from the BL model in Figs. 3(a)–3(d), where the complex

wavenumbers, the group velocity vg ¼ dx=dRe ðkÞ and the

amplitude ratio As/A0 (theoretically equal to3 qec!) have been

plotted against the frequency.

While the air line Re ðk0Þ ¼ x=c with the sound speed

c	 342 m/s, and negligible attenuation, 2pIm ðk0Þ=Re ðk0Þ

 5� 10�3, are recovered, three regimes can be identified in

the SAW dispersion relation: at low frequency x � xo,

around the resonance x! xo with Re ðkÞ < p=‘, and around

the Bragg limit Re ðkÞ ! p=‘.
In the low-frequency regime, the low admittance con-

trast jqec!j � 1 leads the complex SAW dispersion relation

k(x) to be asymptotic to that of air k0(x). Although it allows

an actual propagation of the SAW with negligible attenua-

tion, its contribution in the field remains limited due to its

low amplitude jAs=A0j � 1. Besides, this low value of the

SAW amplitude makes it difficult to retrieve the mode exper-

imentally, which can explain the scattered experimental data

below x/xo¼ 0.2. In contrast, around the resonance at

x/xo
 0.7, the significant admittance contrast jqec!j 
 1

results in the deviation of the SAW dispersion relation from

the air-line. The SAW group velocity decreases down to

vg/c
 1/5, while the SAW wavelength becomes	 1/8 of the

characteristic attenuation length 1/Im (k). That enables the

actual propagation of the “slow sound” SAW that could be

used for sub-wavelength imaging, for instance. Note that the

resonant behavior of the surface microstructures is essential

for this phenomenon to occur, since it is responsible for the

significant admittance contrast jqec!j 
 1 at the origin of

the SAW excitation. However, the capacity to guide waves

along the surface with such a “slow sound” is rapidly hin-

dered by the SAW attenuation, as the dispersion curve

approaches the Bragg limit Re ðkÞ ! p=‘. As the group

velocity approaches zero, the SAW attenuation increases

drastically with a characteristic attenuation length 1/Im (k)

of the order of the SAW wavelength, which prevents the

effective propagation of the wave at the surface. Note that

the interaction of the resonance-induced dispersion relation

with the Bragg limit Re (k)¼ p/‘ makes the “bandgap” occur

at x/xo	 0.8. Lowering the resonance frequency would cer-

tainly make the dispersion relation cross the Bragg limit at

the resonance frequency x/xo	 1.

The retrieved dispersion relation is in good agreement

with the maxima of the experimental spatial Fourier transform

FðkrÞ ¼
Ð L

x0
ps=A0e�ikrx1 dx1 plotted in the inset of Fig. 3(a).

This latter also exhibits clearly the regime of highly attenuated

waves around x/xo	 0.8, wherein jFðkrÞj ! 0. The experi-

mental results are also in well agreement with the theoretical

model derived for plane waves. It highlights the accuracy of

the effective admittance qec! and underlines that the complex

dispersion relation is related more to the metasurface admit-

tance and less to the nature of the excitation.

Finally, Figs. 3(e)–3(g) show the pressure profile Re

(ps/A0) for frequencies in each SAW propagation regime. It

is compared with the profile computed using either the effec-

tive admittance qec! or the parameters retrieved from the

SLaTCoW method. A good agreement is reached between

them. Discrepancies between the theoretical and experimen-

tal results in Fig. 3(g) can be due to the conjugate effect of

near-fields produced by the speaker in its close-vicinity

(where the field is actually confined), and the low level of

the signal near the bandgap. Nevertheless, the results show

the strong confinement of the field close to the speaker as the

frequency increases. That suggests that tracking pulses on

distances sufficiently long to perform imaging could be more

challenging than in optics.20

In conclusion, a boundary layer model that enables to find

the effective surface condition satisfied by plane waves at the

metasurface has been proposed, which takes full account of

multiple interactions, surface periodicity, and viscothermal

losses in the resonators. The complex dispersion relation theo-

retically derived has served to validate that experimentally

retrieved using the SLaTCoW method, adapted for point-

source excitation. The results have exhibited the mode conver-

sion that occurs between bulk and surface waves in the pres-

ence of the metasurface, and they have shown that SAW

propagation, while strongly slowed around the resonance, can

become drastically attenuated even with weakly damped reso-

nators, hence preventing actual propagation. This underlines

the importance of considering the imaginary part of wavenum-

bers when designing spoof surface plasmon acoustic devices.

See supplementary material for more details about the

boundary layer model and the adaptation of the SLaTCoW

procedure to the problem of the point source above the meta-

surface admittance.

The authors are grateful to the French ANR project

Metaudible (ANR-13-BS09-0003) and the COST Action

DENORMS-CA15125, supported by COST (European

Cooperation in Science and Technology).

1K. A. Norton, Proc. IRE 24, 1367 (1936).
2A. R. Wenzel, J. Acoust. Soc. Am. 55, 956 (1974).
3C. F. Chien and W. W. Soroka, J. Sound Vib. 43, 9 (1975).
4K. Attenborough, S. I. Hayek, and J. M. Lawther, J. Acoust. Soc. Am. 68,

1493 (1980).
5D. G. Albert, J. Acoust. Soc. Am. 113, 2495 (2003).
6L. Kelders, J. F. Allard, and W. Lauriks, J. Acoust. Soc. Am. 103, 2730 (1998).
7J. B. Pendry, L. Mart�ın-Moreno, and F. J. Garcia-Vidal, Science 305, 847

(2004).
8H. Jia, M. Lu, Q. Wang, M. Bao, and X. Li, Appl. Phys. Lett. 103, 103505

(2013).
9H. Jia, M. Lu, X. Ni, M. Bao, and X. Li, J. Appl. Phys. 116, 124504 (2014).

051902-4 Schwan et al. Appl. Phys. Lett. 110, 051902 (2017)

ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-110-040705
ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-110-040705
ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-110-040705
http://dx.doi.org/10.1109/JRPROC.1936.227360
http://dx.doi.org/10.1121/1.1914669
http://dx.doi.org/10.1016/0022-460X(75)90200-X
http://dx.doi.org/10.1121/1.385074
http://dx.doi.org/10.1121/1.1559191
http://dx.doi.org/10.1121/1.422793
http://dx.doi.org/10.1126/science.1098999
http://dx.doi.org/10.1063/1.4820150
http://dx.doi.org/10.1063/1.4895990


10Y. Ye, M. Ke, Y. Li, T. Wang, and Z. Liu, J. Appl. Phys. 114, 154504 (2013).
11M. Addouche, M. A. Al-Lethawe, A. Choujaa, and A. Khelif, Appl. Phys.

Lett. 105, 023501 (2014).
12D. Torrent and J. S�anchez-Dehesa, Phys. Rev. Lett. 108, 174301 (2012).
13Z. He, H. Jia, C. Qiu, Y. Ye, R. Hao, M. Ke, and Z. Liu, Phys. Rev. B 83,

132101 (2011).
14A. Geslain, S. Raetz, M. Hiraiwa, M. A. Ghanem, S. P. Wallen, A.

Khanolkar, N. Boechler, J. Laurent, C. Prada, A. Duclos, P. Leclaire, and

J.-P. Groby, J. Appl. Phys. 120, 135107 (2016).
15C. Boutin and P. Roussillon, Int. J. Eng. Sci. 44, 180 (2006).

16C. L. Holloway and E. F. Kuester, Radio Sci. 35, 661, doi:10.1029/

1999RS002162 (2000).
17C. Lagarrigue, J.-P. Groby, V. Tournat, O. Dazel, and O. Umnova,

J. Acoust. Soc. Am. 134, 4670 (2013).
18C. Zwikker and C. W. Kosten, Sound Absorbing Materials (Elsevier

Publishing Company, Inc., 1949).
19M. R. Stinson, J. Acoust. Soc. Am. 89, 550 (1991).
20H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F.

van Hulst, T. F. Krauss, and L. Kuipers, Phys. Rev. Lett. 94, 073903

(2005).

051902-5 Schwan et al. Appl. Phys. Lett. 110, 051902 (2017)

http://dx.doi.org/10.1063/1.4825315
http://dx.doi.org/10.1063/1.4890378
http://dx.doi.org/10.1063/1.4890378
http://dx.doi.org/10.1103/PhysRevLett.108.174301
http://dx.doi.org/10.1103/PhysRevB.83.132101
http://dx.doi.org/10.1063/1.4963827
http://dx.doi.org/10.1016/j.ijengsci.2005.10.002
http://dx.doi.org/10.1029/1999RS002162
http://dx.doi.org/10.1121/1.4824843
http://dx.doi.org/10.1121/1.400379
http://dx.doi.org/10.1103/PhysRevLett.94.073903

	f1
	l
	n1
	d1
	d2
	d3
	d4
	d5
	d6
	d7a
	d7b
	d8
	d9
	d10
	d11
	d12
	d12a
	f2
	f3
	d12b
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20

