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We study analytically and numerically envelope solitons (bright and gap solitons) in a one-dimensional,
nonlinear acoustic metamaterial, composed of an air-filled waveguide periodically loaded by clamped elastic
plates. Based on the transmission line approach, we derive a nonlinear dynamical lattice model which, in
the continuum approximation, leads to a nonlinear, dispersive, and dissipative wave equation. Applying the
multiple scales perturbation method, we derive an effective lossy nonlinear Schrödinger equation and obtain
analytical expressions for bright and gap solitons. We also perform direct numerical simulations to study the
dissipation-induced dynamics of the bright and gap solitons. Numerical and analytical results, relying on the
analytical approximations and perturbation theory for solions, are found to be in good agreement.
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I. INTRODUCTION

Acoustic metamaterials, namely structured materials made
of resonant building blocks, present strong dispersion
around the resonance frequency. In acoustic waveguides, this
resonance-induced dispersion was observed for the first time
by Sugimoto [1] and Bradley [2]. Later, Liu et al. [3] paved
the way for the realization of acoustic metamaterials through
arrangements of locally resonant elements that could be
described as effective media with negative effective parameters
not found in natural materials. Since then, a plethora of exotic
properties of acoustic metamaterials have been intensively
exploited showing novel wave control phenomena; these
include subwavelength focusing [4], cloaking [5], perfect
absorption [6,7] and extraordinary transmission [8], among
others [9].

Generally, dispersion, nonlinearity and dissipation play
a key role in wave propagation, with all these phenom-
ena appearing generically in practice. However, in acoustic
metamaterials—and until now—only few works have system-
atically consider the interplay between all the above phenom-
ena [10–15]. In particular, in some works, the combined effects
of dissipation and dispersion were studied without considering
the nonlinearity [2,16–19]; in this case, the relevance of
dissipation was further exploited to the design of perfect
absorbers [6,7]. In fact, the majority of works on acoustic
metamaterials focus on the linear regime and do not consider
the nonlinear response of the structure. Nevertheless, due
to the intrinsically nonlinear nature of the problem and the
strong dispersion introduced by the locally resonant building
blocks, acoustic metamaterials are good candidates to study
the combined effects of nonlinearity and dispersion that can
give rise to interesting nonlinear effects. These include the
nonlinear dispersion relation [20], the beating of the higher
generated harmonics [21–23], self demodulation [24,25], as
well as the emergence of solitons [12,26,27], namely robust
localized waves propagating undistorted due to a balance
between dispersion and nonlinearity.
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In this work, we show the existence and investigate the
dynamics of bright and gap solitons in an acoustic metamate-
rial composed of an air-filled waveguide, periodically loaded
by clamped elastic plates, taking into regard viscothermal
losses. Based on the transmission line (TL) approach used
widely in acoustics [28–32], we derive a nonlinear dynamical
lattice model which, in the continuum approximation, leads
to a nonlinear dispersive and dissipative wave equation. By
applying the multiple scales perturbation method, we find that
the evolution of the pressure can be described by a nonlinear
Schrödinger (NLS) equation incorporating linear loss. We thus
show that—in the lossless case—that the system supports
envelope solitons, which are found in a closed analytical form.
We perform direct numerical simulations, in the framework
of the nonlinear lattice model, and show that both bright and
gap solitons are supported in the system; numerical results are
found to be in good agreement with the analytical solutions of
the NLS equation. In addition, we numerically and analytically
study the effect of viscothermal losses on the envelope solitons,
showing that, for the particular setting considered herein, the
soliton solutions are less affected by the losses than dispersion.

The paper is structured as follows. In Sec. II, we introduce
our setup and derive the one-dimensional (1D) nonlinear
dissipative lattice model, as well as the nonlinear dissipative
and dispersive wave equation and the associated dispersion
relation. In Sec. III, we derive the lossy NLS equation via the
multiple scale perturbation method. Then, we start by studying
the dynamics of bright solitons, both in the lossless and lossy
cases, and we complete our investigations by presenting the
dynamics of gap solitons. Finally, Sec. IV summarizes our
findings and discusses future research directions.

II. ELECTROACOUSTIC ANALOG MODELING

A. Setup and model

A schematic view of the acoustic waveguide periodically
loaded by clamped elastic plates, as well as the respective unit-
cell structure of this setup, are respectively shown in Figs. 1(a)
and 1(b). We consider low-frequency wave propagation in this
setting, i.e., the frequency range is well below the first cut-off
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FIG. 1. (a) Waveguide loaded with an array of elastic plates;
(b) the unit cell of the system; (c) corresponding unit-cell circuit.

frequency of the higher propagating modes in the waveguide,
and therefore the problem is considered as 1D.

In order to theoretically analyze this system, we employ the
electroacoustic analogy; this allows us to derive a nonlinear
discrete wave equation for an equivalent electrical TL, which,
in the continuum limit, can be studied by means of the
method of multiple scales. Our approach is much simpler
than the one relying on the study of a nonlinear acoustic
wave equation coupled with a set of differential equations
describing the dynamics of each elastic plate. Furthermore,
our approach allows for a straightforward analytical treatment
of the problem by means of standard techniques that are used
in other physical systems [26].

The unit-cell circuit of the equivalent TL model of this
setting is shown in Fig. 1(c). It consists of two parts, one
corresponding to the propagation in the acoustic waveguide
and the other to the elastic plate [separated in Fig. 1(c) by
a thin vertical dotted line]. The voltage v and the current i

of the equivalent electrical TL corresponds to the acoustic
pressure p and to the volume velocity u flowing through
the waveguide cross section, respectively [27,28]. The above
considerations are valid in the low-frequency regime, i.e.,
when the wavelength λ � d.

The resonant elastic plate can be modeled by an LC circuit
[28], namely the series combination of an inductance Lm =
ρmh/S and a capacitance Cm = (ω2

mLm)−1, where ρm is the
plate density, S represents the cross-section area of the plate,
while ωm = 2πfm is the resonance frequency of the plate, with

fm = 0.4694
h

r2

√
E

ρm(1 − ν2)
, (1)

where E is the Young’s modulus and ν is the Poisson ratio
[28,32]. This approximation is valid by assuming uniform
pressure on the plates and for frequencies below the first
resonance of the plates (more details are found in Ref. [28]).
Losses originating from the dynamic response of the elastic
plates are not taken into account in this work.

The part of the unit-cell circuit that corresponds to the
waveguide solely (i.e., without the elastic plates and the

associated periodic structure) is modeled by the inductance
Lω, the resistance Rω, and shunt capacitance Cω; the linear
part of the inductance is Lω0 = ρ0d/S and the capacitance
is Cω0 = Sd/(ρ0c

2
0), where ρ0 and c0 are the density and the

sound velocity of the fluid in the waveguide, respectively;
the latter has a cross section S = πr2. The resistance Rω =
Im(kZc)d (Im denotes the imaginary part) corresponds to
propagation losses due to viscous and thermal effects; here,
the wave number k is connected with the frequency ω through
the following equation [16],

k = ω

c0

[
1 + 1 − i

s
(1 + (γ − 1)/

√
Pr)

]
, (2)

while Zc is given by

Zc = ρ0c0

S

[
1 + 1 − j

s
(1 − (γ − 1)/

√
Pr)

]
, (3)

where γ is the specific heat ratio, Pr is the Prandtl number, and
s =

√
ωρ0r2/η, with η being the shear viscosity.

Here we approximate the frequency-dependent viscother-
mal losses by a resistance with a constant value around the
frequency of the narrow spectral width envelope solutions in
which we are interested.

At this point, we should also mention that we consider the
response of the elastic plate to be linear, while the propagation
in the waveguide weakly nonlinear. This is a reasonable
approximation, since the pressure amplitudes used in this work
are not sufficiently strong to excite nonlinear vibrations of the
elastic plate [33]. On the other hand, it is well known that, due
to the compressibility of air, the wave celerity is nonlinear,
cNL. This, in turn, lead us to consider that the capacitance Cω is
nonlinear, depending on the pressure p, while the inductance is
assumed to be linear: Lω0 = Lω. Approximating the celerity as
cNL ≈ c0(1 + β0p/ρ0c

2
0), where β0 is the nonlinear parameter

(β0 = 1.2 for air), the pressure-dependent capacitance Cω can
be expressed as

Cω � Cω0 − C
′
ωpn, (4)

where Cω0 = Sd/
0c
2
0 is a constant capacitance (relevant to

the linear case) and

C
′
ω � 2β0

ρ0c
2
0

Cω0. (5)

We now apply Kirchhoff’s voltage and current laws in order
to derive the discrete nonlinear dissipative evolution equation
for the pressure in the nth cell of the lattice:

δ̂2pn = LCω0
d2pn

dt2
+ RωCω0

dpn

dt
+ Cω0

Cm

pn − LC
′
ω

2

d2p2
n

dt2

− RωC
′
ω

2

dp2
n

dt
− C

′
ω

Cm

p2
n, (6)

where δ̂2pn ≡ pn+1 − 2pn + pn−1 and L = Lω + Lm (see
details in Appendix A).

Adopting physically relevant parameter values, we assume
that the distance between the plates is d = 0.01 m and the
clamped elastic plates have a thickness h = 2.78 10−4 m,
radius r = 0.025 m, as shown in Fig. 1(b), and are made of rub-
ber, with ρm = 1420 kg/m3, E = 2.758 GPa, and ν = 0.34.
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Finally, we consider a temperature of 18 ◦C and the waveguide
to be filled by air; thus the specific heat ratio is γ = 1.4, the
Prandtl number Pr = 0.71, and η = 1.84 10−5 kg/m/s.

B. Continuum limit

In order to analytically treat the problem, we focus on the
continuum limit of Eq. (6), corresponding to n → ∞ and d →
0 (with nd being finite). In such a case, the pressure becomes
pn(t) → p(x,t), where x = nd is a continuous variable. Then
pn±1 can be approximated as:

pn±1 = p ± d
∂p

∂x
+ d2

2

∂2p

∂x2
± d3

3!

∂3p

∂x3
+ d4

4!

∂4p

∂x4
+ O(d5),

(7)

and, accordingly, the operator δ̂2pn is approximated as δ̂2pn ≈
d2pxx + d4

12pxxxx (subscripts denote partial derivatives). Here,
having kept terms up to order O(d4), results in the incorpora-
tion of a fourth-order dispersion term in the relevant nonlinear
partial differential equation (PDE); see below. Including such
a weak dispersion term, which originates from the periodicity
of the elastic plate array (see also Ref. [23]), is necessary in
order to capture more accurately the dynamics of the system.
To this end, neglecting terms of the order O(d5) and higher,
Eq. (6) is reduced to the following PDE:

d2pxx + d4

12
pxxxx − LCω0ptt − RωCω0pt − Cω0

Cm

p

+1

2
LC

′
ω

(
p2

)
t t

+ 1

2
RωC

′
ω

(
p2

)
t
+ C

′
ω

Cm

p2 = 0. (8)

It is also convenient to express our model in dimensionless
form; this can be done on introducing the normalized vari-
ables τ and χ and the normalized pressure P , which are
defined as follows: τ = ωBt (where ωB = πc0/d is the Bragg
frequency), χ = (ωB/c)x, where the velocity c is given by

c = c0√
1 + α

, α = hρm

dρ0
, (9)

and p/P0 = εP , where P0 = ρ0c
2
0 and 0 < ε � 1 is a formal

dimensionless small parameter. Then Eq. (8) is reduced to the
following dimensionless form:

Pττ − Pχχ − ζPχχχχ + �Pτ + m2P

= εβ0[2m2P 2 + �(P 2)τ + (P 2)ττ ], (10)

where parameters m2, ζ , and � are given by

m2 = α

1 + α

(
ωm

ωB

)2

, ζ = 1

12
π2(1 + α),

� = RωS

ρ0dωB(1 + α)
. (11)

It is interesting to identify various limiting cases of Eq. (10).
First, in the lossless linear limit (Rω = 0, � = 0, and ε → 0),
in the long-wavelength approximation (without considering
higher-order spatial derivatives, ζ → 0), Eq. (10) takes the
form of the linear Klein-Gordon (KG) equation [26,34],

Pττ − Pχχ + m2P = 0,

with the parameter m playing the role of mass. If the plates are
absent (m2 → 0), then the Klein-Gordon equation is reduced
to the second-order linear wave equation. Another interesting
limit of Eq. (10) corresponds to m2 → 0, � = 0, and ζ → 0,
which leads to the well-known Westervelt equation,

Pττ − Pχχ − εβ0(P 2)ττ = 0,

which is a common nonlinear model describing 1D acoustic
wave propagation [24].

C. Linear limit

We now consider the linear limit (ε → 0) of Eq. (10),
and assume propagation of plane waves of the form P ∝
exp[i(kχ − ωτ )], to obtain the following dispersion relation:

D(ω,k) = (−ω2 + k2 − ζk4 + m2) − i�ω = 0. (12)

Equation (12) suggests the existence of a gap at low
frequencies, i.e., for 0 � ω < m, with the cut-off frequency
defined by the parameter m (as is common in KG-type
models [26,34]). For m < ω < ωB , there exists a propagating
band, with the dispersion curve ω(k) having the form of
hyperbola, which asymptotes [according to Eq. (12)] to unity,
representing the normalized velocity associated with the linear
wave equation Pττ − Pχχ = 0 mentioned above. The term ζk4

appears to lead to instabilities for large values of k. However,
both Eqs. (10) and (12) are used in our analysis only in the
long-wavelength limit where k is sufficiently small. The term
i�ω accounts for the viscothermal losses.

Since all quantities in the dispersion relation are dimen-
sionless, it is also relevant to express Eq. (12) in physical
units. In particular, taking into account that the frequency ωph

and wave number kph in physical units are connected with their

dimensionless counterparts through ω = ωph/ωB and k = kphc

ωB
,

we can express Eq. (12) in the following form:

−ω2
ph + k2

phc
2 − ζ

k4
phc

4

ω2
B

+ m2ω2
B − i�ωphωB = 0. (13)

The real and imaginary parts of the dispersion relation are
respectively plotted in Figs. 2(a) and 2(b). We observe that
there is almost no difference between the lossy dispersion
relation [Eq. (13)] and the lossless one [Eq. (13) with � =
0], since the losses are sufficiently small (see below). The
dispersion relation features the band gap from 0 Hz to (mωB

2π
)

Hz due to the combined effect of the resonance of the plate
and of the geometry of the system. The upper limit of the band
gap is found to be sufficiently smaller than the Bragg band
frequency fB = c0/2d = 17163 Hz, with c0 = 343.26 m/s.
We have compared this analytical dispersion relation with the
one obtained via the transfer matrix method (TMM) [2]. Solid
(light pink) lines and (red) crosses in the Figs. 2(a) and 2(b)
show the respective results, as obtained using the TMM from
the following relation [2]:

cos(kphd) = cos(kd) + i
Zm

2Zc

sin(kd), (14)

where Zm = i(ωphLm − 1/ωphCm) is the impedance of the
plate [18] and Zc is given by Eq. (3). For the lossless case
[solid (pink) lines in Figs. 2(a) and 2(b)], the wave number and
the acoustic characteristic impedance of the waveguide reduce
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FIG. 2. Panels (a) and (b), respectively, show the real and
imaginary parts of the complex dispersion relation. The black circles
(red crosses) show the results from the TL (TMM) approach from
Eq. (13) [Eq. (14)]. The blue dashed (light pink continuous) line
shows the lossless dispersion relation obtained from the TL (TMM)
approach from the lossless limit of Eq. (13) [Eq. (14)]. (c) The
frequency dependence of qk′′, the product of the dispersion and
nonlinearity coefficients of the NLS equation. The light (dark) green
region corresponds to the focusing (defocusing) case, with qk′′ > 0
(qk′′ < 0).

to k = ωph/c0 and Zc = ρ0c0/S respectively. Comparing the
dispersion relation obtained by using TMM, with the one
resulting from the continuum approximation, we find an
excellent agreement between these two in the regime of low
frequencies.

III. ENVELOPE SOLITONS

In this section, we apply the multiple scales perturbation
method to reduce Eq. (10) to an effective NLS equation.
This way, we derive approximate analytical envelope soliton
solutions of the original lattice system and study their
dynamics—by means of direct numerical simulations and
soliton perturbation theory—in the absence and presence of
viscothermal losses. The multiple scales method is based
on the approximation of weakly nonlinear (small amplitude)
envelope wave solutions. Deviations of the analytical results
with respect to the numerical ones obtained from the lattice
equation are expected for increasing amplitudes and when the
assumed fast and slow scales are of the same order.

A. Bright solitons: Propagating solitary waves

We start our analysis by introducing the slow variables,

χn = εnχ, τn = εnτ, n = 0,1,2, . . . , (15)

and express P as an asymptotic series in ε, namely,

P = p0 + εp1 + ε2p2 + · · · . (16)

Then, substituting the above into Eq. (10), we obtain a
hierarchy of equations at various orders in ε (see Appendix B).
This way, and assuming that the losses are sufficiently small,
namely � → ε2�, we obtain the following results.

First, at the leading order, i.e., at O(ε0), we find that p0

satisfies a linear wave equation [cf. Eq. (B1) in Appendix B]
and thus is of the form:

p0 = A(χ1,χ2, . . . ,τ1,τ2, . . .) exp(iθ ) + c.c., (17)

where A is an unknown envelope function, θ = kχ0 − ωτ0,
with the wave number k and frequency ω satisfying the
dispersion relation (12) (c.c. denotes complex conjugate).

Next, at the order O(ε1), we obtain an equation whose
solvability condition requires that the secular part [i.e., the
term ∝ exp(iθ )] vanishes. This yields the following equation:(

k′ ∂

∂τ1
+ ∂

∂χ1

)
A(χ1,χ2, . . . ,τ1,τ2, . . .) = 0, (18)

where the inverse group velocity k′ ≡ ∂k/∂ω = 1/vg is given
by

k′ = ω

k − 2ζk3
. (19)

Equation (18) is satisfied as long as A depends on the
variables χ1 and τ1 through the traveling-wave coordinate
τ̃1 = τ1 − k′χ1 (i.e., A travels with the group velocity), namely
A(χ1,τ1,χ2,τ2, . . .) = A(τ̃1,χ2,τ2, . . .). Additionally, at the
same order, we obtain the form of the field p1, namely,

p1 = 2β0
m2 − 2ω2

D(2ω,2k)
A2e2iθ + Beiθ + 4β0|A|2 + c.c.,

(20)

where B is an unknown function that can be found at a higher-
order approximation.

Finally, employing the nonsecularity condition at O(ε2)
yields the following PDE for the envelope function A:

i
∂A

∂χ2
− 1

2
k′′ ∂

2A

∂τ̃ 2
1

− q|A|2A = −i�A, (21)

which is a NLS equation incorporating a linear loss term.
The dispersion, nonlinearity, and dissipation coefficients are
respectively given by:

k′′ ≡ ∂2k

∂ω2
= 1 − k′2 + 6ζk2k′2

k − 2ζk3
, (22)

q(ω,k) = β2
0

2(2m2 − ω2)(m2 − 2ω2)

3(m2 + 4ζk4)(k − 2ζk3)
− β2

0
4(2m2 − ω2)

(k − 2ζk3)
.

(23)

� = ω�

2
(
kr − 2ζk3

r

) . (24)

The sign of the product σ ≡ sgn(qk′′) determines the nature
of the NLS equation and its solutions [26,34]. In particular,
in the case σ = +1 (σ = −1) the NLS is called focusing
(defocusing) and supports bright (dark) soliton solutions.
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Bright solitons are localized waves with vanishing tails towards
infinity, while dark solitons are density dips, with a phase
jump across the density minimum on top of a nonvaninishing
continuous wave background. Figure 2(c) shows the frequency
dependence of the product qk

′′
for the system. We observe

three different regimes: a focusing regime (σ = +1) at low
frequencies (light green region), a defocusing regime (σ =
−1) at intermediate frequencies (dark green region), and
another focusing regime (σ = +1) at high frequencies (light
green region). Below we focus on the case of the focusing NLS
equation and study propagating bright solitons and stationary
gap solitons that are supported in this case.

The dispersion length, LD , and the nonlinearity length,
LNL, provide the length scales over which dispersive or
nonlinear effects become important for pulse evolution. For
solitons, where the nonlinearity and dispersion effects should
be perfectly balanced, LD � LNL (see Appendix C for details).
For frequencies larger than 435 Hz, the dispersion is very weak,
leading (e.g., for ε = 0.018 and f = 435 Hz) to a dispersion
length of the order of LD = 450 m). Here we focus on the
low-frequency region (light green region from 305.7 Hz to
432.3 Hz, described by an effective focusing NLS with linear
loss) in order to study the combined effect of (a relatively
strong) dispersion and nonlinearity.

1. Bright solitons in the absence of losses

In the absence of losses (� = 0), the analytical bright
soliton solution for the envelope function A is of the form

A = ηsech

(
η

√∣∣∣ q

k
′′

∣∣∣τ̃1

)
exp

(
−i

qη2

2
χ2

)
, (25)

where η is a free parameter setting the soliton amplitude. The
corresponding approximate solution of Eq. (10) is expressed,
as a function of parameters χ and τ , as follows:

P (χ,τ ) ≈ 2ηsech

[
εη

√∣∣∣ q

k′′

∣∣∣(τ − k′χ
)]

× cos

(
ωτ − kχ − qε2η2

2
χ

)
. (26)

Futhermore, in the original space and time coordinates, x and
t , the approximate envelope soliton solution for the pressure
p reads

p(x,t)

P0
≈ 2εηsech

[
εη

√∣∣∣ q

k′′

∣∣∣ωB

(
t−k′√1 + α

c0
x

)]

× cos

(
ωωBt−kωB

√
1+α

c0
x−qε2η2

2
ωB

√
1+α

c0
x

)
.

(27)

This bright soliton is characterized by an amplitude 2εηP0

and a width (εη
√

| q

k′′ |)−1. In addition, its velocity is given by
the group velocity c0/(k′√1 + α) at the carrier frequency and,
in contrast with soliton solutions of other nonlinear dispersive
wave equations, other soliton solutions, like, for instance, the
soliton of, e.g., the Korteweg-de Vries (KdV) equation [34], is
independent of its amplitude.

Let us now proceed by studying numerically the evolution
of the approximate soliton solution of Eq. (27) in the
framework of the fully discrete model of Eq. (6). We start
with the lossless case (Rω = 0) and a driver of the form given
by Eq. (27) at x = 0. We use the parameter values ε = 0.018
(2εηP0 = 5471 Pa) and f = 369 Hz. The results of the
simulations are shown in Figs. 3(a) and 3(b). We observe that
the input envelope wave propagates with a constant amplitude
and width as shown in the spatiotemporal evolution in Fig. 3(a).
The direct comparison of analytics and simulations is shown
in Fig. 3(b). Here the envelope soliton solution of Eq. (27) is
compared at five different instants with the numerical results
for the discrete wave equation showing a very good agreement.
Thus, we confirm that the NLS approximation is able to
capture the propagation of envelope solitons of the discrete
model (6). To emphasize the effect of the counterbalance of
dispersion by nonlinearity, we also show the evolution of the
same envelope function when the nonlinearity is turned off. As
shown in Figs. 3(c) and 3(d), the initial wavepacket spreads as
it propagates due to dispersion.

Next, we study the validity of the multiple-scales pertur-
bation theory and the properties of the corresponding bright
solitons. To do so, we study three different solutions: two at
the same carrier frequency f = 369 Hz with different ampli-
tudes, ε = 0.008 (2εηP0 = 2431 Pa) and ε = 0.018 (2εηP0 =
5471 Pa), and one of amplitude ε = 0.018 (2εηP0 = 5471 Pa)
and carrier frequency f = 307.3 Hz. The respective spectra
of these solitons are depicted in Fig. 4(a). Note that, for
the last case, part of the spectrum of the soliton lies inside
the gap. Starting with the two soliton solutions at the same
carrier frequency but different amplitudes, we expect them
to propagate with the same velocity, i.e., the group velocity.
In Fig. 4(b), the dashed red and solid cyan show the the
position of the maximum of the numerical solution as a
function of time, for ε = 0.008 and ε = 0.018, respectively.
Green crosses depicts the analytical group velocity. Both
solutions appear to follow with a very good agreement with
the analytical prediction. In addition, as shown in Fig. 4(c),
these solutions propagate with constant amplitude. However,
as seen in the inset of Fig. 4(b), there is a small discrepancy
in the velocity of the envelope solutions of larger amplitude.
This indicates a deviation from the effective NLS description
for large amplitudes, which is naturally expected due to the
perturbative nature of our analytical approach. Note, that this
small deviation is also depicted in Fig. 3(b) for the last time
instant.

The third case corresponds to the solution whose part of its
spectrum lies in the gap, for ε = 0.018 and f = 307.3 Hz.
Here we observe the propagation of a breathing solitary
solution. The respective long-lived, weakly damped periodic
oscillations of the soliton amplitude are depicted in Fig. 4(c).
As has been discussed [35,36], this behavior may be associated
to the birth of an internal mode of the soliton. We also observe
a small deviation between the numerical group velocity and
the corresponding analytical one, as shown in Fig. 4(b).

2. Bright solitary waves in the presence of losses

Having established the validity of the NLS solitons in
the lossless version of the discrete model (6), we proceed
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FIG. 3. (a) Three-dimensional plot depicting the evolution of a bright soliton of the form of Eq. (27), obtained by numerically integrating
the lossless version of Eq. (6) (Rω = 0) with ε = 0.018 (2εηP0 = 5471 Pa), f = 369 Hz. (b) Numerical spatial profiles of the bright soliton
measured at t1 = 2 s (light blue line), t2 = 2.5 s (light pink line), t3 = 3 s (light green line), t4 = 4 s (light yellow line), and t5 = 5.7 s (red
line). The blue dashed line, pink dashed line, green dashed line, yellow dashed line, and dark red dashed line denote the analytical envelope
results of Eq. (27) at t1, t2, t3, t4, and t5 respectively. The black dash-dotted line denotes the nonlinear length LNL and the dispersion length LD ,
where LNL = LD = 16 m. (c) The nonlinearity effect turned off, 3D plot depicting the dispersive effect numerically obtained. (d) Numerical
spatial profile of dispersive effect measured at t1 (light blue line), t2 (light pink line), t3 (light green line), t4 (light yellow line), and t5 (red line).

by studying the evolution of the envelope solitons under the
presence of the viscothermal losses. We numerically integrate
the nonlinear lattice model with Rω = 6.8 ohm and with
Rω = 68.04 ohm, using a driver corresponding to the soliton
shown in Fig. 4 with parameters ε = 0.018 and f = 369 Hz.

As shown in Fig. 5(a), for the small resistor of Rω = 6.8
ohm, the amplitude of the soliton is found to be weakly
attenuated. In contrast, in the linear dispersive case (see the
dashed orange line) the combined effect of dispersion and

losses strongly attenuates the wave packet. Let us next consider
the case of the large resistance, Rω = 68.4 ohm, corresponding
to the viscothermal losses at f = 369 Hz, assuming an
air-filled waveguide at 18 ◦C. In this case, as shown in Fig. 5(b),
the effect of losses on the soliton amplitude is (naturally) more
pronounced but still less than the case without considering
the nonlinearity (dashed yellow line in Fig. 5(b). Here we
should also mention that the above findings are valid for
the particular (physically relevant) scenarios discussed above.
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FIG. 4. (a) Spectra of the different drivers, of the form of Eq. (27), introduced at x = 0: ε = 0.008 (2εηP0 = 2431 Pa) at 369 Hz (red
dashed line); ε = 0.018 (2εηP0 = 5471 Pa) at 369 Hz (thick light blue continuous line) and ε = 0.018 at 307.3 Hz (thin black continuous line).
(b) Space-time diagrams of the different wave packet generated from the different drivers in (a). Symbols stand for the analytical space-time
diagrams at 369 Hz and 307.3 Hz. The slopes of the lines depict the corresponding group velocities. (c) Numerical time evolutions of the
maximum pressure value of the solitons for the different drivers.

022214-6



BRIGHT AND GAP SOLITONS IN MEMBRANE-TYPE . . . PHYSICAL REVIEW E 96, 022214 (2017)

50 100 150

1000

2000

3000

4000

5000

6000

x ( m )

p
(
P

a
)

(a)

50 100 150

1000

2000

3000

4000

5000

6000

x ( m )

p
(P

a
)

(b)

numerical NL+D+L

numerical D+L

analytical NL+D+L

FIG. 5. Effect of viscothermal losses on traveling bright solitons.
Evolution of the maximum pressure in time for the lossy bright soliton
(continuous red line for numerical results and blue crosses for the
analytical ones) and for linear lossy dispersive wave (dashed yellow
line for numerical results). The driver corresponds to ε = 0.018
(2εηP0 = 5471 Pa) and f = 369 Hz. (a) Propagation in a weakly
lossy medium where Rω = 6.8 ohm; (b) Propagation in a real lossy
medium where Rω = 68.04 ohm.

Indeed, generally, since—as discussed above—dispersion,
nonlinearity, and dissipation set pertinent scales, it is exactly
this scale competition that defines the nature of the dynamics.

Losses have been considered weak in the multiple-scale
perturbation method, leading to the effective NLS (21) with
the linear loss. Furthermore, as long as the parameter � is
small enough, it is possible to analytically study the role of
such a dissipation on the soliton dynamics. Indeed, according
to soliton perturbation theory (see, e.g., Ref. [37]), the linear
loss does not affect the velocity of the soliton but its amplitude
η becomes a decaying function of time. The evolution of η,
can be determined by the evolution of the norm, and it is
straightforward to find that it is described as follows:

η(χ2) = η(0) exp(−2�χ2). (28)

Thus, in terms of the original coordinates, the amplitude of
the bright soliton decreases exponentially according to:

η(x) = η(0) exp

(
−2�ε2ωB

√
1 + α

c0
x

)
. (29)

This analytical result is denoted in Fig. 5 by crosses.
For the case of R = 6.8 ohm [Fig. 5(a)], the agreement
between numerical simulations and soliton perturbation theory
is excellent. For the case of R = 68.04 ohm [Fig. 5(b)], the
analytical result describes fairly well the amplitude attenuation
observed in simulations. For both cases, we also confirm in
the simulations that the envelope solutions propagate with a

constant velocity equal to vg . We can thus conclude that even
in the presence of realistic viscothermal losses, the system
supports envelope solitary waves that are described, in a very
good approximation, by the effective NLS (21) with the linear
loss.

B. Gap solitons: Stationary solitary waves

While in Sec. III A we introduced the traveling bright
soliton propagating with group velocity vg , now we will study
stationary (i.e., nontraveling) localized waveforms oscillating
at a frequency in the band gap of the system; these structures
are called gap solitons.

In order to identify such solitons, which evolve in time
rather than space, we need to derive a variant of the NLS
model with the evolution variable being the time. To do so,
returning back to our perturbation scheme, in the solvability
condition of the equation at the order O(ε1), we use the variable
ξ1 = χ1 − vgτ1. This way, we obtain:(

∂

∂τ1
+ vg

∂

∂χ1

)
A(χ1,χ2, . . . ,τ1,τ2, . . .) = 0, (30)

which is satisfied as long as A depends on the variables
χ1 and τ1 through the traveling-wave coordinate ξ̃1, namely
A(χ1,τ1,χ2,τ2, . . .) = A(ξ1,χ2,τ2, . . .) [in this case, p1 is
again given by Eq. (20)]. Then the nonsecularity condition
at O(ε2) leads to the following NLS equation:

i
∂A

∂T2
− 1

2
v3

gk
′′ ∂2A

∂ξ̃ 2
1

− vgq|A|2A = −ivg�A, (31)

which is directly connected to Eq. (21) by a change of the
coordinate system.

1. Gap solitons in the absence of losses

In the absence of losses (� = 0), the analytical soliton
solution for the envelope is of the form

A = ηsech

[
εη

√∣∣∣ q

k′′

∣∣∣ 1

vg

(χ − vgτ )

]
exp

(
−iε2η2 qvg

2
τ
)
,

(32)

where, as before, η sets the amplitude of the soliton.
Considering the case with ω = m and k = 0, gap soliton

solutions of Eq. (10) can then be written in terms of coordinates
χ and τ as

P (χ,τ ) ≈ 2ηsech

(
εη

√
14

3
mβ0χ

)
cos (�mτ ), (33)

where

�m = m − 7

3
ε2η2mβ2

0 . (34)

In terms of the original space and time coordinates, the
approximate envelope gap soliton solution for the pressure p

centered at position x0 is the following:

p(x,t) = 2εηP0sech

[
εη

√
14

3
mβ0ωB

√
1 + α

c0
(x − x0)

]
× cos(�mωBt). (35)
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FIG. 6. (a) Three-dimensional plot depicting the evolution of
a gap soliton of the form of Eq. (35), obtained by numerically
integrating the lossless version of Eq. (6) (Rω = 0) with ε = 0.04
(2εηP0 = 12158 Pa), in a lattice with a length of 150 m. (b) Numerical
spatial profiles of gap soliton measured from t0 (at which gap soliton
has a maximal amplitude) to t0 + T/2 (at which gap soliton has a
minimal amplitude).

The gap soliton, which is a solution that does not move, is
characterized by an amplitude 2εηP0. Its width also depends
on amplitude and it oscillates in time with a period T =
2π/�mωB .

To study these solutions, we numerically integrate the
nonlinear lossless lattice model, Eq. (6) with Rω = 0, using an
initial condition given by Eq. (35) for t = 0 and x0 = 75 m.
An example of a gap soliton with ε = 0.04 (2εηP0 = 12158
Pa) is shown in Fig. 6. Figure 6(a) shows the spatiotemporal
evolution of the gap soliton during a time interval of three
periods. Figure 6(b) depicts the numerical spatial profiles of
the gap soliton measured from t0 (at which gap soliton has a
maximal amplitude) to t0 + T/2. Note that the absolute value
of the maximal amplitude is bigger than that of the minimal
amplitude of the gap soliton. This asymmetry is caused by the
term ∝ |A|2 in Eq. (20).

We have calculated both numerically and analytically the
frequency of the gap soliton for different amplitudes, as shown
in Fig. 7(a). As expected by Eq. (34), the frequency of the
gap soliton lies in the band gap (blue continuous line); red
crosses depict the numerical results. Each point represents the
frequency of the main peak of the spectrum after numerical
integration of the lossless version of Eq. (6) (Rω = 0). It
is clearly observed that the analytical results are in a good
agreement with the numerical ones.

The long-time evolution of the center of the gap soliton
solution is shown in Fig. 7(b). First, we note that the amplitude
exhibits a long-lived oscillation. This can be associated, as
in the previous case of the bright solitons, to the birth of an
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FIG. 7. (a) Amplitude dependence of the frequency of the gap
soliton. The blue line denotes the analytical results, Eq. (34). the red
crosses denote the numerical results, where the numerical values of
the amplitudes and the frequencies are getting from the main peak
of the spectrum of the different gap solitons obtained by numerically
integrating the lossless version of Eq. (6) (Rω = 0) with different
initial amplitudes. The black dashed line denotes the cut-off frequency
of the system. (b) Time evolution of the middle point of the gap soliton
in Fig. 6.

internal mode [35,36]. These beatings are diminished with time
as the initial approximate solution radiates and approaches the
numerically exact gap soliton solution of the lattice nonlinear
equation.

2. Gap solitons in the presence of losses

We next study numerically the effect of viscothermal
losses on the gap soliton. We numerically integrate Eq. (6)
considering the weak and strong lossy cases, as for the bright
soliton. The initial condition is of the form of Eq. (35) with
t = 0 and x0 = 75 m. We use an amplitude of ε = 0.04
(2εηP0 = 12158 Pa) and carrier frequency f = 304 Hz.
Figures 8(a) and 8(b) correspond to the temporal evolution
and evolution of the frequency spectrum of the amplitude of
the gap soliton at x0 in a weakly lossy medium, respectively.
We observe that the amplitude of the gap soliton decreases
slowly with time. As a result, the frequency increases, moving
towards the cut-off frequency, see Fig. 8(b). This is predicted
from Eq. (34) and illustrated in Fig. 7(a).

Analogously, we can see in Figs. 8(c) and 8(d) the temporal
evolution and frequency spectrum of the amplitude of the gap
soliton at x0 in a strong lossy medium respectively. In this case,
we observe that the amplitude of the gap soliton decays faster
than in the weakly lossy medium [see Fig. 8(c)] and, finally,
its frequency approaches the cut-off frequency.

Analytical solutions of the lossy problem can also be
obtained for the gap solitons. In particular, following soliton
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FIG. 8. Numerical study of the effect of viscothermal losses on gap solitons. Equation (35) with ε = 0.04 (2εηP0 = 12158 Pa) is the initial
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perturbation theory as before, the evolution of the amplitude
of the gap soliton η is found to be

η(T2) = η(0) exp(−2vg�T2). (36)

In terms of the original time coordinate, the amplitude of the
gap soliton decreases exponentially as

η(t) = η(0) exp(−2vg�ε2ωBt). (37)

The analytical results are shown in Figs. 8(a) and 8(c) and are
found in a good agreement with the numerical results.

IV. CONCLUSIONS

In conclusion, we have theoretically and numerically
studied envelope solitonic structures, namely bright and gap
solitons, in 1D acoustic metamaterial composed of an air-filled
tube with a periodic array of clamped elastic plates. Based
on the electroacoustic analogy, we utilized the TL approach
to derive a lossy nonlinear lattice model. Considering the
continuum limit of the latter, we derived a nonlinear dispersive
and dissipative wave equation. In the linear limit, the dispersion
relation was found to be in good agreement with the one
obtained by the transfer matrix method. No essential difference
between the lossy dispersion relation and the lossless one was
found, because losses are sufficiently small, i.e., the lossy term
can be treated as a small perturbation.

We have thus used a multiple scale perturbative approach
to derive an effective NLS model and analytically predict the
existence of both bright and gap solitons. The dynamics of
these structures were studied in the absence and in the presence
of viscothermal losses. Analytical and numerical results were

found to be in very good agreement. It is thus concluded that 1D
acoustic membrane-type metamaterial can support envelope
solitary waves even in the presence of realistic viscothermal
losses. Our results pave the way for the study of nonlinear
coherent structures in higher-dimensional phononic crystals
[38], optoacoustical settings [39], as well as in double negative
metamaterials [28,40].
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APPENDIX A: ELECTROACOUSTIC ANALOG
MODELING

Here we derive the evolution equation (considering lossy
effect of the waveguide) for the pressure in the nth cell of the
lattice as follows.

First, we note that the advantage of the considered unit-
cell circuit is that the inductances Lω and Lm are in a
series connection and, thus, can be substituted by the global
inductance L = Lω + Lm [see Fig. 1(c)].

Applying Kirchoff’s voltage law for two successive cells
yields

pn−1 − pn = L
d

dt
un + Vn + Rωun, (A1)

pn − pn+1 = L
d

dt
un+1 + Vn+1 + Rωun+1, (A2)
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where Vn is the voltage produced by the capacitance of the
elastic plates Cm. Subtracting the two equations above, we
obtain the differential-difference equation (DDE)

δ̂2pn = L
d

dt
(un − un+1) + Rω(un − un+1) + (Vn − Vn+1),

(A3)

where δ̂2pn ≡ pn+1 − 2pn + pn−1. Then Kirchhoff’s current
law yields

un − un+1 = Cω

d

dt
(pn), (A4)

with

un = Cm

d

dt
(Vn) and un+1 = Cm

d

dt
(Vn+1). (A5)

Subtracting Eq. (A5) and employing Eq. (A4), we obtain

un − un+1 = Cm

d

dt
(Vn − Vn+1) = Cω

d

dt
(pn). (A6)

Then, recalling that the capacitance Cω depends on the
pressure [cf. Eq. (4)], we express Vn − Vn+1 as

Vn − Vn+1 = Cω

Cm

pn = Cω0

Cm

pn − C
′
ω

Cm

p2
n. (A7)

Next, substituting Eq. (A6) and Eq. (A7) into Eq. (A3), we
obtain the following evolution equation for the pressure:

δ̂2pn = L
d

dt

[
Cω

d

dt
(pn)

]
+ Rω

[
Cω

d

dt
(pn)

]
+ Cω

Cm

pn.

(A8)

To this end, employing Eq. (4), we can rewrite the above
equation, and then we get the evolution equation (considering
lossy effect of the waveguide) for the pressure in the nth cell
of the lattice, Eq. (6).

APPENDIX B: HIERARCHY OF EQUATIONS IN
MULTIPLE SCALE PERTURBATION METHOD

There we present the hierarchy of equations at various
orders in ε,

O(ε0) : L̂0p0 = 0, (B1)

O(ε1) : L̂0p1 + L̂1p0 = N̂0
[
p2

0

]
, (B2)

O(ε2) : L̂0p2 + L̂1p1 + L̂2p0 = N̂0[2p0p1] + N̂1
[
p2

0

]
,

(B3)

where linear operators L̂0, L̂1, and L̂2, as well as the nonlinear
operators N̂0, N̂1 are given by

L̂0 = − ∂2

∂χ2
0

+ ∂2

∂τ 2
0

− ζ
∂4

∂χ4
0

+ m2, (B4)

L̂1 = −2
∂2

∂χ0χ1
+ 2

∂2

∂τ0τ1
− 4ζ

∂4

∂χ3
0 ∂χ1

, (B5)

L̂2 = − ∂2

∂χ2
1

− 2
∂2

∂χ0χ2
+ ∂2

∂τ 2
1

+ 2
∂2

∂τ0τ2

− ζ

(
6

∂4

∂χ2
0 ∂χ2

1

+ 4
∂4

∂χ3
0 ∂χ2

)
+ �

∂

∂τ0
, (B6)

N̂0 = β0
∂2

∂τ 2
0

+ 2β0m
2, (B7)

N̂1 = 2β0
∂2

∂τ0τ1
. (B8)

APPENDIX C: NONLINEAR LENGTH AND
DISPERSION LENGTH

Here is the calculation for nonlinear length and dispersion
length.

We can rewrite Eq. (21) in its dimensional form as

i
∂φ

∂x
− 1

2
k

′′
ph

∂2φ

∂T 2
− qph|φ|2φ = 0, (C1)

where

k
′′
ph = k′′

ωBc
, qph = q(ω,k)

ωB

c

1

P 2
0

, (C2)

and φ/P0 = εA, T = t − x/vg , and vg = ∂ωph/∂kph.
In order to get the dispersion length and the nonlinearity

length, we introduce t0 and A0 as the characteristic width of
the initial condition and the maximum pressure of the initial
condition respectively. Then we use the new time variable
T̃ = T/t0 and substitute φ = A0� to obtain

i
∂�

∂x
− 1

2LD

∂2�

∂T̃ 2
− 1

LNL
|�|2� = 0, (C3)

where the characteristic lengths are defined as

LD = t2
0

|k′′
ph|

, and LNL = 1

|qph|A2
0

. (C4)

According to Eq. (25), here we define

t0 =
(

εη

√∣∣∣ q

k
′′

∣∣∣ωB

)−1

, and A0 = εηP0. (C5)

Thus LNL/LD ∼ 1.
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