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Broadband acoustic attenuation produced by a three dimensional (3D) locally resonant sonic crystal
(LRSC), exploiting both the multiple coupled resonances and the Bragg band gaps, is numerically and
experimentally reported in this work. The LRSC is made of square cross-section scatterers arranged on
a square lattice and periodically incorporating both quarter-wavelength and Helmholtz resonators along
their heights. Local resonators of different types are combined with the periodicity of the system gener-
ating multiple coupled resonances at low frequencies and opening Bragg band gaps respectively. This
twofold coupling produces a strong broadband attenuation: a large insertion loss (IL), with an average
value of 16.8 dB, covering three and a half octaves from 350 Hz to 5000 Hz with a LRSC of 30 cm width.
This frequency band corresponds to one of the several railway noise sources (rolling noise, traction aux-
iliaries, etc.). A simplified 2D LRSC is finally analyzed numerically in a real train-track configuration,
showing the efficiency of the proposed design to attenuate the railway rolling noise.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

The acoustic properties of locally resonant sonic crystals (LRSC)
[1–4] have been extensively exploited over the last years for appli-
cations in acoustics based on acoustic filters [5], lenses [6], waveg-
uides [7], energy trapping systems [8] and isolation devices [9],
among others. The design of acoustic barriers for environmental
noise remains yet the most widespread application [9–21]. LRSC
are effectively excellent candidates in a plethora of applications
to efficiently attenuate airborne sound thanks to their broadband
filtering ability. This ability yields in the coupling of both the peri-
odicity (band gaps) and the coupled local resonances (stop bands),
[9,12,13,21]. Moreover, air and light might flow through LRSC,
which is particularly suitable in urban contexts. LRSC effectively
exhibit a drastic reduction of air flow resistivity when compared
to usual sound barriers, which directly implies a reduction of the
foundation costs [20].

Environmental noise includes railway noise, which encom-
passes different kind of noise sources. Railway noise is generally
classified in three categories: auxiliary, rolling, and aerodynamic
noises. Auxiliary noise arises from the different technical equip-
ments, like diesel engine, power transformer, converter, etc. These
equipments are located in the upper or lower parts of locomotives
and coaches, either on the roof or at the wheel height. This noise is
predominant during parking periods and at very low train speeds

(6 50 km:h�1). Rolling noise is radiated by the rolling stock and
the track, due to the vibration originated at the wheel-track con-
tact, mostly because of rail roughness and corrugation. The global
noise radiation is therefore the sum of different contributions aris-
ing from the train wheels, the rail and the sleepers of the track. This
second type of noise is predominant for train speeds between 80

and 300 km:h�1. Finally, the aerodynamic noise appears for higher

train speeds, up to 300 km:h�1.
In this article, we focus on rolling noise and the design of a LRSC

in the corresponding frequency range. The attenuating properties
of a 3D LRSC made of square cross-section scatterers arranged on
a square lattice and periodically incorporating both quarter-
wavelength resonators (QWR) and Helmholtz resonators (HR)
along their heights are theoretically and experimentally studied.
Viscothermal losses are accounted for both in the QWR and HR
by using the Zwikker and Kosten formulae [22,23]. The combina-
tion of stop bands, due to local resonant scatterers generating mul-
tiple coupled resonances at low frequencies, with bandgaps, due to
periodicity, is exploited to produce the broadest and largest possi-
ble value of the insertion loss (IL). The HR are deep subwavelength
resonators, the resonance of which is in our case k=l ¼ 18, where k
is the wavelength and l is the length of the HR. The QWR are
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designed such that their resonance frequency coincides with the
Bragg band gap. Numerical predictions and experimental results
show a strong broadband attenuation, the LRSC exhibits a large
IL covering three and a half octaves with an average value of
16.8 dB from 350 Hz to 5000 Hz. Finally, a simplified 2D LRSC is
numerically analyzed in a real train-track configuration, showing
the efficiency of the proposed design for the attenuation of rolling
noise.

The article is organized as follows. In Section 2 the modeling of
both the local resonators and the LRSC is presented. The way the
viscothermal losses are accounted for in the local resonators and
the conditions used to calculate the dispersion relation and the
scattering problem of the 3D LRSC are explicitly presented.
Section 3 shows the experimental setup, while the results are
discussed in Section 4, also including a simplified 2D LRSC numer-
ically analyzed in a real train-track configuration. Finally, conclud-
ing remarks are summarized in Section 5.

2. Modeling

The modeling of the local resonators as well as the whole
periodic system, including the scatterers together with the local
resonators, are detailed in the following subsections.

2.1. Local lossy resonators

Figs. 1(a) and (b) show the schematics of the QWR and HR,
respectively. The QWR consists of a cylindrical borehole carved
out of a square-rod scatterer. The HR is composed of a cylindrical
neck added to the same cylindrical borehole. The propagation of
acoustic plane waves in a circular cross-section duct of radius rc
accounting for the viscothermal losses is described by the complex
and frequency dependent effective density and bulk modulus, as
described in Ref. [23]
Fig. 1. Schematics of the modeling. Local resonators: (a) Quarter-wavelength and
(b) Helmholtz resonators. (c) Three-dimensional unit cell employed for the
eigenvalue problem. (d) Scattering problem for the calculation of the IL of an
infinite LRSC slab.
~qc ¼ q0 1�
2J1 rc eGr

� �
rc eGrJ0 rc eGr

� �
0@ 1A�1

; ð1Þ

~jc ¼ K0 1þ c� 1ð Þ
2J1 rc eGk

� �
rc eGkJ0 rc eGk

� �
0@ 1A�1

; ð2Þ

where eGr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ıxq0=g

p
and eGk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ıxPrq0=g

p
, with ı ¼

ffiffiffiffiffiffiffi
�1

p
;q0 is the

density, K0 ¼ cP0 is the bulk modulus of air, c is the specific heat
ratio, P0 is the atmospheric pressure, Pr is the Prandtl number and
g is the dynamic viscosity. We notice that the frequency dependent
effective properties of more complex geometries have been also
obtained in Ref. [23]. Alternatively, we can define the effective

impedance eZc ¼ ~qc ~jc and wavenumber ~kc ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
~qc=~jc

p
from Eqs.

(1) and (2).
Using the effective parameters for a cavity element (Eqs. 1,2),

the impedance of a QWR made of a circular borehole of diameter
dqwr ¼ 2rqwr (where rqwr is the radius of the borehole) and length
lqwr can be written as [24]eZQWR ¼ �ıZqwr cot kqwrlqwr

� �
; ð3Þ

where Zqwr and kqwr are obtained from Eqs. 1,2.
It is worth noting here that this expression is not exact as long

as correction length due to radiation is not included. The character-
istic impedance accounting for the borehole radiation can be
expressed as [25]:eZQWR ¼ �ıZqwr cot kqwrlqwr

� �þ ıkqwrDlZqwr; ð4Þ
where the correction length reads as Dl ¼ 0:6rc .

Similarly, the impedance of a HR made of a cylindrical neck of
diameter dn ¼ 2rn and length ln, and a cylindrical cavity of diameter
dc ¼ 2rc and length lc can be written as [26]

eZHR ¼ ıZn
A� tan knln tan kclc
A tan knln þ tan kclc

; ð5Þ

where A ¼ Zc=Znand kn (kc), Zn (Zc) are the effective wavenumbers
and effective characteristic impedances in the neck (cavity) of the
HR.

It is again worth noting here that this expression should
account for the radiation of each element. Therefore, the correct
expression of the characteristic impedance becomes [26]:

eZHR ¼ �ı
cncc � ZnknDlcnsc=Zc � Znsnsc=Zc

sncc=Zn � knDlsnsc=Zc þ cnsc=Zc
; ð6Þ

where cn ¼ cos knlnð Þ; cc ¼ cos kclcð Þ; sn ¼ sin knlnð Þ; sc ¼ sin kclcð Þ. The
length correction is deduced from the addition of two correction
lengths Dl ¼ Dl1 þ Dl2 respectively defined as

Dl1 ¼ 0:82 1� 1:35 rn
rc
þ 0:31 rn

rc

� �3� �
rn and Dl2 ¼ 0:6rn

The first length correction, Dl1, is due to pressure radiation at
the discontinuity from the neck to the cavity of the HR [27], while
the second length correction, Dl2, comes from the radiation at the
discontinuity from the neck to the surrounding medium [28].

2.2. Numerical modeling of the periodic system

We introduce now the numerical models of the LRSC utilized in
this work, which are solved using the Finite Element Method
(FEM). We first solve an eigenvalue problem to obtain the disper-
sion relation of an infinite lossless 3D LRSC, and then a scattering
problem using two different LRSC slabs, one having an infinite
transversal length and the other one a finite length by considering
the viscothermal losses in the resonators but not outside the
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scatterers. The former represents a case close to a real acoustic bar-
rier of very large transversal length while the latter will serve to
compare the attenuation performance with the experimental
results measured in an anechoic chamber. For all three cases the
spatial domain is discretized creating at least 6 elements per wave-
length for the highest analyzed frequency, kmin (6000 Hz, hence
kmin ¼ 5:7 cm).

2.2.1. Eigenvalue problem: dispersion relation
The 3D unit cell of the LRSC used in this study is shown in Fig. 1

(c). It is composed of four scatterers embedding resonators of dif-
ferent type and rotated 45 degrees around their vertical axes with
respect to the lattice orientation. All four resonators are facing the
center of the unit cell in such a way that identical resonators are
facing one with each other, i.e., the two HRs and the two QWRs
are in front of each other. This specific orientation of the scatterers
arise from the fact that the broadest achievable band gap of a two-
dimensional sonic crystal composed of square cross-section scat-
terers is produced when these are rotated 45 degrees around their
axes [29]. In addition, the selected distribution of different types of
resonators is obtained from the analysis of different configurations,
choosing the one, featuring the broadest stop band, as shown in the
Appendix A.

The unit cell shown in Fig. 1(c) is discretized using 4:5� 104

elements. The boundaries of the wooden square cross-section scat-
terers are considered acoustically rigid and Floquet-Bloch bound-
ary conditions are assumed on the edges of the unit cell to
account for the periodicity of the system (see Fig. 1(c))

p ~r þ~R
� �

¼ p ~rð Þeı~kB �~R; ð7Þ

where R
!

is the lattice vector and kB
!

is the Bloch vector. By fixing the

wavevector, ~kB ¼ kBx; kBy; kBz
� �

at a specific location along the path of
the irreducible Brillouin zone, the corresponding eigenfrequencies
are evaluated, and the dispersion relation of the periodic structure
is calculated. In the present case, the irreducible Brillouin zone is
not fully representative of the periodic system due to the particular
distribution of different resonators in the unit cell. Hence, the main
directions of symmetry in the reciprocal space are following the
path CX - XM - MC - CM’, i.e., considering the ranges
kBx ¼ �p=2axy;p=2axy

	 

and kBy ¼ 0;p=2axy

	 

, for kBz ¼ 0.

2.2.2. Scattering problem: infinite LRSC slab
The geometry of the scattering problem using an infinite LRSC

slab, i.e. a finite thickness and infinite width system, as it is shown
in Fig. 1(d). In the illustrated example, the infinite slab is composed
of nx ¼ 2 unit cells along the propagation direction (x-direction,
thickness); boundary conditions along the y- and z-directions are
chosen such that the structure can be considered periodic along
these two directions. A plane wave impinges the structure from
the negative x-axis (CX direction). Perfectly matched layers
(PML) are applied on both ends along the x-direction. The whole
solution domain is discretized into 2:2� 105 elements.

The pressure field is evaluated in the axial plane, i.e., the xy-
plane, for z ¼ az=2. In order to evaluate the attenuation of the 3D
LRSC, the IL at frequency f is spatially averaged using M points
along a line ranging from y ¼ �axy; axy

	 

behind the LRSC at

x ¼ xl ¼ 0:65 m (see Fig. 1(d)).

IL fð Þh i ¼ 20log10

PM
i¼1j~pref ~ri; fð ÞjPM
i¼1j~psc ~ri; fð Þj

 !
: ð8Þ

where j~pref ~r; fð Þj and j~psc ~r; fð Þj are the absolute values of the acoustic
pressure in the absence and in the presence of the 3D LRSC, respec-
tively. It is worth noting here that the length xl is large enough to
avoid the contribution from evanescent waves scattered by the
structure.

2.2.3. Scattering problem: finite LRSC slab
The finite slab is a LRSC with finite thickness and width. In our

case we choose nx ¼ 2 unit cells along the x direction (thickness),
ny ¼ 9 unit cells along the y direction (width) and of infinite height
along the z direction is considered and will be presented later in
Section 4. The acoustic source is modeled as a piston of infinite
length along the z direction placed at 1.4 m from the structure.
Boundary conditions along the z-direction are chosen such that
the LRSC can be considered of infinite height. PML layers are
considered on both ends on x- and y-directions, hence the only
contributions from the incident field behind the LRSC are those
propagating through the structure and from its lateral edges. The
spatial discretization is performed using 1.85 106 elements.

3. Experimental setup

Our attention is now turned into the description of the experi-
mental setup, introducing the geometry of the locally resonant
scatterers, including both types of resonators; the whole periodic
system, i.e., the finite LRSC slab and the instrumentation and
experimental methods employed for the measurements.

3.1. Locally resonant scatterers

The scatterers consist of wooden rods of square cross-section.
Each rod is 0:05� 0:05� 2:00 m3 (i.e., L ¼ 0:05 m) and incorpo-
rates 29 resonators in its central area along the z-direction sepa-
rated by a distance az ¼ 0:05 m. Each QWR has a diameter
dQ ¼ 0:035 m and depth lQ ¼ 0:04 m (see Fig. 2(a)). HRs are
obtained by inserting a ln-thick PVC annular disc on top of the
QWRs. The inner hole of each PVC annular disc plays the role of
the HR neck. The neck diameter is dn ¼ 0:004 m and its length is
ln ¼ 0:004 m. The diameter of the HR cavity is dc ¼ 0:035 m and
its depth lc ¼ 0:036 m (see Fig. 2(b)).

3.2. Periodic arrangement of locally resonant scatterers: LRSC

The LRSC is composed of an arrangement of locally resonant scat-
terers, distributed in a 2D square lattice with a lattice period
axy ¼ 0:075 m, as shown in Fig. 2(c). The vertical lattice period of
the resonators along the scatterer height is az ¼ 0:05 m. Therefore,
the 3D unit cell is a parallelepiped rectangle with a lattice constant
2axy, as shown in Fig. 2(d). The LRSC experimentally analyzed is built
by using 2 unit cells along the propagation direction, x�direction,
and 9 unit cells along the transverse direction, y�direction. The
filling fraction of the LRSC, defined as the ratio of the volume of
the scatterers Vsc over the total volume of the unit cell Vcell, is
ff ¼ Vsc

Vcell
� 0:314. Vsc is defined in this work as the solid part of the

unit cell.
Experimental measurements are performed using a microphone

B&K 1/4” type 4135. The acoustic source is a loudspeaker Genelec
8351A. The excitation signal is a sweep sine function ranging from
50 to 6000 Hz with a step of 12 Hz. The positions of the micro-
phone along the measurement line are controlled by a Zaber LSQ
1D robotized arm. The acquisition of the acoustic signal is per-
formed using a Stanford SR 785 spectrum analyzer. A picture of
the experimental setup is represented in Fig. 2(e). The loudspeaker
used to generate the acoustic field in the anechoic chamber is
placed at an approximate distance of 1:4 m from the LRSC. A single
microphone is utilized to measure the transfer functions between
the electrical and the acoustic signal measured at every point along
the line behind the LRSC. Only propagation along the x� y plane is
considered.



Fig. 2. Experimental set-up. (a), (b) Transversal views of both types of resonators,
QWR and HR, respectively. (c), (d) Schematic diagram of the unit cell and main
geometrical parameters. (e) Picture of the experimental set-up in the anechoic
chamber.

Fig. 3. Characterization of the local resonators, comparison between analytical and
numerical results. (a), (b) show configurations in an impedance tube with QWR and
HR, respectively. Real (red continuous line for analytics and red open circles for
numerics) and imaginary (blue dashed line for analytics and blue open squares for
numerics) parts of the normalized acoustic impedance of the (c) QWR, ZQWR=Z0 and
(d) HR, ZHR=Z0. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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3.3. Insertion Loss

The attenuation of the LRSC is evaluated measuring the IL along
a line behind the sample at xl ¼ 0:65 m, (x ¼ 0 is located following
the same convention presented in Fig. 1(d)). This measurement
line spans the interval yl ¼ �0:225;0:225½ � cm with 1 cm step
(M ¼ 46 points). The transfer function between the signal regis-
tered by the microphone and the input electrical signal is mea-
sured twice along this line, i.e., in the absence and in the
presence of the LRSC, and later spatially averaged. The absolute
value of the spatially averaged complex transfer function at point
~ri and frequency f is given by

jeH fð Þj
D E

¼ 20log10
1

MjeV fð Þj
XM
i¼1

j~p ~ri; fð Þj
 !

; ð9Þ

where eH ¼ eHref ; eHsc

� �
, and ~p ¼ ~pref ; ~psc

� �
is the measured acoustic

pressure along the line. Note that subscripts refer to measurements
performed in the absence and in the presence of the LRSC. The spa-
tially averaged ILh i is obtained making use of Eq. (8).

4. Results

4.1. Characterization of the local lossy resonators

The local resonators used in the LRSC are characterized in this
subsection. A numerical full wave simulation mimicking an impe-
dance tube measurement is performed in order to obtain the
acoustic impedance of the local resonators. The configurations of
the impedance tube considered for the QWR and HR are shown
in Figs. 3(a, b), respectively. To characterize the acoustic properties
of the local resonators, the effective properties given by Eqs. 1,2 are
introduced in their respective domains. The acoustic impedance of
each resonator is recovered from the numerical model evaluating
the transfer function, and compared to the analytical expressions
given by the Eqs. (4, 6). Note that the previous analytical models
have been already validated experimentally [30,31].

Figs. 3(c, d) show the real and imaginary part of the normalized
impedance of the QWR and HR, respectively. Continuous and
dashed lines correspond to analytical predictions from Eqs. (4, 6),
while symbols represent results from the numerical model pre-
sented previously. Numerical and analytical results are in excellent
agreement, which validate the model used in this work to account
for the losses. Note that viscothermal losses are considered in both
calculations, hence the value of the resonance frequency repre-
sents the behavior of the resonator itself, with no coupling to other
resonant elements. The resonance frequency corresponds to the

frequency at which I eZres

� �
¼ 0 (where res ¼QWR, HR). By doing

so, the resonance frequency of the HR is found at f HR ¼ 380 Hz
and that of the QWR at f QWR ¼ 2000 Hz.

4.2. Locally resonant sonic crystal

4.2.1. Dispersion relation
The dispersion relation along the main directions of symmetry

(CX-XM-MC-CM’) for the unit cell described in Section 2 is shown
in Fig. 4(a). The several bands shown in the dispersion relation are
due to the folding effect related to the supercell behaviour of the
structure. At low frequencies (around 400 Hz) a full stop band is
observed due to the resonance of the HRs. The pressure distribu-
tion of the unit cell (eigenvector) at the resonance frequency of
the HR corresponding to point X of the dispersion relation is shown
in Fig. 4(b). At this frequency, the pressure field is mostly located in
the HR. For higher frequencies, but still lower than the Bragg band
gap which is around 2200 Hz, other pseudo-band gaps are opened
in the CX direction as a consequence of additional cavity mode
excitation [21]. For example, the pressure distribution at frequency
1190 Hz at point C is shown in Fig. 4(c), for which a cavity mode in
the external cavities of the unit cell is well activated creating a



Fig. 4. Numerical characterization of the LRSC. (a) Dispersion relation along the main symmetry directions. Eigenvectors at particular frequencies: (b) resonance frequency of
the HR, f HR ¼ 390 Hz, (c) aditional cavity modes at 1190 Hz, (d) resonance frequency of the QWR, f QWR ¼ 1600 Hz. (e) Dispersion relation along the CX direction. (f) Numerical
IL for an infinite LRSC slab.
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band gap around this frequency in the CX direction. Finally, we
show the eigenvector at frequency 1600 Hz at point C (see Fig. 4
(d)). At this frequency, the coupled QWRs open another stop band,
as shown in Fig. 4(e). At higher frequencies, the combined effects of
the QWRs and the periodicity produce a full band gap between
1600 Hz and 3000 Hz. Higher band gaps can be also observed in
the dispersion relation due to periodicity and higher order reso-
nant modes.

4.2.2. IL of an infinite LRSC slab
To analyze in detail the effect of the HR, the QWR and periodic-

ity, the dispersion relation along the CX direction shown in Fig. 4
(e) is compared to the IL produced by an infinite LRSC slab com-
posed of nx ¼ 2 unit cells. The IL produced by this infinite slab is
shown in Fig. 4(f) for the lossless (blue continuous line) and the
lossy (red dashed line) cases. The attenuation peaks observed in
the IL spectrum are in very good agreement with the band gaps
obtained from the eigenvalue problem. At the resonant frequency
of the HR, f HR ¼ 390 Hz, we observe an IL peak of amplitude
35 dB. Interestingly, for higher frequencies the coupling of the
QWR and the effect of periodicity produces IL peaks of amplitude
40 dB. Note that the losses are only accounted for in the resonators,
therefore their main effects are manifested at their resonance fre-
quencies. The influence of losses in the case of the HR is significant,
producing an impedance mismatch and therefore a reduction of
the IL peak at 390 Hz. For the QWR, the effects of losses are mostly
negligible.

The analysis of an infinite LRSC slab is of large importance to
have an idea of the effect of a large barrier, as it would be the case
for an application in the context of railway noise control. However,
in many practical situations, and in particular for this work, the
experimental analysis is performed in an anechoic chamber using
a structure of finite transversal length. Hence the interference pat-
tern produced by both edges of the structure should be accounted
for in the numerical simulations, as shown in the next Section.

4.2.3. IL of a finite LRSC slab
The schematic diagram of the finite LRSC slab used for the

corresponding numerical calculations is shown in Fig. 5(a), where
IL is evaluated following the same exact procedure described in
Section 3.3. Numerical (blue continuous and red dashed lines for
the lossless and lossy cases, respectively) and experimental (gray
circles) IL results for a finite LRSC slab show a very good agreement,
as shown in Fig. 5(b). The finite size effect of the structure strongly
affects the amplitude of the IL peaks in comparison with the infi-
nite slab, reducing the attenuation of the structure. However, the
frequencies of the IL peaks present the same behavior as those of
the infinite slab (see Fig. 4(f)). We notice that between 3000 Hz
and 5000 Hz the experimental results show better IL than the ana-
lytical model. This is due to the fact that losses are not accounted
for out of the resonators and, therefore, in this range of frequencies
the scattering is the most important phenomenon. However, our
numerical model still captures the trends of the experimental
results.

In order to analyze the attenuation ability of the LRSC as an
acoustic barrier we have also calculated IL in thirds of octave. Bars
in the background of Fig. 5(b) represent the corresponding experi-
mental (grey) and numerical (red) IL values. Results show that the
proposed structure increases the attenuation for all the bands
between 50 and 6000 Hz. In particular, an overall IL of 16 dB is pro-
duced in the range of frequencies of interest, i.e., from 350 to
6000 Hz.

4.3. Simplified model in a real train-track configuration

In this Section we apply a simplified 2D model of the LRSC
designed in this work to a realistic case of railway rolling noise
application. The geometry is shown in Fig. 6(a). The boundaries
of the train and the ground (ballast, sleepers, rail, etc.) are all con-
sidered acoustically rigid while the remaining boundaries are mod-
eled adding PML layers. The spatial domain is discretized into
2:3� 106 elements. The acoustic source is modeled as a point
source located at the position of the train wheel.

Fig. 6(b) illustrates numerical IL results, which are spatially
averaged along a human-sized vertical line (chosen to be 1.75 m
high) located 1 m behind the LRSC. Frequency dependent results
present a similar trend to the previous 3D analysis, but in this case
the effect of the multiple virtual sources, due to the rigid boundary
conditions in the domain, is observable. Three IL snapshots show
the sound pressure level maps at three frequencies of interest. At
the HR resonance frequency, Fig. 6(c), the omnidirectional effect
of the stop band is represented by a strong attenuation of the
acoustic field behind the structure. The effect of the ground [32]
and reflections produced by the rigid boundary conditions of the



Fig. 5. (a) Schematic diagram of the finite LRSC slab used for numerical simulations. (b) Comparison of the IL calculated numerically, with (red dashed line) and without (blue
continuous line) losses, and experimentally measured (grey circles). Bars represent IL in thirds of octave for the numerical case with losses (red bars) and experiments (grey
bars). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Simplified 2Dmodel in a real train-track configuration. (a) Geometry of the numerical model. (b) Spatially averaged IL results measured along a vertical line behind the
LRSC. Acoustic pressure level (in dB) in the domain at three frequencies of interest: (c) Resonance of the HR in 2D, f HR ¼ 800 Hz, (d) Coupling between the QWR, f coupling ¼ 1390
Hz, and (e) Bragg frequency, f Bragg ¼ 2280 Hz.
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walls of the train and the ground are strongly attenuated by the
crystal, creating an acoustic shadow region behind the LRSC. At
higher frequencies, at f coupling ¼ 1390 Hz, Fig. 6(d) shows how the
coupling of the QWR attenuate the incident wave on the LRSC.
Finally, at the Bragg frequency, shown in Fig. 6(e), the band gap
is producing a strong attenuation in the region under analysis.



Fig. 7. Preliminary studies of multiple LRSC unit cells. Pseudo band gaps (CX), in grey, and full band gaps, in black, for multiple coupling configurations of the LRSC. The
frequency range spans from 0 Hz to 5000 Hz. Columns (1) to (8) represent 2axy � 2axy supercells, while (i), (ii) and (iii) represent axy � axy unit cells. The configuration shown
in column (4) is the one employed throughout this work as it predicts the largest band gaps in the frequency range of interest.
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5. Conclusions

A LRSC made of square rod scatterers with embedded HR and
QWR is theoretically and experimentally analyzed in this work.
The system is designed to work in the range of frequencies corre-
sponding to various railway noise sources, in particular for the case
of rolling noise. We exploit the idea of combining local resonators
to generate multiple coupled resonances at low frequencies with
Bragg band gaps arising from periodicity. We have considered both
the viscothermal losses and the finite-size effects of the structure.
Viscothermal losses affect the resonators efficiency at their reso-
nances and are negligible for other frequencies. The effect of the
transversal length of the structure strongly affects the IL peak
amplitudes. In the case analyzed in this article, a LRSC of 30 cm
width, strong broadband attenuation is obtained: the structure
exhibits a large IL covering three and a half octaves with an average
value of 16.8 dB ranging from 350 Hz to 5000 Hz. These values can
be greatly improved in real situations where larger structures of
the same thickness can be built. We finally employ the LRSC in a
simplified 2D geometry to analyze numerically the attenuation
capabilities of the system in a real train-track configuration. The
good efficiency of the proposed design to attenuate railway rolling
noise opens new routes for designing efficient systems, with
unprecedented advantages for increasing the attenuation. More-
over, low flow resistivity and allowing the light to pass through
the crystal ensures suitability of the proposed structure for urban
contexts.

Appendix A. Appendix

The best combination of HR and QWR is chosen after evaluating
the dispersion relations of multiple possible 2D combinations.
Fig. 7 illustrates full and pseudo band gaps along the CX direction
for several combinations.
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[12] Romero-Garća V, Sánchez-Pérez JV, Garcia-Raffi LM. Tunable wideband
bandstop acoustic filter based on two-dimensional multiphysical
phenomena periodic systems. J Appl Phys 2011;110:149041–9.

[13] Lagarrigue C, Groby JP, Tournat V. Sustainable sonic crystal made of resonating
bamboo rods. J Acoust Soc Am 2013;133(1):247.

[14] Krynkin A, Umnova O, Chong AYB, Taherzadeh S, Attenborough K. Predictions
and measurements of sound transmission through a periodic array of elastic
shells in air. J Acoust Soc Am 2010;128(6):3496–506. https://doi.org/10.1121/
1.3506342.

[15] Koussa F, Defrance J, Jean P, Blanc-Benon P. Acoustical efficiency of a sonic
crystal assisted noise barrier. Acta Acust United Acust 2013;99(3):399–409.
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