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a b s t r a c t

The finite-element time-domain method for elastic band-structure calculations is presented in this pa-
per. Themethod is based on discretizing the appropriate equations of motion by finite elements, applying
Bloch boundary conditions to reduce the analysis to a single unit cell, and conducting a simulation using
a standard time-integration scheme. The unit cell is excited by a wide-band frequency signal designed to
enable a large number of modes to be identified from the time-history response. By spanning the desired
wave-vector space within the Brillouin zone, the band structure is then robustly generated. Bloch mode
shapes are computed using the well-known concept of modal analysis, especially as implemented in an
experimental setting. The performance of the method is analyzed in terms of accuracy, convergence,
and computation time, and is compared to the finite-difference time-domain method as well as to a
direct finite-element (FE) solution of the corresponding eigenvalue problem. The proposed method is
advantageous over FD-based methods for unit cells with complex geometries, and over direct FE in
situations where the formulation of an eigenvalue problem is not straightforward. For example, the
new method makes it possible to accurately solve a time-dependent Bloch problem, such as the case
of a complex unit cell model of a topological insulator where an internal fluid flow or other externally
controlled physical fields are present.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Photonic and phononic crystals emerged in the late 1980’s
and early 1990’s as artificial material systems designed to con-
trol electromagnetic [1,2] and mechanical [3,4] wave propaga-
tion, respectively, and have attracted intensive research interest
ever since. The band structure is a key diagram for describing
the wave dispersion characteristics of these periodic materials
as it represents the relationship between wave vector and fre-
quency. A band structure is obtained utilizing Bloch’s theorem
[5,6], which allows the calculations to be performed over only a
single unit cell. A significant effort has beenmade over the last few
decades in the development of techniques for band-structure cal-
culations. These include plane-wave expansion (PWE) [3,4,7–12],
the transfer-matrix (TM) method [13], multiple scattering theory
(MST) [14–18], the finite-element (FE) method [19–22], the finite-
difference (FD) method [23–25], and the finite-difference time-
domain (FDTD)method [26–31], among others [32–36]. Reviews of
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E-mail address: mih@colorado.edu (M.I. Hussein).

periodicmaterials and band-structure calculationsmethods can be
found in Ref. [37] and Ref. [38] for photonic and phononic crystals,
respectively.

Most of these methods are based on steady-state analysis (i.e.,
harmonic time dependence). The dispersion relation of a periodic
system is obtained after solving an eigenvalue problem for wave
vectors in the Brillouin zone (BZ) [39]. Among these methods,
PWE has been extensively used for acoustic and elastic composites
[3,4,12] and it is appropriate for solid–solid and fluid–fluid compo-
sitions, while FD methods are more suited for phononic material
systems composed of multiple states (e.g., solid–fluid) [25]. How-
ever, both methods are not suitable when dealing with irregu-
larly shaped scatterers. Other approaches, such as MST, reported
in Refs. [16–18] and numerous subsequent studies for phononic
systems, are widely used. The MST method can handle multiple
media states, such as elastic scatterers in a fluid or air holes in
an elastic solid medium, and can accurately analyze high-contrast
problems where other methods (PWE, FD, FE) may exhibit slow
convergence. Nevertheless, the geometry of the scatterer is also
highly restricted to simple shapes and/or topologies such as me-
dia composed usually of cylindrical/spherical scatterers in a host
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medium. Ultimately, FE has been employed as an efficient method
for band-structure calculations for phononic material systems by
formulating an eigenvalue problem constrained by the application
of Bloch boundary conditions. In the context of FE methods, an
alternative approach to the usual implementation of Bloch bound-
ary conditions (see Ref. [40] for implementation details) is based
on considering a Bloch operator transformation of the governing
differential equations to obtain the strong form of the Bloch eigen-
value problem [22]. A major advantage of FE over the previous
methods is its ease in handling complex unit-cell geometries, e.g., a
unit cell with an irregular distribution of two material phases.

While the PWE, MST, FD, and FE methods assume harmonic
time dependence to solve the governing elastic wave equation,
some authors have implemented band-structure calculations by
computing the time-domain response. Specifically, the FDTD
method, where the governing equation is discretized in both space
and time, falls into this category. In an earlier version of the
method, the computational domain has to include numerous unit
cells with an appropriate choice of boundary conditions [25]. By
varying the source’s excitation frequency, the dependence of at-
tenuation (due to evanescence) with the frequency is obtained and
used to identify the band gaps. Following this approach (i.e., using
several unit cells), the band structure is computed by analyzing
phase differences at the input and the output of a finite-size
structure [41,42]. In contrast, Tanaka et al. [29] presented an FDTD
approach for phononic material systems in which Bloch boundary
conditions are imposed−thus reducing the simulation domain to
only a single unit cell− and the band structure is hence computed
by varying the wave vector through the BZ using a series of Fourier
transforms of the time-history data.

The computational effort associated with band-structure cal-
culations is usually high because it involves solving an eigen-
value problem, in the case of harmonic time dependence, or in-
tegrating over a large number of time steps, in the case of time-
domain methods. Moreover, this process is done numerous times
as the value of the wave vector k is varied along the BZ [or
the Irreducible BZ (IBZ)]. The size of the problem, and hence the
computational load, is particularly high when the unit-cell con-
figuration requires a large number of degrees of freedom (DOF)
to be properly represented. This could be due to a complex unit-
cell material phase topology requiring a finely resolved descrip-
tion. Another case is when the presence of defects is incorpo-
rated in the calculations. Defects are known to have a physical
influence extending over relatively long ranges in space. This, in
turn, necessitates choosing correspondingly large unit cells, known
as supercells, for the band-structure calculations. Consequently,
large cells imply large numbers of DOF. Iterative eigenvalue solvers
exhibit leading-order complexity between O(n2) and O(n3) for
full matrices and approximately O(n) for sparse matrices, where
n is the matrix size. In time-domain algorithms, matrix inver-
sion represents the bottle-neck in terms of the computational
effort. The computational complexity of eigenvalue problems is
usually higher than matrix inversion for full matrices and, as it
will be demonstrated here, of similar order, i.e., O(n), if a sparse
representation of the matrices is employed.

In this paper, we present a new technique which we refer to
as the finite-element time-domain (FETD) method for elastic band-
structure calculations, which may be applied to phononic crystals
or periodic elasticmaterials in general. This technique is analogous
to the FDTD method for band structure calculations, although
the two numerical methods are inherently different with impor-
tant implications concerning accuracy, convergence, and speed
of computation, as shown in this work.1 The proposed method

1 The combination of finite difference or finite elements and time integration is
widely used in the literature for a wide range of problems (e.g., see Ref. [43]). In
this paper, FDTD and FETD are used only for band-structure calculations of periodic
media following Bloch’s theorem.

is implemented on a one-dimensional (1D) model for longitudi-
nal wave propagation and a two-dimensional (2D) plane-strain
model of a phononic crystal that accounts for coupled in-plane
longitudinal and shear-vertical wave propagation modes. Consis-
tent mass matrices are used in both the 1D and 2D models, and
lumped-parameter mass matrices are also considered in the 2D
models. Band-structure calculations are performed incorporating
Bloch boundary conditions so that the spatial discretization of the
domain is reduced to a single unit cell. The performance of the
method is analyzed by computing the elastic band structures for
1D and 2D examples and Bloch mode shapes for the 2D case. The
1D example is a periodic rod formed by an alternation of layers
of aluminum and a thermoplastic polymer, namely Acrylonitrile
butadiene styrene (ABS). In 2D, two contrasting geometries are
presented, both composed of an ABS matrix with an aluminum
inclusion located at the center of the unit cell. The first geome-
try comprises a simple square inclusion and the second has an
inclusion featuring a complex shape with varying surface curva-
tures. Results are compared to those obtained by solving the cor-
responding standard eigenvalue problem using the FE method, as
well as a FDTDmethod that follows the technique proposed in [29].
The FE method is chosen as the prime reference method for eval-
uating the accuracy, convergence, and computational efficiency of
the proposed FETD method. Compared to the FDTD method, the
FETDmethod represents a favorable alternative because it reduces
significantly the errors and provides a much faster convergence
rate. Due to themeshing procedure of FE-based formulations, FETD
offers a more effective way to dealing with complex geometries.
A key advantage of FETD and FDTD, compared to other methods,
is that they are more amenable to handling problems for which
an eigenvalue formulation is challenging or in some cases even
impossible; for example, a multiphysical problem involving a dy-
namically changing field coupled to the solid medium.

The paper is organized as follows. Section 2 overviews the
governing equations and the finite-element modeling framework
for Bloch analysis of a unit cell representing the periodic medium.
Section 3 covers all the details pertaining to the time simulations
and post-processing aspects of the proposed method. Numerical
examples and an examination of the performance of the method
are provided in Sections 4 and 5, respectively. Finally, the conclu-
sions are summarized in Section 6.

2. Unit-cell finite-element model

The continuum equation of motion for a heterogeneous
medium is

∇ · σ = ρü, (1)

where σ is the stress tensor,u is a vector representing the displace-
ment field, ρ is the density and the dot indicates differentiation
with respect to time. For an elastic medium,

σ = C : ∇
Su, (2)

where C is the elasticity tensor, the double dot represents the
double-dot product of two tensors, and ∇

S denotes the symmetric
gradient operator,

∇
Su =

1
2

(
∇u + (∇u)T

)
. (3)

All parameters and field variables are in general space depen-
dent. Substituting Eq. (2) into Eq. (1) the strong form of the general
elastodynamic problem is obtained,

∇ · C : ∇
Su = ρü. (4)
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Finite-element discretization. Here we consider the FE method for
the spatial discretization of the problem. The solution domain Ω

is defined over the unit cell of a 2D lattice spanning the range
0 ≤ (x, y) ≤ a, where a is the lattice constant. The strong form of
the general elastodynamic problem in Eq. (4) is converted into the
weak form by introducing a weighting function w and integrating
over the solution domain [44],

−

∫
Ω

(
∇

Sw : C : ∇
Su

)
dΩ =

∫
Ω

(ρw · ü) dΩ. (5)

Note that a force term is not included as we seek to obtain the
band structure, and in the case of time simulations the loading
is introduced in terms of prescribed displacement. The solution
domain is discretized into nel element domains Ωe,

Ω =

nel⋃
e=1

Ωe. (6)

A typical weighting function for an element in the domain has
the form

w1 = NAw1A, A = 1, . . . , nen, (7)

where NA is a shape function associated with node A,w1A is the Ath

component of the approximate weighting function, and nen is the
number of element nodes. The time-dependent displacement field
is discretized in a similar way,

u = NBd1B, B = 1, . . . , nen, (8)

where d1B is time dependent and expresses the nodal displace-
ment. Substituting Eq. (7) and Eq. (8) into Eq. (5) yields

−

∫
Ω

(
∇

SNAw1A : C : ∇
SNBd1B

)
dΩ =

∫
Ω

(
ρNAw1A · NBd̈1B

)
dΩ.

(9)

Eq. (9) can be expressed as a system of algebraic equations in
the following matrix form:

MÜ + KU = 0, (10)

where M and K are the mass and stiffness matrices, respectively,
and U and Ü are the nodal displacement and acceleration vectors,
respectively. The mass and stiffness matrices are assembled from
the element-levelmass,Me, and stiffness,Ke, contributions follow-
ing the direct stiffness method [44],

M =

nel∑
e=1

Me, (11)

K =

nel∑
e=1

Ke. (12)

Evaluating the integral on the right-hand side of Eq. (9) yields
the consistent mass matrix. A disadvantage of the consistent mass
formulation is that it generally results in non-zero off-diagonal
terms in themassmatrix. This makes the time evolution of Eq. (10)
computationally demanding because it requires solution of a sys-
tem of equations at each time step. Lumped-mass matrices, which
are diagonal by construction, offer a more efficient alternative as
they enable faster time integrations. There are numerous ways to
obtain a lumped mass matrix, but one of the most common is the
HRZ method [45]. In the HRZ method, only the diagonal entries of
the consistent mass matrix are computed but are scaled such that
the total translational mass is preserved in each direction.

The time-evolving elastodynamic wave propagation response
is obtained by integration of Eq. (10) in time. Together with the

application of periodic Bloch boundary conditions and a proper
transient excitation in the form of prescribed displacement, this
equation can be solved for different values of the Bloch vector k
to obtain the band structure of a periodic system following the
procedure we describe in this paper.

Bloch boundary conditions. Bloch’s theoremdescribes the behavior
of a wave in an infinite periodic medium in terms of a wave func-
tion in the reciprocal space [6]. In terms of displacement vectors,
the theorem takes the form

u (x, k; t) = ũ (x, k) ei(k
Tx−wt), (13)

where ũ is the Bloch function, t is the time, i =
√

−1, and, for a
two-dimensional system,x = (x, y) is the position andk=

(
kx, ky

)
.

Consider the unit cell represented in Fig. 1(a). The set of edge nodes
belonging to the top and right edges (dashed lines in Fig. 1(a))
constitutes a redundant DOF as these nodes actually belong to
neighboring unit cells. Hence, these sets of DOF are removed by
linking them to the corresponding DOF belonging to the bottom
and left edges (continuous lines in Fig. 1(a)). The equations repre-
senting the boundary conditions are collected in matrix form and
inserted into themass and stiffnessmatrices through a transforma-
tion matrix. Specific details on how these sets of DOF are defined,
linked, and inserted into the Bloch transformationmatrix are found
in Ref. [40].

3. Unit-cell time-domain simulation

Time integration method. Eq. (10) is integrated in time using one
of the several forms of Newmark’s time-integration methods [46],
yielding the computation of the displacements, velocities, and ac-
celerations for increasing values of t. Following Newmark’s family
of methods, the discrete system of equations are

Di+1 = Di + ∆tVi + (∆t)2
[(

1
2

− β

)
Ai + βAi+1

]
, (14)

Vi+1 = Vi + ∆t [(1 − γ )Ai + γAi+1] , (15)

MAi+1 + KDi+1 = Fi+1. (16)

In these equations, D, V, and A denote displacement, velocity, and
acceleration vectors, respectively. The time interval is denoted by
∆t and i indicates the time step. The quantities β and γ are the
Newmark parameters determining the specific type of Newmark
scheme, which affects the accuracy and the stability of the numer-
ical simulation. In this work, these parameters are chosen to be
β = 0, γ = 1/2, providing an explicit central-difference Newmark
scheme, which is computationally efficient and less demanding in
its storage requirements compared to implicit methods. However,
an explicit Newmark scheme is conditionally stable, thus the time
interval is defined such that the Courant–Friedricks–Levy (CFL) lies
at the stability limit

∆t =
∆he

cmax
, (17)

where∆he is the element size and cmax is the highest phase velocity
in any of the sub-media (or material types) considered in the
model. For time intervals below the quantity specified in Eq. (17),
some accuracy is compromised but stability is still guaranteed.

The procedure for solving for the elastodynamic wave propa-
gation response using the selected Newmark scheme is done as
follows. Given K, M, F and proper initial conditions for prescribed
displacement, the following steps are carried out to compute the
displacement, velocity and acceleration:
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Fig. 1. Location and form of input and output signals used for the 2D time-domain simulations. (a) Unit cell having a simple geometry. (b), (c) Ricker wavelet used as a
prescribed displacement excitation signal and recorded signal at a random point in the unit cell, respectively. (d), (e) Fourier transform of the above signals. The spectrum
of each of the 5 Ricker wavelets used to build the excitation signal is also shown in (d).

1. Use Eq. (16) to obtain the acceleration vector at t = 0, i.e.,Ai.
This is done by replacing the i+1 with i in this equation and
using Di as an initial condition. The force vector F is set to
zero throughout the simulation.

2. Obtain the displacement vector for the first future time step,
i.e., Di+1. This is done by applying Eq. (14) and using the
displacement and velocity vectors at t = 0, i.e., Di and Vi, as
initial conditions.

3. Use Eq. (15) to evaluate Vi+1.
4. Use Eq. (16) to evaluate Ai+1.
5. Advance in time and use Eqs. (14), (15), and (16) in this

order to obtain the displacement, velocity and acceleration
vectors, respectively, in the next time step.

6. Repeat the last step numerous times until the entire time
range of interest is covered.

Transient excitation. A wide-band frequency signal is used to ex-
cite all the modes required to calculate the dispersion relation of
the system up to the frequency limit where the FE discretization
begins to introduce noticeable errors. A Rickerwavelet (also known
as the Mexican hat signal) is applied as a prescribed displacement
at a random point in the unit cell, as shown in Fig. 1(a), where a
squared unit cell with a side length of a = 1 m is represented.
The Ricker wavelet is the second derivative of a Gaussian function,
defined as

u (t) = a2
(
a2t2 − 1

)
e−

a2t2
2 , (18)

with fc =

√
π ·a
2 defining the central frequency of the signal. The

main advantage of this choice of signal is the absence of a zero-
frequency component, which is susceptible to introducing numer-
ical artifacts in the scheme and should be filtered out from the
recorded displacement field if present [27]. On the other hand, the
Ricker wavelet possesses a limited bandwidth around its central
frequency, especially at low frequencies, which prevents the exci-
tation of a sufficient number of modes of vibration. Therefore, we
define 5 Ricker wavelets having central frequencies fc,1 = 0.25 ×

103 Hz, fc,2 = 0.5 × 103 Hz, fc,3 = 1 × 103 Hz, fc,4 = 2 × 103 Hz,
and fc,5 = 4 × 103 Hz, (where Ω = 2π fc,ia/cl and ci is the
phase velocity the mediumwhere the prescribed signal is applied)
and consider their total displacement response in the time domain
i.e., u(t) = u1+u2+u3+u4+u5. This extends the total bandwidth
of the signal to cover the necessary frequency range for the target
band-structure calculations (e.g., roughly the first 12 branches).

The resulting combined signal is shown in Fig. 1(b) in the time-
domain and in Fig. 1(d) in the frequency domain. Moreover, the
frequency spectrum of each of the five signals used to obtain the
total prescribed signal is also shown in Fig. 1(d), (where Vi denotes
the amplitude of the response stemming from the application of
the excitation with central frequency fc,i).

Calculation of frequency band structure and bloch mode shapes. The
procedure to obtain the band structure starts by setting up a
value for the Bloch wave vector k, which is inserted into the mass
and stiffness matrices through the Bloch boundary transformation
matrix (due to the dependence on the wave vector, the Bloch
boundary transformation must be applied at each k point). Then, a
transient excitation is applied at a random point within the unit
cell for t = 0 as described above. As the time is incremented,
Eqs. (14), (15) and (16) are used to solve for future displacements,
velocities and accelerations at every node. A detector is randomly
placed at one node in order to record the temporal signal for
the displacement, as illustrated in Fig. 1(a). The time–history data
is Fourier transformed into the frequency domain using the Fast
Fourier Transform (FFT)method, obtaining a set of resonantmodes
as illustrated in Fig. 1(e). For a sufficiently long period of time, the
error introduced by the assumption of periodicity in the recorded
signals is minimized (see Section 5 for details). Each of the peaks of
these resonant modes in the frequency domain corresponds to the
eigenvalue of a vibrational mode for the given Bloch wave vector
k. The spanning ofk along the IBZ allows for obtaining the resonant
modes, and hence, the dispersion curves.

In addition to obtaining the band structure, the computation of
Bloch mode shapes is also necessary to fully characterize the dis-
persion characteristics of the periodic medium. Unlike a standard
eigenvalue problem, for which the eigenvalues and eigenvectors
provide the band structure and Bloch mode shapes, respectively,
the proposed time-domain technique allows for obtaining the
eigenvalues only. However, the well-known experimental modal
analysis procedure [47] may be utilized to compute the mode
shapes from a set of frequency response functions (FRF) for the
Bloch transformed unit cell. Moreover, the Modal Assurance Cri-
terion (MAC) [48] may be employed in order to identify and solve
degenerate modes at high-symmetry points by comparing Bloch
mode shapes obtained from sources placed at two different points
in the unit cell (see Fig. 1(a)). The computation of Bloch mode
shapes requires the recording of the displacement field signals
at every node in order to obtain the required FRFs. Hence, the
number of detectors used is equal to the number of nodes in these
calculations.
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Fig. 2. Phononic band structure for longitudinal elastic waves in a 1D phononic
crystal. An aluminum and ABS unit cell is considered, with a filling fraction fr =

0.5. Black solid lines, green triangles, and blue dots correspond to FE, FDTD, and
FETD results, respectively.

4. Numerical examples

The proposed FETD method is used to compute the band struc-
ture of 1D and 2D phononic crystals in this Section. Results are
presented and compared to the solutions obtained by solving the
corresponding standard eigenvalue problem by FE, selected as a
reference method. An analogous FDTD method that also incorpo-
rates Bloch boundary conditions is implemented for comparison
(see Appendix for a detailed description of discretization scheme
and the approach followed for applying the Bloch boundary con-
ditions). All examples considered are for unit cells composed of
aluminum and an ABS polymer. The properties of these materials
are: density ρ = 2700 kg/m3, Young’s modulus, E = 70 GPa,
Poisson ratio, ν = 0.34 for aluminum, and ρ = 1050 kg/m3,
E = 2.3 GPa and ν = 0.34 for ABS.

1D phononic crystal. In the one-dimensional problem, we consider
longitudinal wave propagation (axial modes) along a slender rod
with a unit cell composed of two layers of equal length of ABS
and aluminum with a filling fraction fr = 0.5, as shown in the
schematic diagram in Fig. 2. Bloch periodic boundary conditions
are applied at the ends of the unit cell which allows us to rep-
resent a periodic rod of infinite length. Band-structure results
are depicted in Fig. 2, showing calculations using FE (eigenvalue
problem), FDTD and FETD. The unit cell in both the FE and FETD
methods is discretized in space into nel = 256 two-node elements,
while for the FDTD method the grid is staggered and composed of
n = 256 points for the stress and n + 1 points for the velocity. For
the two time-domain methods, the time evolution is simulated
over nst = 220 (1,048,576) steps with a time interval ∆t =

5.4 × 10−7 s, as stated in Eq. (17). As observed in Fig. 2, nearly
identical eigenvalues are obtained using FE and FETD, and some
discrepancies are found for the FDTD case. These differences are
analyzed in detail in Section 5.

2Dphononic crystal. Twodifferent geometries comprising a square
lattice are considered in the two-dimensional problem. Both ge-
ometries are composed of an ABS matrix and an aluminum
inclusion placed at the center of the unit cell. The first geometry in-
corporates a simple square aluminum inclusion, denoted fromnow
on as simple geometry, while the second geometry incorporates
an inclusion with a complex shape, denoted as complex geometry.
This complex shape, which is inspired by the helicoid–catenoid
logo of the Phononics 20xx conference series [49], exhibits varying

curvatures. Fig. 3 illustrates the meshes used for the simple and
complex geometries. For the simple geometry, all the methods
under evaluation (FE, FDTD, FETD) implement a structured and
uniform grid; see Fig. 3(a), (b). The grid for FE-based methods is
formed by n = nx × ny = 322 elements where each element
has two nodes in each direction (nx and ny define the number
of elements in the x and y directions, respectively). The grid for
FDTD is composed of nx × ny = 322 points for normal stress,
= nx + 1 × ny + 1 = 332 for shear stress, and nx + 1 × ny and
nx × ny + 1 points for the x and y components of the velocity field.
In this manner, the total number of nodal degrees of freedom is
the same for all three methods, Ndof = 2178. After application of
the Bloch boundary conditions, this number is reduced to Ndof =

2048, since the nodes lying at the top and right sides of the
unit cell belong to neighboring unit cells and are condensed out.
The complex geometry is designed to explore one of the main
advantages of FE-based methods over FD methods, namely the
use of unstructured grids. Fig. 3(c), (d) illustrate the two different
approaches used to mesh a complex shape, an unstructured grid
used for FE and FETD,which is precisely adapted to the shape of the
inclusion, and a structured and uniform grid used for FDTD, where
the geometry of the inclusion is describedwithmuch less accuracy.
The total number of nodal degrees of freedom used for the FE-
based methods, after application of Bloch boundary conditions, is
ndof = 2560. For the FDTD case, it is not possible to have the same
exact number of degrees of freedom due to the different type of
mesh used, although the number of points in the mesh is chosen
so that the number of degrees of freedom after reduction due to
periodicity is the closest possible value compared to that used for
the FE-based models, ndof = 2520. The k-space is discretized such
that lk = 17. Hence, a total of nk = 49 k-points are evaluated
to generate the elastic band structure along the main symmetry
directions. For the time domain methods, the total number of
steps is set to nst = 218

= 262,144 time steps, and the time
interval is obtained by applying Eq. (17), resulting in a time interval
∆t = 1.57 × 10−6 s for the simple geometry (the corresponding
frequency resolution is ∆f = 1/(∆tṅst ) = 2.4 Hz). Different time
intervals are set for the complex geometry due to the different
type of meshes used. For FETD, the time interval for the complex
geometry model is calculated considering the smallest element
size, ∆t = 4.45 × 10−7 (∆f = 8.56 Hz). The corresponding time
interval for FDTD is set to ∆t = 2.88 × 10−6 (∆f = 1.32 Hz).

Fig. 4 provides band structure results along the boundaries of
the IBZ for the simple [(a) and (b)] and complex [(c) and (d)] geome-
tries. For both geometries, consistent and lumped mass matrices
are used for the finite-element-based methods, FE, FETD. Black
(gray) solid lines illustrate FE results for consistent (lumped) mass
matrices and blue (red) dots represent FETD results for consistent
(lumped) mass matrices. Green triangles represent FDTD results.
An excellent agreement is noted between the results obtained by
the proposed FETD method and by solving the standard eigen-
value problem by FE, regardless of the geometry used. Noticeable
differences are, however, observed in the results obtained using
FDTD. While clear differences are found already using a simple
geometry with the same type of mesh (Fig. 4(a), (b)), these are
greatly increased for the complex geometry, as the structured
mesh used in FDTD fails to properly capture the effects of the
curved shape of the aluminum inclusion. A detailed analysis of the
accuracy (in terms of the number of time steps), convergence, and
computational efficiency for k = (π/2a, π/2a) is presented later
in Section 5.

Bloch mode shapes. The periodic Blochmode shapes φtd computed
with the time-domain algorithm are obtained from FRFs (akin to
experimental modal analysis) and expanded to full size using a
transformation operation [40]. A comparison of the Bloch mode
shapes calculated using FE and FETDmodelswith the samenumber
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Fig. 3. Meshes used for the 2D numerical calculations using FE, FETD and FDTD. Structured and uniform meshes used to model the simple geometry using (a) FE, FETD and
(b) FDTD. (c) Unstructured mesh generated using finite-elements to model the complex geometry. (d) Structured and uniform mesh to model the complex geometry using
FDTD.

Fig. 4. Phononic band structure for longitudinal and shear-vertical elastic waves in 2D phononic crystals with the two different geometries, considering only wave vectors
confined to the edge of the IBZ. Results are shown for FE and FETD based on consistent and lumped mass models. Results corresponding to the FDTD implementations are
also shown. Black solid lines and blue/red dots correspond to FE and FETD, respectively; while green triangles correspond to the FDTD results. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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of degrees of freedom, for the 3rd branch at k = (π/2a, π/2a),
is depicted in Fig. 5 for consistent and lumped mass matrices,
showing the two geometries under examination. The structure of
themode shapes do not indicate clear differences between the two
methods at a first glance. The Blochmode-shape error is quantified
by comparing the FETDmode shapes φtd to the FEmode shapes φfe,
and is defined as

em = 1 −
abs

[
φtd

′φfe
]

|φtd| |φfe|
, (19)

where abs[·] denotes the complex modulus, and |·| denotes the
vector 2-norm. The resulting error is em,cm = 1.42 · 10−4 and
em,lm = 4.66·10−5 for the simple geometry case shown in Fig. 5(a),
(b) and Fig. 5(e), (f) corresponding to the consistent and lumped
mass models, respectively. It is also noted that the error is of the
same order for the 10 first branches, and is below the following
limits: em,cm < 1.94 · 10−4; em,lm < 1.56 · 10−4. The error in the
mode shape calculations for the complex geometry is also very low,
although it is slightly higher than the simple-geometry case; it is
em,cm = 7.16 · 10−4 and em,lm = 3.44 · 10−4 for the 3rd branch at
k = (π/2a, π/2a), and it is below the following limits for the first
10 branches: em,cm < 3.38 · 10−3; em,lm < 1.98 · 10−3.

5. FETD method performance

Accuracy. We evaluate the relative error as a function of the total
number of steps nst by comparing the predicted eigenvalues using
FETD versus direct solution by FE for the simple and complex
geometries. All the error results shown here are obtained using
models having the same exact meshes presented in Fig. 3, and are
calculated as follows:

est =
ftd − ffe

ffe
, (20)

where ftd, ffe are the computed eigenvalues for the 3rd branch at
k = π/a (1D) or k = (π/2a, π/2a) (2D) for the time-domain
methods, that is FDTD and FETD, and the direct FE method based
on eigen analysis, respectively. The direct application of the FE
method is based on a consistent mass model and is used as the
reference case. The reference models have Ndof = 512 periodic
DOF in 1D, and Ndof = 32,768, Ndof = 40.960 periodic DOF in
2D for the simple and complex geometries, respectively. Results
shown in Fig. 6(a) are for the 1D problem. The error here converges
to a minimum and a constant value as the number of steps is
increased, falling quickly below 1% and being almost negligible for
nst > 220. In contrast, the finite-difference approach converges to a
slightly larger error value of 1.5%. For the 2D problem, FETD results
show a similar trend for both the consistent and lumped mass
cases and both type of geometries; the error is maximum for small
number of steps and is rapidly reduced as the recorded signals
progress in time, being below 1% and 2% for the simple and com-
plex geometries, respectively, as shown in Fig. 6(b), (c). Note that
for a very low number of time steps, the assumption of periodicity
in the recorded signals is not accurate, resulting in higher relative
error in the eigenfrequency estimations when transforming the
temporal signals into the frequency domain. The importance of the
spatial discretization procedure arises when comparing the FDTD
results between the simple and complex geometries, where the
error is dramatically increased from an acceptable value of ≈3%
for the simple geometry to a significant value of≈10% for the com-
plex geometry. This result clearly demonstrates how the proposed
FETD method offers a much more precise way to handle complex
geometries compared to other existent time domain methods for
band structure calculations, such as FDTD. As stated previously, the
frequency resolution ∆f is inversely proportional to the product
of the time interval and the total number of steps, resulting in a

higher resolution (lower ∆f ) as the number of steps is increased.
This is clearly observed in the sawtooth pattern of the error signals,
where ∆f is related to the difference between the local maxima
and minima.

Convergence. The relative error in the band-structure calculations
as a function of the number of DOF is calculated using the following
expression:

edof =
fNdof,td − fNref,fe

fNref,fe
, (21)

where fNdof,td denotes an eigenvalue computed in the time domain
for a given number of DOF and fNref,fe denotes an eigenvalue com-
puted for the reference FE model having the same number of de-
grees of freedom as the referencemodels considered in Fig. 6. Note
that since the reference case is taken as the direct eigenvalue
solution for the finest resolved model under analysis, the FE error
will eventually reach a value of edof = 0. The total number of time
steps used for these calculations for the time-domain methods is
nst = 262,144. Error results are depicted in Fig. 7(a)–(c) for the
4th branch at wave vector k = (π/2a, π/2a). Results show, as a
general trend, a much slower convergence for the FDTD method
regardless of the dimensionality and geometry considered, and a
very similar convergence between FE and FETD methods for both
consistent and mass matrices. For the 1D case, the error is reduced
below 1% for a moderate number of DOF (Ndof = 32) for FE-based
methods, while for FDTD, 256 DOFs are needed to get an error
below this value. In 2D, convergence is quite fast for all the finite-
element methods for a simple geometry, with an error below 2.5%
even for the smallest model size; while relatively finely resolved
models (Ndof = 8192) are needed using FDTD to get acceptable
errors, i.e., below 2%. Finally, the results for the complex geometry
show a general increase in the error for all methods, especially
for small-size models, as expected. However, FE and FETD error
values are much lower than FDTD. This is attributed mostly to the
geometry conforming mesh used, which describes the geometric
complexity in the material distribution with much more accuracy
than the uniform mesh used for FDTD. Furthermore, we observe
that FE-based methods exhibit higher accuracy than FDTD even at
a very high number of DOF (e.g., see the differences between FETD
and FDTD error values for Ndof = 40,960 at the far right end of
Fig. 7c).

Computational efficiency. The computation time of the proposed
FETD method is dominated by the acceleration calculation in
Eq. (16), which has to be done nst times for each k point. The
computation time of the FEmethod is dominated by the eigenvalue
calculation. Both the FE-based and the FD-based methods produce
sparse matrix structures. For large model sizes, it is critical to
take advantage of this sparsity to reduce memory requirements
and computational complexity. Both the model creation and the
numerical simulations in this paper are carried out using the
commercial software Matlab [50].

The computation time (depicted in logarithmic scale) versus
Ndof is observed in Fig. 8 for the (a) 1D model, and (b) 2D simple-
geometry model. Note that the computational complexity is in-
dependent of the type of mesh used; hence the calculation in 2D
is restricted to the simple geometry. Every set of data obtained
by the different methods used in this work are fitted to obtain a
rough estimation of the numerical complexity. A function of the
form ȳ = ax̄b is used, were ȳ denotes the computational time
and x̄ represents the number of DOF. Results for the fittings are
shown in Table 1. Results for both the 1D and 2D cases indicate
a higher computation time for the time-domain algorithms com-
pared to FE. However, linear complexity is evident for all the finite-
elements methods (FE, FETD). This is expected due to the sparse
representation of the mass and stiffness matrices, with very small
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Fig. 5. Calculated mode shapes for the 3rd branch at k = (π/2a, π/2a) for the simple and complex geometries of 2D phononic crystals. (a), (e) illustrate mode shapes
extracted from FE calculations for a simple geometry using consistent and lumped masses, respectively. (b), (f) represent mode shapes calculated using the FETD method
for the simple geometry and considering consistent and lumped mass matrices, respectively. Mode shapes calculated for the complex geometry are shown in (c), (g) using
FE and consistent and lumped masses, respectively, and in (d), (h) using FETD and consistent and lumped masses, respectively.

Fig. 6. Time-domain methods error in frequency as a function of number of time steps for (a) 1D, (b) 2D simple geometry, and (c) 2D complex geometry. Results are shown
for the 3rd branch and wave vector k = π/a in 1D and k = (π/2a, π/2a) in 2D. Vertical dashed black lines indicate the number of time steps used for all other calculations
presented in this work: nst,1D = 1,048,576 and nst,2D = 262,144. The reference method is high-resolution FE eigenvalue analysis using consistent mass matrices.

Fig. 7. Frequency error estimation as a function of number of DOF for (a) 1D, k = π/a, (b) 2D simple geometry, k = (π/2a, π/2a), and (c) 2D complex geometry,
k = (π/2a, π/2a). Results are shown for the 4th branch. Vertical dashed black lines in the three subfigures mark the number of DOF used in Fig. 2 and Figs. 4 and 5,
which are ndof,1D = 256, and ndof,2D = 2048 for the simple geometry and ndof,2D = 2560 for the complex geometry. The reference method is high-resolution FE eigenvalue
analysis using consistent mass matrices.
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Fig. 8. Computation time as a function of number of degrees of freedom for (a), 1D, k = π/a, and (b), 2D, k = (π/2a, π/2a). Circles represent the computation time results
obtained directly from numerical simulations and lines represent curve fits of this data using the expression ȳ = ax̄b . Note that the number of DOF used for the calculations
presented in Figs. 2 and 3 are Ndof,1D = 256, Ndof,2D = 2048, respectively.

Table 1
Table summarizing computational complexity of proposed FETD method versus
other techniques.

Method ȳ = ax̄b Complexity

1D
FETD 1.7 × 10−1(Ndof )0.91 O(n0.91)
FE 9.3 × 10−5(Ndof )1.16 O(n1.16)
FDTD 5.7 × 10−2(Ndof )0.74 O(n0.74)

2D

FETD (CM) 1.7 × 10−1(Ndof )1.09 O(n1.09)
FETD (LM) 1.1 × 10−2(Ndof )1.12 O(n1.12)
FE (CM) 5.1 × 10−3(Ndof )1.02 O(n1.02)
FE (LM) 5.1 × 10−3(Ndof )1.02 O(n1.02)
FDTD 2.1 × 10−2(Ndof )0.90 O(n0.90)

differences in the exponents probably due to a small uncertainty
in the evaluation of the computation time. The FDTD method is
observed to exhibit the lowest complexity among all methods
considered. Upon comparing Fig. 7c for convergence and Fig. 8b for
computation time, it is evident that a problem-specific error versus
computation time analysis is needed to assess which of the FETD
and FDTD methods is faster for a given error threshold− is it FETD
with a smallerNdof but good convergence or is it FDTDwith a larger
Ndof but good efficiency.

6. Conclusions

A new method for elastic band-structure calculations based on
finite-element spatial discretization and time-domain simulations
is proposed and analyzed in this paper. Thismethod, which ismore
generally a methodology with possible variations in implemen-
tation approaches, is denoted the FETD method for elastic band-
structure calculations. The method incorporates Bloch boundary
conditions that enable a reduction of the domain to a unit cell, in
contrast to other time-domain methods where a certain number
of unit cells is considered in the computations [25]. The domain is
discretized in space by finite elements and in time using an explicit
Newmark time-stepping scheme. The frequency band structure
and mode shapes are calculated and compared to results obtained
by the Bloch-reduced FDTD method, which is a corresponding
technique, demonstrating superior accuracy and convergence per-
formance of the new method. An advantage of FE-based methods
is that FE discretization easily handles complex geometries and
generally outperforms finite-differencemethods, as demonstrated
using a unit cell incorporating a complex-shaped inclusion where
it was shown that the proposed FETDmethod strongly gives better
performance in both the accuracy (Fig. 6) and the convergence
(Fig. 7). The computational efficiency of the new method, while

lower than FDTD, does exhibit linear complexity. The FETD and
FDTD methods enable band-structure calculation for problems
where it is not possible to formulate an eigenvalue problem using
the direct FE or FD methods, such as unit cells with a dynamically
flowing fluid for example.

Future improvements may be implemented to increase the
computational efficiencywhilemaintaining the same accuracy. For
example, the definition of a pseudoperiodic initial field distri-
bution, which is consistent with the periodicity enforced at the
boundaries of the unit cell, can reduce considerably the total
number of time steps needed to compute the band structure
(as reported in Ref. [30] for FDTD elastic band-structure calcu-
lations). Furthermore, the length of the time–history data may
be dramatically reduced by considering an alternative to a stan-
dard Fourier transform for the transformation to the frequency
domain. This may be done using a post-processing method called
the high-resolution spectral estimation method [51].
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Appendix. Finite-difference time-domain model

We describe here the discretization andmodeling details of the
FDTD method used in this work. We consider wave propagation
along isotropic materials in the linear regime and without losses.
The dynamics of an inhomogeneous elastic solid under these con-
ditions in two dimensions is expressed as follows based on a
Cartesian coordinate system:

ρv̇ = ∇ · σ, (A.1)

σ̇ = λI∇v + µ(∇v + v∇), (A.2)

where v = (vx, vy) is a vector representing the velocity field,
σ = (σxx, σyy, σxy, σyx) is a matrix representing the stress field and
λ, µ are the Lamé parameters.



86 A. Cebrecos, D. Krattiger, V.J. Sánchez-Morcillo et al. / Computer Physics Communications 238 (2019) 77–87

Fig. A.1. Schematic representation of the adopted FDTD scheme.

Discretization

Thediscretization of the velocity, normal stress, and shear stress
fields shown in Eqs. (A.1) and (A.2) is performed using a time
interval ∆t , and space intervals ∆x and ∆y, with ∆x = ∆y.
Partial derivatives are substituted by their central finite-difference
approximations. The scheme staggers the velocity fields in time
and space with respect to the stress fields. Furthermore, the shear
stress components are staggered in space with respect to the
normal stress components. Thus, the spatial distribution of the
fields result in the spatial distribution shown in Fig. A.1. Note that
(i, j) represents the position index of the x, y directions in the 2D
grid, and n denotes the time step index.

The explicit expressions of the discretized versions of Eqs. (A.1)
and (A.2) are as follows:

ρ
v
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2
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2 , j
)

∆t
=

σ n
xx (i + 1, j) − σ n

xx (i, j)
∆x

+
σ n
xy

(
i + 1

2 , j +
1
2

)
− σ n

xy

(
i + 1

2 , j −
1
2

)
∆y

, (A.3)

ρ
v
n+ 1

2
y

(
i, j + 1

2

)
− v

n− 1
2

y
(
i, j + 1

2

)
∆t

=
σ n
yy (i, j + 1) − σ n

yy (i, j)
∆y

+
σ n
xy

(
i + 1

2 , j +
1
2

)
− σ n

xy

(
i − 1

2 , j +
1
2

)
∆x

, (A.4)
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where Eqs. (A.3) and (A.4) represent the velocity field in the x and
y directions, respectively, Eqs. (A.5) and (A.6) represent the normal
stress field in the x and y directions, respectively, and Eq. (A.7)
represents the shear stress.

Boundary conditions

Similar to the FE and FETDmethods, Bloch boundary conditions
are used in the FDTD method. However, some differences in the
their implementation are to be considered. In FDTD, Bloch bound-
ary conditions are applied for both the velocity field

v (x, k; t) = ṽ (x, k) ei(k
Tx−wt), (A.8)

and the stress field

σ (x, k; t) = σ̃ (x, k) ei(k
Tx−wt), (A.9)

where the notation convention used in Eq. (13) is followed. The
discretized version of these boundary conditions is as follows:

Normal to the x axis:
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σ n
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Normal to the y axis:
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Special attention must be given to the implementation of these
boundary conditions. The discretized version shown above clearly
shows how these fields are staggered in space and time. However,
it is not straightforward to consider that since stress and velocity
fields are staggered in time, the application of these boundary
conditions has to be performed immediately after each of the
fields are updated. Thus, if the choice is to first solve Eqs. (A.5),
(A.6), and (A.7), then the boundary conditions corresponding to
the stress should be applied right after and always before updating
the velocity fields, Eqs. (A.3) and (A.4). Once the velocity fields
are updated, the corresponding boundary conditions have to be
applied.
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