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ABSTRACT

This article presents a numerical optimization procedure of continuous gradient porous layer properties to achieve perfect absorption
under normal incidence. This design tool is applied on a graded porous medium composed of a periodic arrangement of ordered unit
cells allowing one to link the effective acoustic properties to its geometry. The best microgeometry continuous gradient providing
the optimal acoustic reflection and/or transmission is designed via a nonlinear conjugate gradient algorithm. The acoustic perfor-
mances of the so-designed continuous graded material are discussed with respect to the optimized homogeneous, i.e., nongraded
and monotonically graded material. The numerical results show a shifting of the perfect absorption peak to lower frequencies or a
widening of the perfect absorption frequency range for graded materials when compared to uniform ones. The results are validated
experimentally on 3D-printed samples, therefore, confirming the relevance of such a gradient along with the efficiency of the control
of the entire design process.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5119715

I. INTRODUCTION

Homogeneous open-cell porous materials are widely used as
acoustic treatments. Their behavior is well described by propagation
models, and their efficiency to operate as broadband acoustic absorb-
ers has been theoretically, numerically, and experimentally shown
for a long time. Nevertheless, they suffer from a lack of efficiency in
the low frequency regime because of their intrinsic loss mechanisms.
Moreover, perfect absorption is usually achieved at a single fre-
quency, and the absorption curve presents ripples in frequency.
Increasing homogeneous layer thickness is a common way to over-
come this issue in order to absorb lower frequency noise. However,
perfect absorption depends on the visco/inertial transition fre-
quency,1 therefore, limiting the lowest possible perfect absorption

frequency and the thickness of efficient treatments. In addition, thick
and thus heavy treatments are unrealistic for many practical applica-
tions. Double-porosity media,2 metasurfaces,3,4 and acoustic meta-
materials5 are nowadays considered efficient ways to increase the
low frequency attenuation/absorption. Another way consists in intro-
ducing a gradient of properties through the thickness. A correct
design of such a gradient can enhance the layer absorption over
a given frequency range.6–8 The optimal gradient is commonly
described as a monotonic increase of the air flow resistivity or a
decrease of the porosity of the structure through the thickness,
leading to an expected continuous in frequency impedance matching
at the air-porous interface. Actually, such a gradient improves
absorption in the mid- and high-frequency ranges but not in the low
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frequency one. Moreover, a nonmonotonic gradient can lead to
better performances9 but are still misunderstood.

Functionally graded materials are used in many other
engineering fields, mainly in mechanics, and can be precisely man-
ufactured with various techniques.10 For instance, Han et al. manu-
factured a continuously graded bone implant by selective laser
melting.11 Yet, conventional porous manufacturing processes allow
one to produce graded materials, e.g., graded foams7 or felts,8 but
the control of the gradient is relatively low and, therefore, inaccu-
rate for precise design. Moreover, large samples are often macro-
scopically inhomogeneous. No continuously graded porous
acoustic treatments have yet been optimized and precisely manufac-
tured to the author’s knowledge. Fortunately, recent improvements
in additive manufacturing have allowed the production of efficient
acoustic treatments such as helical metametarials,12,13 slow-sound
based metamaterials,6,14 and porous open-cell materials.15 This tech-
nology enables an efficient control of the microstructure design,
because the pore shapes and dimensions can be simply adjusted for
the target macroscopic properties. Acoustic multilayer treatments
have been manufactured by means of 3D printing such as an assem-
bly of four layers composed of 1 mm thick microlattices,16 a super-
position of microperforated panels,17 or a microperforated panel
backed by a conventional felt and plenum18 as well as a superposi-
tion of two microlattice layers and a flexible membrane.19 However,
these acoustic treatments consist of a small fixed number of discrete
layers and were not optimized.

The aim of this article is to propose a numerical optimization
procedure to design continuously graded porous acoustic materials
achieving broadband perfect absorption at normal incidence. The
graded properties can be directly linked to the microgeometry or
the manufacturing process of the treatment. As an example, the
procedure is applied to a periodic 3D printable microlattice porous
material, in which the microstructure is easily tuned allowing a
physical understanding of the gradient shape as well as to experi-
mentally validate the whole process. The optimized gradients are
compared to optimized homogeneous and optimized monotonic
gradient layers in order to highlight the importance of such an
unconstrained gradient. This optimization procedure can also be
applied to any stochastic treatments manufactured by the conven-
tional process.

The gradient optimization method is widely inspired from
Ref. 20, where the characterization problem of graded porous
parameter profiles was tackled by means of a conjugate gradient
algorithm and the prior knowledge of the sample reflection and
transmission coefficients. The present work adapts the proposed
methodology to reflection and/or transmission optimization. This
work distinguishes from previous one by the optimization objec-
tive, the focus on tangible variables, and the additive manufacturing
proof of concept. It also differs from multilayer optimizations6,8,21

where a finite number of layers are fixed before the optimization.
The article is organized as follows: first, the optimization procedure
is introduced in Sec. II. The acoustic behavior of graded porous
materials is recalled, and gradient optimization methods are
detailed. Then, the optimized graded profiles and resulting absorp-
tion coefficients are presented and discussed in Sec. III. After a
discussion of the optimizations, an experimental validation is
carried out in Sec. IV.

II. OPTIMIZATION PROCEDURE

A. Description of the problem

The problem is depicted in Fig. 1. The porous layer is
assumed to be of infinite lateral extent along the Cartesian y and z
directions and is L-thick in the x direction. The normal incident
plane wave is invariant in the (O,y,z) plane and propagates through
the positive x direction. The inhomogeneity of the layer occurs in
the x direction. Thus, as the acoustic excitation is a normal plane
wave, the problem only depends on the x coordinate and thus
becomes unidimensional. The surrounding and saturating fluid is
air and the porous layer can possibly be rigidly backed. The inter-
faces of the porous layer are flat and parallel and are designated,
respectively, by Γ0 and ΓL at x ¼ 0 and x ¼ L. The air medium is
denoted by the superscript a. The two semi-infinite air domains
are subsequently denoted by ai and at to differentiate the upstream
and downstream sides in the transmission case.

The analysis is performed in the linear harmonic regime at
the circular frequency ω with the implicit time dependence eiωt .
The normal incident plane wave is expressed as pi ¼ e�ikax , such
that the pressure field in ai reads as pa

i ¼ e�ikax þReik
ax , wherein

ka is the incident wavenumber and R is the reflection coefficient. If
the layer is not rigidly backed, the transmitted wave takes the form
pa

t ¼ pt ¼ Te�ikax , where T is the transmission coefficient.

B. Geometry driven equivalent fluid model

The porous medium is modeled as an equivalent fluid medium.1

Its acoustic properties are governed by its microstructure conditioned
by the manufacturing possibilities.

1. Rigid frame and equivalent fluid approximations

The acoustic energy penetrating the porous medium is mainly
dissipated through the interaction between the frame and the air
saturating the pores, resulting in viscous and thermal losses. If
the skeleton is sufficiently rigid, it can be assumed motionless.

FIG. 1. x-graded porous slab. pi is the incident wave, pr is the reflected wave,
and pt is the transmitted wave. The incident wave is aligned with x.
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The porous medium can thus be considered an equivalent fluid.1

The considered equivalent fluid is isotropic, but the theory can
simply be extended to anisotropic ones. The viscous and thermal
losses in the pores are, respectively, accounted for in the equivalent
density ρ(x, ω) and in the equivalent bulk modulus K(x, ω). These
quantities are complex, frequency dependent, and x dependent
in this study. They can be approximated by analytic, empirical,
or semiphenomenological models.1 The semiphenomenological
Johnson-Champoux-Allard-Lafarge (JCAL) model22–24 is consid-
ered here and accounts for complicated pore morphologies by
means of six parameters. According to this model, the equivalent
density can be written as

ρ(x, ω) ¼ ρa

f(x)
α(x, ω), (1)

where ρa is the density of the saturating fluid, i.e., the air medium
in the present case, f(x) is the open porosity profile, and α(x, ω) is
the dynamic tortuosity profile. The equivalent bulk modulus can be
written as

K(x, ω) ¼ γP0
f(x)

γ � γ � 1
α0(x, ω)

� ��1

, (2)

where P0 is the static pressure, γ is the specific heat ratio, and
α0(x, ω) is the thermal tortuosity profile.

The Johnson et al. model defines the dynamic tortuosity as22

α(x, ω) ¼ α1(x)� iν
ω

f(x)
q0(x)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iω

ν

2α1(x)q0(x)
f(x)Λ(x)

� �2
s

, (3)

where ν ¼ η=ρa is the kinematic viscosity of the saturating fluid, η
is the dynamic viscosity, and α1(x), Λ(x), and q0(x) are the high
frequency limit of the tortuosity, the viscous characteristic length,
and the viscous static permeability profiles of the porous medium,
respectively.

The Champoux-Allard-Lafarge model further defines the
thermal tortuosity as23,24

α0(x, ω) ¼ 1� iν0

ω

f(x)
q00(x)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iω

ν0
2q00(x)

f(x)Λ0(x)

� �2
s

, (4)

where ν0 ¼ ν=Pr, Pr is the Prandtl number, and Λ0(x) and q00(x)
are the thermal characteristic length and the static thermal perme-
ability profiles, respectively. Therefore, a graded porous material
along the thickness is that of thickness dependent porosity f(x),
high frequency limit of the tortuosity α1(x), viscous characteristic
length Λ(x), viscous static permeability q0(x), thermal characteristic
length Λ0(x), and static thermal permeability q00(x).

2. Equivalent fluid description: Two-scale asymptotic
method

When the microstructure of the considered rigid frame mate-
rial is known, the six JCAL parameters can be directly derived25

and computed by means of the Finite Element Method (FEM).26

The two-scale asymptotic method can be applied to periodic or sto-
chastic media, providing a representative elementary volume (REV)
where the dimensions are largely smaller than the acoustic wave-
length. The REV of heterogeneous media must contain a large
number of heterogeneities to be representative of the heterogeneity.
If the medium is periodic, the REV reduces to the unit cell corre-
sponding to the periodic unitary pattern. In the case of graded
media, it also requires that the characteristic size of the REV is
much smaller than the geometric variation, so that the assumption
of the local periodicity of both materials and fields still holds.25

The method consists in the application of a two-scale asymptotic
homogenization to governing fundamental equations. The JCAL
parameters are then calculated by integrating the computed fields.
This method is detailed in Appendix A for anisotropic media. Such
a numerical description of the optimized porous medium suits well
to the understanding of the graded profiles because it focuses on
the microgeometry. Therefore, a graded porous material through
the thickness is that of thickness dependent microgeometry.

3. Geometry driven parameters and data-basis
generation

The six JCAL parameters are computed for a discrete set of
variables defining the porous medium architecture.

When the medium can be numerically described, the variables
defining the porous medium architecture are purely geometric (pore
size, pore shape, etc.) and the material can be digitally manufactured.
In other words, the JCAL parameters dependence is numerically
obtained from a parametric representative elementary volume.

In contrast, when the porous material is manufactured by a
technique that does not give access to a precise microstructure
description, the variables defining the porous medium architecture
are those of the manufacturing process (compaction rate for felts,
filling factor for additive manufacturing, etc.). Then, the JCAL data
basis can be generated from experimental direct1,27 or inverse28

characterization of several homogeneous samples.
To sum up, the acoustic behavior of a porous medium is

driven by its microstructure. If a precise description of the latter
is within easy reach, the JCAL dependence on the microstructure
is digitally computed by means of a two-scale asymptotic method
and the FEM. On the contrary, if a precise description is out of
reach, the JCAL dependence is computed by experimental inverse
characterization.

In any case, the JCAL parameters are computed for a discrete
set of microstructural or manufacturing variables defining the
porous medium architecture. Each JCAL parameter dependence is
then obtained by interpolating a continuous and smooth function
from the discrete set of computed values, thus forming a data basis
for the optimization procedure.

The variables defining the microstructure of the porous
medium will be the subject of the gradient optimization.

C. Acoustic waves propagation in the graded porous
material

Once the JCAL parameters are linked to the architecture vari-
ables, the acoustic behavior of the graded material can be evaluated.
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For clarity of the presentation, the (x, ω) dependence of ρ and K is
dropped in the following.

1. Equations of macroscopically inhomogeneous
porous materials under the rigid frame approximation

Using the alternative Biot’s formulation,29 De Ryck et al. derived
the equations of motion in a macroscopically inhomogeneous porous
material under the rigid frame approximation.30 Under normal inci-
dence, they take the usual form in the frequency domain,

iωρV ¼ � @p
@x

, (5)

�iω
K

p ¼ @V
@x

, (6)

where p is the fluid pressure in the material pores and V is the
normal equivalent velocity component for the oscillatory fluid flow
in the interconnected pores. In the general case, the medium is con-
sidered anisotropic, as shown in Appendix A, with ρ being a tensor
and K being a scalar. Here, the focus is put on the properties of the
system along the normal incidence direction.

2. State vector formalism

The problem being unidimensional, Eqs. (5) and (6) can be
directly cast in a first order differential matrix system from

@

@x
W� B(x)W ¼ 0, (7)

wherein W is the column state vector ð p;VÞ` and

BðxÞ ¼
0 �iωρðxÞ

�iω
KðxÞ 0

������
������: (8)

Equation (7) can be directly solved via the Peano Baker series.31

Nevertheless, the transfer Green functions formalism is preferred
because it directly provides the analytical gradient of the cost func-
tion that will be used in the optimization procedure.

3. Wave splitting and transfer Green functions
formalism

The pressure and velocity fields can be decomposed in a
forward, pþ, and a backward propagating wave, p�. By analogy with
electromagnetism, where the medium is surrounded by vacuum, a
“vacuum wave splitting” formulation is employed.30 The pressure
field is expressed in the surrounding fluid, i.e., in the air, and reads as

p+ ¼ 1
2

p+ ZaVð Þ, (9)

wherein Za is the impedance of the air. This transformation is used
to solve the problem, because (p, V)` ¼ (p[a], V [a])

`
at the interface

Γ0 (see Fig. 1). Equation (7) becomes

@

@x
pþ

p�

� �
� Aþ A�

�A� �Aþ

����
���� pþ

p�

� �
¼ 0; (10)

where A+ ¼ iω
2

Za

K
+

ρ

Za

� �
.

The two transfer Green’s functions, Gþ and G�, are now
defined as follows:

p+(x) ¼ G+(x)pþ(L): (11)

By introducing Eq. (11) into Eq. (10), the first order differential
system to solve now reads as

@

@x
GþðxÞ
G�ðxÞ

� �
¼ Aþ A�

�A� �Aþ

����
���� GþðxÞ

G�ðxÞ
� �

: (12)

These two transmission Green’s functions are related to the space
dependent reflection R(x) ¼ p�(x)=pþ(x) and transmission T(x) ¼
pþ(Lþ)=pþ(x) coefficients along the layer thickness via

R(x) ¼ G�(x)
Gþ(x)

, (13)

T(x) ¼ T(L)
Gþ(x)

: (14)

The reflection and transmission coefficients of the whole porous
layer are thus R ¼ R(0), and the transmission coefficient is
T ¼ T(0). The solution of Eq. (12) is found by integrating from
x ¼ L, where the boundary conditions are known, to x ¼ 0 using
an iterative method such as the fourth order Runge-Kutta scheme.

When the porous layer is surrounded by air, the boundary
conditions at x ¼ L are R(L) ¼ 0 and T(L) ¼ 1, which translates in
the form

Gþ(L) ¼ 1,
G�(L) ¼ 0:

�
(15)

In the opposite, when the porous layer is rigidly backed at x ¼ L,
the only boundary condition is R(L) ¼ 1, which translates in the
form

Gþ(L)
G�(L)

¼ 1: (16)

D. Unconstrained gradient optimization: Nonlinear
conjugate gradient algorithm

The objective of the gradient optimization is to bring the
reflection and/or transmission coefficients of the porous layer as
close as possible to objective values by tuning a microstructure or
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manufacturing parameters. The cost function J to be minimized
reads as

J q(x)ð Þ ¼
X
ω

W(ω)(jR(q(x), ω)�Robj(ω)j2

þ jT(q(x), ω)�Tobj(ω)j2), (17)

where Robj(ω) and Tobj(ω) are the objective reflection and trans-
mission coefficients, respectively, W(ω) is a frequency weighting
function used to favor targeted frequency ranges, and vector q(x) is
the microstructure or manufacturing parameters’ profiles varying
along the layer thickness x ¼ [0; L] and being the subject of the
optimization. The goal can be to mimic the reference behavior, e.g.,
inverse characterization, or to optimize the absorption of the
graded porous layer, e.g., when Robj(ω) and Tobj(ω) are set to zero.

In this study, the absorption coefficient A ¼ 1� jRj2 of the
rigidly backed layer is maximized. The maximum absorption coeffi-
cient is 1, which means that perfect absorption is achieved. The
objective reflection coefficient is thus zero, while no transmission is
present. The optimization algorithm is detailed for the generic case.

The nonlinear conjugate gradient method32 is a generalization
of the conjugate gradient method33 that can minimize any continu-
ous function as long as the gradient of which can be computed.
The convergence to the global minimum is not ensured if the mini-
mized function possesses local minima. This iterative algorithm
steps are reminded in Appendix B. It consists in computing a
search direction that will be added multiple times to the minimized
function. If there is an analytic expression of the JCAL parameters’
variation with respect to the graded optimized parameter, then the
search direction also has an analytic form.

E. Constraint to be monotonic gradient optimization

As detailed in the Introduction, it is of interest to compare the
absorption of an optimally graded porous layer to the one of an
optimally graded layer in which the porosity or permeability is
decreasing through the material thickness. Thus, a constraint gradi-
ent optimization algorithm is proposed. Its aim is to minimize the
cost function defined by Eq. (17) by tuning a monotonically
varying manufacturing or microgeometric gradient. For more
clarity, only one parameter q is optimized by this algorithm. The
profile of q(x) is obtained by interpolating a continuous function
from a discrete set of N equally spaced points qn ¼ q(xn), where
x0 ¼ 0 and xN ¼ L. A shape-preserving piecewise cubic interpola-
tion (Matlab, pchip) is used. The interpolated function is C1 (its
first derivative exists and is continuous) and respects the shape of
the data. In this way, if qnþ1 , qn 8n [ [0, N], then q(x) is mono-
tonically decreasing. The values of qn are optimized by means of a
Nelder-Mead algorithm minimizing the cost function J and satisfy-
ing the condition qnþ1 , qn 8n [ [0, N].

III. NUMERICAL RESULTS

The reflection coefficient possesses pairs of poles/zeros, the
location of which in the complex frequency plane
~f ¼ Re(~f )þ i Im(~f )14,34 represents the system modes and their
associated leakages. In the absence of losses, the zeros and poles are

perfectly symmetric with respect to the real frequency axis. Both
are shifted toward the negative imaginary frequency half-space
when losses are added according to the chosen time Fourier con-
vention. Perfect absorption, i.e., A ¼ 1� jRj2 ¼ 1, is achieved
when the added losses perfectly compensate for the leakage of the
structure, leading to the critical coupling condition. In this respect,
20 log (jR(~f )j) is also plotted in the complex frequency plane to
complement the analysis of the absorption coefficient. In the fol-
lowing, the nth zero of the reflection coefficient corresponding to
the nth maximum of the absorption coefficient is noted fn�1. The
so-called fundamental quarter-wavelength resonance is thus f0.

A. Considered periodic porous medium: Microlattice
porous medium

As an example, the optimization procedure is applied to the
idealized microlattice graded porous layer depicted in Fig. 2. The
microlattice is composed of a superposition of perfectly cylindrical
parallel rods orthogonally alternating in the plane (O, y1, z1). Thus,
the medium is structured and periodic. Then, the REV reduces to
the unit cell consisting of the junction of two orthogonal rods as
highlighted in Fig. 2. The unit cell is described by two microstruc-
tural parameters: the rod diameter D, which also fixes the unit-cell
thickness, and the spacing between two adjacent rods. Other equiv-
alent parameters are the rod diameter D and the dimensionless rod
step S. The latter is the spacing between two adjacent rods normal-
ized by the rod diameter, e.g., a step S ¼ 1 implies that the rods are
in contact and a step S ¼ 2 implies that the two rods’ centers are
distant from 2D. The pore size H is defined here as the minimum
distance between two adjacent rods. It is a function of S and D and
is expressed as

H ¼ D(S� 1): (18)

FIG. 2. Diagram of the porous material microstructure. The box delimits a unit
cell. The main axis of the porous material (O, x1 ) is aligned with the axis of the
slab (O, x). The acoustic wave propagates along x ¼ x1.
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All the JCAL parameters of the unit cell depend on S, while the
characteristic lengths and permeabilities depend also on D. For a
given S, the characteristic lengths are proportional to D and the
permeabilities are proportional to D2 (see Appendix A). The poros-
ity has a remarkably simple expression, which is given by

f ¼ 1� π=(4S): (19)

The minimum porosity is equal to �0:21 when the rods are touch-
ing each other.

This material would be described as “quasi-isotropic” in com-
posite science, because its in-plane properties are identical but
different from the out-of-plane ones. Therefore, the microlattice
material is anisotropic and its properties in the principal directions
can be evaluated following the method described in Ref. 35.
Nevertheless, the material principal directions fit the layer axes and
rods are aligned in the plane of the layer. Only the out-of-plane
properties are then considered in the present article because of the
normal incidence excitation. The analysis of the anisotropic fea-
tures of the present microlattice graded layer is out of the scope of
the present article. The layer is thus considered isotropic in the
following.

The microstructure gradients are derived from a through-the-
thickness variation of S, D, or both. The rod diameter D is bounded
between Dmin ¼ 100 μm and Dmax ¼ 1000 μm. The dimensionless
rod step S is bounded between Smin ¼ 1:2 and Smax ¼ 25. The
porosity is then bounded between fmin ¼ 0:35 and fmax ¼ 0:97,
while the pore size is bounded between 20 μm and 24mm.

B. Numerical settings

Both unconstrained and constraint to be monotonic gradient
optimizations are numerically implemented. Continuous functions
must be discretized. The microgeometric profiles are defined by
100 points. The considered graded layers are 30 mm thick leading
to a discretization step of 300 μm. Concerning the conjugate gradi-
ent, the number of iterations is set to 20 and the number of itera-
tions of the line search is set to 15. These settings are found to be a
good balance between computation time and convergence. The fre-
quencies of interest are linearly spaced. The frequency weighting
function W is a passband function, and its lower boundary Wlb

and higher boundary Whb depend on the optimization case. W is
equal to 1 in the interval 2π � [Wlb, Whb] and 0 elsewhere while
0 , Wlb , Whb.

C. Homogeneous material acoustic behavior

Before investigating the optimal graded microlattice acoustic
behavior, one of a homogeneous microlattice is first analyzed. Rod
diameter D and rod step S are constant along the thickness of
homogeneous materials. Figure 3(a) shows the absorption coeffi-
cient of two optimized 30 mm-thick homogeneous microlattice
porous layers with the rod diameter of D ¼ 100 μm and
D ¼ 400 μm, respectively. Both layers are critically coupled at their
respective fundamental quarter-wavelength frequencies. Absorption
peaks are wider in the case of 100 μm than in the case of 400 μm
rod diameter, while f0 is slightly higher.

Cai et al.36 suggested that, for an open porosity material
having circular pores, the perfect absorption is obtained when the
pore radius equals the viscous boundary layer thickness. The latter
is linked to the visco/interial transition frequency, for highly
porous materials, as also noted by Jimenez et al.6 In our case, the
porosity is usually low (f , 0:9) and the perfect absorption is
achieved for a pore size H for any rod diameter, see Fig. 3(a).

Moreover, the viscous permeability decreases with the pore
step S [governing f and H, see Eqs. (18) and (19)] and increases
with the rod diameter D [governing H, see Eq. (18)]. The lower the
pore step S is and the lower the rod diameter D is, the lower the
viscous permeability is. In other words, as both the pore step and
the rod diameter decrease, the resistivity (/1=q0) increases. When
perfect absorption must be attained at f0, a higher rod diameter is
compensated by a lower rod step keeping the pore size constant but
strongly lowering the porosity and slightly increasing the viscous
permeability. The visco/inertial transition frequency of the material
is decreased. Similarly, decreasing the rod diameter while keeping
perfect absorption at f0 shifts up the position of the poles in the
absence of loss, thus decreasing the associated quality factor. Thus,
the perfect absorption peaks are wider, but higher in frequency
when the rod diameter is small and the rod step is optimized, as
shown in Fig. 3(a). The reflection coefficient in the case of 100 μm
rod diameter is plotted in the complex frequency plane Fig. 3(b).
At f0, the zero of the reflection coefficient is exactly located on the
real frequency axis, confirming the perfect absorption. For this
sample, only one zero can be located on the real frequency axis at a
time, i.e., perfect absorption can only be achieved at a single fre-
quency. The losses of the following zeros are too large.

The 30mm thick homogeneous layer, with a rod diameter of
100 μm (Fig. 3), is taken as a reference. The perfect absorption peak

FIG. 3. (a) Hard-backed absorption coefficients of a 30 mm thick homogeneous
porous layers: 100 μm rod diameter (solid line) and 400 μm rod diameter
(dashed line), both structures critically coupled at f0. (b) Representation of
20 log (jRj) in the complex frequency plane of 30 mm thick porous slab,
100 μm rod diameter.
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frequency appears at f ref0 ¼ 2400 Hz. Three designs are described in
Secs. III D–III F corresponding to three different goals: lowering f0,
enhancement in the mid-frequency range of the absorption, and the
broadband absorption for the same layer thickness.

D. Lowering of first perfect absorption frequency

The goal of this optimization is to lower the frequency of
perfect absorption f0 without changing the layer thickness, i.e.,
L ¼ 30 mm by introducing a gradient of D(x) and S(x). Achieving
perfect absorption at lower frequency for the same dimension is of
particular interest because this is impossible with a homogeneous
porous material and because of increasing space constraints in
practical applications. Subsequently, a set of Wlb and Whb is chosen
in such a way that f0 is as small as possible and A(f0) . 0:995.

On the one hand, the monotonically decreasing gradient of
S (and thus of f and H) or D (and thus of H ) does not allow to
reduce f0 with respect to f ref0 . On the other hand, the lowest f0 pre-
senting perfect absorption that we could obtain by means of
W(ω) ¼ 2π[1300, 1700] Hz with an unconstrained graded layer is
1630 Hz. Figure 4(a) depicts the absorption coefficient of the refer-
ence 30 mm-thick homogeneous microlattice porous layer, the opti-
mized unconstrained graded porous layer of the identical thickness,
and an optimized 43.5 mm-thick homogeneous layer possessing
perfect absorption at f0 ¼ 1630 Hz. The unconstrained optimized
profiles of D(x) and S(x) are provided in Fig. 4(c). The thickness of
the graded layer equals λ=7:1 at f0, where λ is the corresponding
wavelength in air. The other frequency weighting functions can
lead to very similar results. The absorption peak appears at a much
lower frequency, but the peak is thinner and the average absorption
at high frequency is degraded. Nevertheless, this result should be
mitigated at first glance by the fact that the optimization algorithm
has no control outside [Wlb, Whb]. This is testified by the complex
frequency analysis of the corresponding reflection coefficient
plotted in Fig. 4(b).

The optimized profiles depicted in Fig. 4(c) present a very low
rod step zone manifested at the air-layer interface and a high rod
step close to the rigid backing. The high rod diameter at the
air-layer interface tempers the effect of a very low rod step on the
pore size, see Eqs. (18) and (19) and thus allows a low porosity
while preventing the viscous permeability from falling. A continu-
ous transition between both profiles is noticed. In other words,
the optimal profile consists in a very low porosity and a medium
pore size layer with a plenum, enabling to control the resonance fre-
quency of the layer. Inside the low porosity zone, S(x) ¼ Smin ¼ 1:2,
i.e., f(x) ¼ fmin ¼ 0:34 and H(x) � 180 μm, while inside the per-
meable zone, D(x) ¼ Dmin ¼ 100 μm, f(x) [ [0.72; 0.82], and
H(x) [ [180; 350] μm. The optimization bounds are thus reached
and it would be expected to reach lower f0 by enlarging the variation
ranges, therefore, increasing the porosity drop between the two
zones.

E. Medium frequencies optimization

This optimization aims at increasing the absorption coefficient
between the first (f0) and second (f1) absorption maxima while
keeping f0 as low as possible. These two objectives being contradic-
tory W(ω) ¼ 2π[2000, 3200] Hz lead to good balance.

The monotonically decreasing gradient of S, with a rod diame-
ter being set to 100 μm, improves the absorption over the frequency
range of interest by shifting f0 up to 2600 Hz and downshifting f1,
while widening the absorption peaks, as shown in Fig. 5(a). Perfect
absorption is achieved at f0. The optimized rod step profile is pre-
sented in Fig. 5(c). The rod step decreases monotonically, but with
a small variation. For an easier comparison, only the rod step
profile is optimized in the case of the unconstrained gradient, and
the rod diameter is set to 100 μm. The effect of the free gradient is
more pronounced than that of the constraint gradient: f0 is still
equal to 2600 Hz, while f1 is shifted down, as depicted in Fig. 5(a).
The absorption peak widths are fairly similar to the monotonic gra-
dient optimized ones, see Fig. 5(a). As a result, absorption between
f0 and f1 is higher than the absorption with monotonic gradient

FIG. 4. (a) Hard-backed absorption coefficients of an optimized homogeneous
100 μm rod diameter 30 mm thick slab (solid line), a homogeneous 100 μm
rod diameter 43.5 mm thick slab (dotted-dashed line), and a graded 30 mm
thick slab (dashed line). (b) Representation of 20 log (jRj) in the complex
frequency plane of free gradient optimized, 30 mm thick porous slab, 100 μm
rod diameter. (c) Homogeneous (solid lines) and free gradient optimized
(dashed lines) profiles of rod diameter (blue) and rod step (green) reducing f0.
W (ω) ¼ 2π[1300; 1700] Hz.
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optimization. The corresponding optimized profile is a succession
of relatively closely grouped and distant rods. The variation of the
rod step is greatly inferior than the one presented in Fig. 4(c). Still,
it enables the control of the frequency of the first two quarter-
wavelength resonances. A combined variation of the rod diameter
and the rod step further increases the absorption. The rod step
profile is very similar to one presented in Fig. 5(c). The diameter
profile follows an inverse trend than the rod step: rod diameter is
high when the rod step is low and vice versa. This two-parameter
gradient shifts f1 to a lower frequency.

F. High frequencies’ optimization

Now, the maximization of the absorption coefficient over
the [3000; 20 000] Hz frequency range is analyzed. The choice
of W(ω) ¼ 2π[3000; 20 000] Hz allows one to keep a perfect

absorption at f0. The absorption coefficient of the monotonic rod
step gradient layer is higher than 0.99 between 3600 Hz and
30 000 Hz and also almost higher than 0.997 over the whole opti-
mized frequency range as shown in Fig. 6(a). The four absorption
peaks appearing at fn, n ¼ 0, . . . , 3, are shifted up in comparison
to f refn and gathered between 3000 and 20 000 Hz. Moreover, an
absorption drop to 0.993 is observed between f0 and f1. The rod
step bell-mouth shape profile, see Fig. 6(c), begins by the
maximum authorized value Smax. The resulting porosity profile is
almost linearly decreasing. In other words, the profile presents an
impedance matching. Similar to Sec. III E, only the rod step profile
is optimized in the case of the unconstrained gradient and the rod
diameter is again fixed at 100 μm. The absorption coefficient is

FIG. 5. (a) Hard-backed absorption coefficients of optimized 30 mm thick slabs,
100 μm rod diameter with homogeneous rod step (solid line), monotonically
graded rod step (dotted line), and free graded rod step (dashed-dotted line). (b)
Representation of 20 log (jRj) in the complex frequency plane of 30 mm thick,
100 μm rod diameter, free graded rod step, porous slab. (c) Optimized graded
profiles of rod step: monotonic (dashed-dotted line), and free gradient (dashed
line), D ¼ 100 μm. W (ω) ¼ 2π[2000; 3200] Hz.

FIG. 6. (a) Hard-backed absorption coefficients of optimized 30 mm thick slabs,
100 μm rod diameter with homogeneous rod step (solid line), monotonically
graded rod step (dotted line) and free graded rod step (dashed line). (b)
Representation of 20 log (jRj) in the complex frequency plane of 30 mm thick,
100 μm rod diameter, free graded rod step, porous slab. (c) Optimized graded
profiles of rod step: monotonic (dashed-dotted line) and free gradient (dashed
line), D ¼ 100 μ. W (ω) ¼ 2π[3000; 20 000] Hz.
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depicted in Fig. 6(a). It is higher than 0.99 between 3600 and
20 000 Hz and higher than 0.997 between 3900 and 19 500 Hz. This
improvement is possible by gathering five absorption maxima
between Wlb and Whb, as can be seen from the complex frequency
analysis of the reflection coefficient depicted in Fig. 6(b).
Homogeneous and graded materials with monotonically decreasing
rod step only gather four absorption maxima. Furthermore, the
absorption drops after Whb is explained by the downwards shifting
of f5. The rod step profile, Fig. 6(c), consists of 5 alternating rela-
tively closely grouped and distant rods, enabling one to gather
5 modes and, therefore, 5 zeros of the reflection coefficient in the
optimization frequency range. The ripples are almost removed and
the absorption coefficient is almost flat over the whole frequency
range of optimization.

IV. INTERPRETATION

Regardless of the optimization frequency range, an optimized
unconstrained through the thickness gradient enhances the absorp-
tion properties of the material in comparison to the optimized
homogeneous layer or optimized monotonic graded layer with
identical thickness. Nevertheless, the previous results require com-
ments. First, the downshifting of the first perfect absorption peak
with identical thickness is necessarily accompanied by a decrease
of the absorption efficiency at higher frequencies. Second, the
enhancement of the absorption coefficient over a specific frequency
range is always achieved at the expenses of the absorption proper-
ties outside this range. Third, broadband perfect absorption is pos-
sible if the first perfect absorption peak frequency is higher than
that of the homogeneous layer. Fourth, the optimal profile is an
alternating distribution of relatively closely grouped and distant
rods rather than a monotonic gradient. It leads to an alternating
distribution of contrasted porosity layers. This counterintuitive
result is explained by the fact that the alternation enables the
creation and a better control of resonances. At lower frequencies, a
resonance possesses a large quality factor, thus providing a thin
absorption peak. A low porosity, medium pore size layer placed in
front of a plenum only possesses a single resonance at low fre-
quency. For broadband absorption, the alternation leads to an
increase of the density of states over the optimization frequency
range, creating a larger number of reflection coefficient zeros
located in the targeted frequency range. The absorption coefficient
can, therefore, be almost flat over a wide frequency range.
Nevertheless, this result might be tempered by the fact that the
tuning of these modes are constrained by the thickness of the layer,
thus preventing a full control of their frequency position.

V. EXPERIMENTAL VALIDATION

The optimization process is experimentally validated on
samples fabricated by a Fused Deposition Modeling (FDM) Pro2
printer supplied by RAISE3D. The slicer software is Simplify3D.
The cylindrical samples have a diameter and a thickness of 30 mm
as depicted in Fig. 7. The extruded material is polylactic acid
(PLA). The printer’s nozzle is 400 μm in diameter. The targeted
geometry is similar to the one described in Fig. 7. However, the
orthogonal rods’ layers are interlocked: the distance separating two
layers oriented in the same direction is 1:5D instead of 2D.

Moreover, the rods are not perfectly cylindrical and their surface is
scarred. Their diameter is close to the nozzle diameter. FDM and
Simplify3D do not allow a direct control of the microlattice rods
spacing. The manufacturing variable is the “infill factor” percentage
which is inversely proportional to the spacing between two adjacent
rods and can only take integer values. In this way, a graded manufac-
turing variable is optimized. The gradient is obtained by tuning the
infill factor varying between 10% and 70%, which corresponds to a
porosity of 0.90 and 0.33, respectively. A combined variation of the
rod diameter and spacing would require a multinozzles printer or
using another manufacturing process. Finally, an 800 μm thick solid
layer surrounds the porous microlattice. Its effect is accounted for by
multiplying the density and bulk modulus of the equivalent fluid by
the surface of the sample divided by the surface of its porous
portion.1 The acoustic parameters are measured using a 30mm diam-
eter impedance tube, with a cut-off frequency of 6750Hz. The absorp-
tion coefficient is measured using the two microphones with hard
backing configuration. The measurements are preformed between
500Hz and 6000Hz. Because of the printing inherent defects, the
JCAL parameters dependence on the infill factor were obtained by the
inverse characterization of a set of eight homogeneous samples fol-
lowed by an interpolation over the infill factor scope.37 The JCAL
parameters of the characterized samples along with their interpolation
(infill factor [ [10; 70]%) are presented in Appendix C.

A continuous gradient, where each layer would have a
different infill factor cannot be manufactured straightforwardly.
Instead, a 10-layer material was printed. This number of layers is

FIG. 7. (a), (b) Homogeneous samples. (c) Graded sample top view. (d)
Graded sample bottom view.
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more than sufficient to accurately discretize the continuous profile.
The optimized continuous profile was thus discretized in 10 layers
of identical thickness. First, the infill factor of each layer equaled
the mean infill factor of the continuous profile within the layer
width. Then, a Nelder-Mead algorithm adjusted the infill factor of
each layer. To do so, the algorithm minimized the cost function
given by Eq. (17), where R(ω) is the multilayer reflection coefficient
and Robj(ω) is the continuous profile reflection coefficient, both of
them numerically computed.

Two optimizations are carried out by the unconstrained gradi-
ent algorithm. The first one considers W(ω) ¼ 2π[1600; 1700] Hz

in order to reduce f0 with respect to f ref0 . The second one considers
W(ω) ¼ 2π[2500; 5500] Hz so that the absorption is higher

between f ref0 and f ref1 .
Figures 8(a) and 9(a) depict the absorption coefficient of the

homogeneous materials, critically coupled at f ref0 (TR ¼ 55%, i.e.,
f ¼ 0:47) along with the simulated and measured absorption
coefficients, in both orientations, of the optimized graded materials.
Figures 8(b) and 9(b) provide the corresponding continuous poros-
ity profiles resulting from the continuously optimized infill factor
profiles and their discretizations. The absorption coefficients are
optimized considering the “front” orientation which corresponds to
an incident wave propagating through the porosity profile from left

(Thickness ¼ 0 mm) to right (Thickness ¼ 30 mm). The absorp-
tion coefficients are also presented considering the “back” orienta-
tion. In this configuration, the incident wave propagates from
Thickness ¼ 30 mm to Thickness ¼ 0 mm.

For both optimizations, the continuous and multilayered profiles
lead to numerically very close absorption coefficients, in both orienta-
tions, meaning that the discretization procedure is efficient.

The W(ω) ¼ 2π[1600; 1700] Hz optimization resulting profile is
consistent with the purely numerical one of Fig. 4(c). In both cases,
the targeted frequency range is lower than f ref0 and the spacing
between adjacent rods (/S and /f) increases along the material
thickness. The measured and simulated absorption coefficients are
almost superimposed in the “front” orientation, with a measured
perfect absorption (A ¼ 0:997) at f0 ¼ 1650 Hz (λ=7:1). The correla-
tion in the reverse (“back”) orientation is lower. The first microlattice
layer of the 3D printed samples is always more resistive than expected,
resulting in a difficult control of the gradient in the “back” orientation.

The medium frequencies optimization, defined by W(ω) ¼ 2π
[2500; 5500] Hz, creates a profile characterized by four zones
alternating relatively closely grouped and distant rods, leading to
low and high porosity. This profile is also consistent with the one
depicted in Fig. 5(c). Moreover, there is a very good correlation
between the simulated and the measured absorption coefficient, in
both orientations, resulting in an absorption higher than 0.960

FIG. 8. (a) Rigid-backing absorption coefficients of optimized manufactured
30 mm thick slabs, numerically computed from the continuous profile (green
lines), from the multilayered profile (blue lines), and measured (red lines), in
direct (solid lines) and reverse (dashed lines) orientations. (b) Porosity profiles
resulting from the infill factor profiles optimized by an unconstrained gradient,
continuous (green line) and discretized in ten layers (blue line).
W ¼ [1600; 1700] Hz.

FIG. 9. (a) Rigid-backing absorption coefficients of optimized manufactured
30 mm thick slabs, numerically computed from the continuous profile (green
lines), from the multilayered profile (blue lines), and measured (red lines), in
direct (solid lines) and reverse (dashed lines) orientations. (b) Porosity profiles
resulting from the infill factor profiles optimized by an unconstrained gradient,
continuous (green line) and discretized in ten layers (blue line).
W ¼ [2500; 5500] Hz.
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between 2630 and 5390 Hz, in the “front” orientation. The absorp-
tion reaches 0.994 and 0.979 at f0 and f1, respectively.

VI. CONCLUSION

This work reports theoretical and experimental results for the
continuous manufacturing gradient optimization of a porous layer
at normal incidence. The detailed gradient optimization algorithm,
adapted from an inverse characterization method, can be applied
to multiple manufacturing parameters of structured periodic or
stochastic media, as long as the variation of the JCAL parameters
with respect to the optimized graded parameters is known.

As an example, it has been applied to rigid backing absorption
optimization. The optimizations showed a significant improvement
of the absorption coefficient in comparison with optimized homo-
geneous and monotonically graded materials. On the one hand,
lowering the first perfect absorption frequency requires low poros-
ity of the material at the air-porous interface followed by an
increase. This leads to an important reduction of the absorption in
the medium and high frequencies. On the other hand, increasing
the absorption in the medium and high frequencies requires a
porosity decrease through the thickness. It results in a shift toward
high frequencies of the first maximum of absorption. The mono-
tonic gradient widens the maxima of absorption and increases it
closer to unity. The free gradient follows the same trend but adds a
sequence of lower and higher porosity to the profile. The number
of sequences is equal to the number of absorption maxima tuned
to increase the absorption in the frequency range of interest. This
results in an even higher absorption than the monotonic gradient.

Finally, experimental testing demonstrated the relevance of
such gradients.
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APPENDIX A: TWO-SCALE ASYMPTOTIC
HOMOGENIZATION PROCEDURE

More details on two-scale asymptotic homogenization proce-
dure can be found in Ref. 25.

1. Homogenizability conditions

A representative elementary volume (REV) is defined. It is
the unit cell for periodic media (Fig. 2). Then, a characteristic
dimension of the REV is selected: lc ¼ D while the characteristic
macroscopic dimension is set as Lc ¼ 1 m. Separation of the scale
requires that

lc
Lc

¼ ε � 1: (A1)

For this reason, the considered microrods cannot be higher than
some millimeters.

2. Double spatial variable

Two dimensionless variables are introduced. The macroscopic
space variable x* ¼ X=Lc and the microscopic variable y* ¼ X=lc,
where X is the actual space variable.

The derivation operation is now written as

d
dX

! d
dx*

þ ε�1 d
dy*

: (A2)

3. Asymptotic expansion

In order to separate the phenomena happening at the micro-
scopic scale from the ones happening at the macroscopic scale,
physical variables are substituted by their asymptotic expansions at
multiple scales in powers of ε. A given field ψ is expressed as

ψ(x*, y*) ¼
X1
n¼0

εnψ (n)(x*, y*): (A3)

4. Governing equations and JCAL parameters

The governing equations two-scale asymptotic formulations and
the retrieved JCAL parameters are given in Appendixes A and B.

5. REV characteristic dimension

Applying a homothetic transformation to the medium micro-
structure and, thus, to the REV has an analytic simple effect on the
medium JCAL parameters. Turning l(1)c into l(2)c multiplies the
viscous and thermal lengths by l(2)c =l(1)c and the viscous and thermal
permeabilities by l(2)c =l(1)c

� �2
.

6. JCAL parameters

The homogenization procedure is applied to three fundamen-
tal equations: the mass conservation, the heat diffusion, and the
momentum conservation of the saturating fluid of the REV. Ideal
gas assumption, Fourier’s law, definition of the stress tensor, and
Navier’s equation support the equations solving. An identification
in terms of power of ε and taking the limit in ω ! 1 or ω ! 0
lead to the equations of interest.

The equations are given in the generic case of anisotropic
porous material for which the tortuosity, viscous characteristic
length, and viscous permeability are diagonal tensors.

The thermal problem equation, taking the limit in ω ! 0,
reads

div(grad(θ)) ¼ �1,
θ ¼ 0 on Γ fs,
θ Ω�periodic,

8<
: (A4)

where Γ fs is the fluid-solid interface, Ω is the REV, and ej is the
unitary vector in the REV main direction j.

In the following equations, k and ξ play the role of the velocity
field and its associated pressure field, respectively. The viscoinertial
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problem, taking the limit in ω ! 0, becomes

div(grad(k0j )) ¼ grad(ξ0j )� ej,

div(k0j ) ¼ 0,

k0j ¼ 0 on Γ fs,

hk0j iΩ ¼ 0,

k0j and ξ0 Ω�periodic,

8>>>>>>><
>>>>>>>:

(A5)

where h�iΩ is the REV averaging.
The viscoinertial problem, taking the limit in ω ! 1, becomes

iωρ0
η k1j ¼ grad(ξ1j )� ej,

div(ξ1j ) ¼ 0,
k1j � n ¼ 0 on Γ fs,

hξ1j iΩ ¼ 0,

k1j and ξ1 Ω�periodic,

8>>>>>><
>>>>>>:

(A6)

The JCAL parameters are obtained by integrating, over the
fluid domain Ωf or the fluid-solid interface Γ fs, the solution fields
of these equations.

They are expressed as

f ¼
Ð
Ωf

dΩfÐ
Ω dΩ

, (A7)

α1 � ej ¼ fhI � grad(ξ1)i�1 � ej, (A8)

Λ � ej ¼ 2

Ð
Ωf

k1j � k1j dΩfÐ
Γ fs

k1j � k1j dΓ fs
, (A9)

Λ0 ¼ 2

Ð
Ωf

dΩfÐ
Γ fs

dΓ fs
, (A10)

q0 � ej ¼ hk0j iΩ, (A11)

q00 ¼
Ð
Ωf

θdΩfÐ
Ωf

dΩf
: (A12)

In the case of isotropic media, the JCAL parameters are not direc-
tion dependent: their projection over each space direction is identi-
cal. In normal incidence along x, only the ex projection matters
and appears in the propagation equations.

APPENDIX B: CONJUGATE GRADIENT METHOD

1. Conjugate gradient algorithm

Step 0: Initial guess
q(0)(x) ¼ cte 8x [ [0; L].

Step 1: First search direction
Set i ¼ 0. Then, compute R(x) and T(x) 8 x [ [0; L] by

means of Eqs. (13) and (14) and considering the ΓL BC(s).
Compute the gradient of the cost function

G(q(0)) ¼ @J

@q(0)1

,
@J

@q(0)2

, . . . ,
@J

@q(0)n

" #
: (B1)

Set D(0) ¼ G(q(0)), wherein D(i) is the search direction of iteration i.
Step 2: Line search
Compute the positive and real valued λi the size of which

equals the one of q, such that

J q(i) � λiD
(i)

� � ¼ min
λ[ Rnþ

J q(i) � λD(i)
� �

: (B2)

The step size is obtained by an iterative method. If p depends on
one parameter vector, the Golden-section search technique (Jack
Kiefer, 1953) is used to find the optimal step size. Otherwise, the
Nelder-Mead method is applied. This last method is a heuristic one
but is fast and reliable when only a few parameters are optimized.

Step 3: Update q

q(iþ1)(x) ¼ q(i)(x)� λiD
(i)(x): (B3)

Step 4: New search direction

G(iþ1) ¼ G(q(iþ1)), (B4)

D(iþ1) ¼ G(iþ1) þ βiD
(i): (B5)

βi can be computed by the Polak-Ribiere formula with an auto-
matic reset,

βi ¼ max
G(iþ1)T G(iþ1) � G(iþ1)T G(i)

G(i)TG(i)
, 0

 !
: (B6)

If i is higher than the maximum number of iterations, then the
algorithm stops. Otherwise, i ¼ iþ 1 and loops to Step 2.

2. Gradient of the cost function

This section shows the details of the computation of the gradi-
ent of the cost function leading to the search direction [Eq. (B1)].

The infinitesimal variations of R(x, ω, q) and T(x, ω, q)
are δR(x, ω, q) ¼ R(x, ω, qþ δq)� R(x, ω, q) and δT(x, ω, q)
¼ T(x, ω, qþ δq)� T(x, ω, q), respectively, resulting in a small
perturbation δq of the microgeometry parameters,

δR(x ¼ L, ω, q) ¼ 0, (B7)

δT(x ¼ L, ω, q) ¼ 0, (B8)
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either if the sample is rigidly backed or not because the boundary
condition (surface impedance) does not depend on the material
properties. From Eqs. (11), (13), and (14), the following equations
are derived:

@

@x
R ¼ 2AþRþ A�(1þ R2), (B9)

@

@x
T ¼ (Aþ þ A�R)T: (B10)

Perturbing Eqs. (B9) and (B10) by δq leads to

@

@x
δR� 2(Aþ þ A�R)δR ¼ 2RδAþ þ (1þ R2)δA�, (B11)

@

@x
δT � (AþA�R)δT ¼ T(δAþ þ δA�Rþ A�δR), (B12)

wherein

δA+ ¼ iω
2
(Z0δK

�1
eq + Z�1

0 δρeq): (B13)

The total derivative of the equivalent fluid density and bulk
modulus is expressed by the addition of their partial derivatives,

δρeq ¼
Xn
m¼1

@ρeq
@qm

δqm, (B14)

δK�1
eq ¼

Xn
m¼1

@K�1
eq

@qm
δqm: (B15)

If there is no explicit formulation of the partial derivatives, then
they are computed by the derivative definition

@f
@x

¼ lim
δx!0

f (x þ δx)� f (x)
δx

: (B16)

This is the case of the partial derivative with respect to f. Although
it appears in the expression of ρeq and Keq, the other JCAL parame-
ters also depend in a nonanalytical way on f. On the contrary, the
JCAL dependence on D is fully analytic.

The variation of the cost function perturbated by δq takes the
form38

δJ(q) ¼ 2Re
X
ω

uR(0, ω)δR(0, ω)þ uT (0, ω)δT(0, ω), (B17)

wherein, setting * as the complex conjugate notation,

uR(0, ω) ¼ W(ω)(R(ω)�Robj(ω))*, (B18)

uT(0, ω) ¼ W(ω)(T(ω)�Tobj(ω))*: (B19)

The following integration is obtained considering the boun-
dary condition equation (B7):

ðL
0

@

dx
uR(x, ω)δR(x, ω)þ uT(x, ω)δT(x, ω)ð Þ

¼ �uR(0, ω)δR(0, ω)� uT(0, ω)δT(0, ω): (B20)

The right term of this equation is included in Eq. (B17). The left
term’s integrand can be written from Eqs. (B9) and (B10),

@

dx
uRδR ¼ δR

@uR
@x

þ 2uR(A
þ þ A�R)

� �

þ uR 2RδAþ þ (1þ R2)δA�� �
,

@

dx
uTδT ¼ δT

@uT
@x

þ uT (A
þA�R)

� � (B21)

þuTT(δA
þþδA�R)þδR(uTTA

�), (B22)

where uR(x,ω) and uT (x,ω) are arbitrary functions chosen such
that the δR and δT dependencies are eliminated. In order to do
this, they must satisfy

@

@x
uR
uT

� �
¼� 2ðAþþA�RÞ A�T

0 AþþA�R

����
���� uR

uT

� �
: (B23)

Equations (B21) and (B22) reduce to

@

@x
uRδR¼ uR 2RδAþþ (1þR2)δA�� �

, (B24)

@

@x
uTδT ¼ uTT(δA

þþδA�R): (B25)

A new expression of the variation of the cost function is then
obtained by combining Eqs. (B17), (B20), (B24), and (B25),

δJ(q)¼�2Re
X
ω

ðL
0
uR(2RδA

þþ (1þR2)δA�)

þuTT(δA
þþδA�R): (B26)

This variation can also be simply expressed as

δJ(q)¼
ðL
0

Xn
m¼1

@J
@qm

δqm: (B27)
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The identification of Eq. (B26) with Eq. (B27) and replacing
the derivatives by their expression lead to

@J
@qi

¼ �Re
X
ω

iωuR Z0(1þ R)2
@K�1

eq

@qi
� (1� R)2

Z0

@ρeq
@qi

 !

þ iωTuT Z0(1þ R)
@K�1

eq

@qi
� (1� R)

Z0

@ρeq
@qi

 !
: (B28)

APPENDIX C: JCAL EXPERIMENTAL PARAMETRIC
MODEL

The “infill factor” is the manufacturing variable controlling
the spacing between two adjacent rods. The JCAL parameters of
eight homogeneous samples, in which the infill factor is comprised
between 10% and 70 %, are retrieved by means of inverse charac-
terization.28 The manufacturing repeatability is very high which
allows us to consider a single sample per tested infill factor. Finally,
a numerical parametric JCAL model is obtained by interpolating
over the values. It is worth noting that the interpolation functions
must be continuous and monotonic. Figure 10 presents the JCAL

parameters of the homogeneous samples obtained by inverse char-
acterization and the considered interpolated parametric functions.
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