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This work deals with the sound wave propagation modeling in anisotropic and heterogeneous

media. The considered scattering problem involves an infinite layer of finite thickness containing

an anisotropic fluid whose properties can vary along the layer depth. The specular transmission and

reflection of an acoustic plane wave by such a layer is modeled through the state vector formalism

for the acoustic fields. This is solved using three different numerical techniques, namely, the trans-

fer matrix method, Peano series, and transfer Green’s function. These three methods are compared

to demonstrate the convergence of the numerical solutions. Moreover, the implemented numerical

procedures allow the authors to retrieve the internal acoustic fields and show their dependency

along with the fluid anisotropic properties. Results are presented to illustrate the changes in absorp-

tion that can be achieved by tuning the fluid anisotropy as well as the variation of these properties

across the depth of the layer. The results presented are in very good agreement across the different

methods. Given that many porous materials can be modeled as equivalent fluids, the results pre-

sented show the potential offered by such numerical techniques, and can further give more insight

into inhomogeneous anisotropic porous materials. VC 2019 Acoustical Society of America.
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I. INTRODUCTION

Acoustic treatments involving porous materials are com-

monly used for sound absorption purposes. The recent develop-

ment of additive manufacturing provides more control on the

micro-structures of these porous materials. Hence, the aniso-

tropic and graded properties of such micro-structures influence

the wave propagation in the medium, which is numerically

described. A rigid-frame porous medium is usually modeled

as an equivalent fluid that can display anisotropic and heteroge-

neous frequency dependent effective properties. One way to

describe these effective properties is the well-known

Johnson–Champoux–Allard–Lafarge (JCAL) model1 which

provides the thermal and viscous dynamic permeabilities of the

propagation medium. For a periodic porous material, formed

by a repetition of a unit cell, the JCAL model can rely on

homogenized properties of this unit cell calculated using the

method of multiple scales.2 Since the viscous dissipation has

been shown to be direction-dependent3–5 in anisotropic media,

the same considerations are used in the current paper. Recent

work6 has shown that anisotropic materials can have different

apparent sound speed depending on the direction of propaga-

tion, coupling viscous, and inertial regimes. This is especially

visible at grazing angles of incidence, and can be exploited for

absorption considering a diffuse field where all incidences are

accounted for. The derivation of the equations has been done

recently to retrieve the effective properties of an anisotropic

homogeneous material,7 and is recalled in Sec. II.

The present work focuses on the modeling and analysis

of inhomogeneous anisotropic materials. The scattering prob-

lem considered here involves an infinite layer of finite thick-

ness containing an anisotropic fluid whose properties can vary

across the depth of the layer. The transmission and reflection

of an acoustic plane wave by such a layer is modeled through

the state vector formalism, which is solved using three differ-

ent techniques. First, the layer is assumed piece-wise constant

and the standard transfer matrix method (TMM)8 is employed.

The other two methods are applicable to continuously graded

media. The Peano series (PS) has previously been used for

graded9–11 and anisotropic materials12 and wave-splitting

techniques for continuously graded media.13–18 In addition,

the internal fields and dissipation rate of energy are esti-

mated19 and shown to be dependent on the fluid’s effective

properties. Other solution procedures can, however, be

applied to approximate such propagation problems, as Euler

or Runge-Kutta iterative schemes, which are commonly used

for linear systems.14

The article is organized as follows: we first introduce

the equivalent fluid model and the propagation problem con-

sidered in this work. The different numerical approaches are

then presented, so as to solve for the acoustic fields inside

the layer. Numerical results of the scattering coefficients on

a)Electronic mail: theo.cavalieri@univ-lemans.fr
b)Also at: Safran Aircraft Engines, Rond Point Ren�e Ravaud-R�eau, 77550

Moissy-Cramayel, France.
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such anisotropic graded material are presented for all the

methods considered, which show good agreement. Finally,

further insight is provided into the dissipation rate within the

anisotropic material and in the role played by the orientation

of the micro-structure.

II. PROPAGATION IN GRADED ANISOTROPIC FLUID
LAYERS

In this section the propagation of a plane wave through

an anisotropic, heterogeneous equivalent fluid is described.

We set the reference in the Cartesian coordinate system R0

¼ ðO; e1; e2; e3Þ with the associated spatial coordinates vector

x ¼ ðx1; x2; x3Þ 2 R3. The fluid layer, denoted X, is a slab of

finite thickness L and infinite extent in the ð0; x?Þ plane, as

illustrated in Fig. 1. The subscript ? denotes the restriction of

a vector to the ðO; x?Þ plane with x? ¼ fx1; x2g. The domain

X is delimited by the plane boundaries at x3 ¼ 0 and x3 ¼ L
denoted C0 and CL, respectively. We solve for the sound field

in this layer X in the linear harmonic regime using the time

convention e�ixt, where x is the angular frequency. The

effective bulk modulus and density of the anisotropic hetero-

geneous fluid are denoted Bðx3;xÞ and qðx3;xÞ. Note that

these quantities are complex-valued, frequency dependent

and can vary along the x3 direction, moreover, while the bulk

modulus of the medium is scalar, the density is a second order

tensor accounting for anisotropic phenomena. The pressure p
and particle velocity v induced by the acoustic field in X are

governed by the following linear equations for mass conser-

vation and momentum conservation

ixqðx3;xÞvðx;xÞ ¼ rpðx;xÞ; (1a)

ixB�1ðx3;xÞpðx;xÞ ¼ r � vðx;xÞ: (1b)

The exterior of the domain X is denoted X0 and contains

a homogeneous isotropic fluid, taken to be air in this case.

The density of air is q0 ¼ 1:213 kg:m�3 and its bulk modulus

is B0 ¼ cP0 with c¼ 1.4 the ratio of specific heat and P0

¼ 101 325 Pa the atmospheric pressure. The sound field in

the exterior domain X0 satisfies

ixq0vðx;xÞ ¼ rpðx;xÞ; (2a)

ixB�1
0 pðx;xÞ ¼ r � vðx;xÞ: (2b)

While the density of the isotropic fluid in X0 is

described by the scalar q0, the anisotropy of the fluid in the

layer X is described by the tensor density q. This tensor

accounts for the fact that the properties of the waves in X
depend on the direction of propagation. The density tensor q

is diagonal in the special case where its principal directions

are aligned with the coordinate systemR0. But in the general

case it is full, symmetric and can be written

q ¼ R

q11 0 0

0 q22 0

0 0 q33

2
64

3
75
RX

RT ; (3)

with R the complete rotation matrix accounting for the

yaw, pitch and roll angles, respectively (u1,u2,u3) along

ðe1; e2; e3Þ. For the sake of simplicity and since the particle

velocity depends on the inverse of the density tensor, the

second-order tensor H ¼ q�1 remains symmetric and will be

used instead of q in the remainder of this work.

In the upper region of X0; x3 � L, we define an incident

plane wave with unit amplitude:

piðx;xÞ ¼ eik1x1þik2x2�ik3ðx3�LÞ; (4)

where the components of the wave-vector ki are given by

k1 ¼ �k0 cosðhÞ cosðwÞ; (5)

k2 ¼ �k0 cosðhÞ sinðwÞ; (6)

k3 ¼ k0 sinðhÞ; (7)

with w and h the polar and elevation angles, respectively.

k0 ¼ x=c0 is the free-field acoustic wave-number.

The presence of the anisotropic layer X gives rise to a

reflected wave pr in the upper region of X0 and to a transmit-

ted wave pt in the lower region of X0; x3 � 0. These are

written

prðx;xÞ ¼ ~Reik?�x?þik3ðx3�LÞ; (8)

ptðx;xÞ ¼ ~Teik?�x?�ik3x3 ; (9)

where ~R and ~T are the specular coefficients of reflection and

transmission and k? ¼ fk1; k2g and x? ¼ fx1; x2g. As the inci-

dent wave could physically come from x3 < 0, it is important to

be explicit about the scattering coefficients which are ~R
6

and
~T

6
, depending on the sign of wave incidence. The system being

reciprocal we reach ~T ¼ ~T
þ ¼ ~T

�
, whereas the distinction has

to be made for the reflection since the heterogeneity of the

medium can be non-symmetric. Without any specific consider-

ations about the effective properties of the medium, ~R
þ 6¼ ~R

�

in the inhomogeneous case. For the sake of simplicity and

as reversing the layer X between its interfaces is equivalent

to propagating in the opposite direction, we use the notation
~R ¼ ~R

þ
when the incident waves comes from the upper region

x3 � L. However, the solution procedures developed further are

valuable for all scattering coefficients.

The incident plane wave pi also induces a sound field

in the anisotropic and graded layer X. Given that (i) the

FIG. 1. (Color online) Schematic representation of the propagation problem

in X0 and X. A fluid layer of finite thickness L along x3, with infinite dimen-

sion in the ðO; x?Þ plane and interfaces C0 and CL. Incident ki, reflected kr

and transmitted kt wave-vectors are represented with red arrows. The elevation

and azimuthal angles h and w are shown, respectively, in purple and cyan.
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properties of this layer are independent of x1 and x2 and (ii)

the incident field has an harmonic spatial dependence eik?�x? ,

it is clear that the wave field in the layer X retains the same

harmonic spatial dependence:

pðx;xÞ ¼ pðx3Þeik?�x? ; (10a)

vðx;xÞ ¼ vðx3Þeik?�x? : (10b)

The derivation of the governing Eqs. (1) has recently

been done for retrieval techniques and applied to fully aniso-

tropic porous materials.7 The process is recalled as follows,

and leads to the state-vector equation for pressure and nor-

mal particle velocity. From the conservation equations Eqs.

(1), the transverse and normal components of the fields are

expanded,

ixv? ¼ iH? � k?pþ H33q
@p

@x3

; (11a)

ixH�1
33 v3 ¼ ik? � q pþ @p

@x3

; (11b)

ixB�1p ¼ ik? � v? þ
@v3

@x3

; (11c)

where we have again used the notation v? ¼ fv1; v2g. We

have also introduced the coupling vector q ¼ fH13=H33;
H23=H33g and the 2� 2 matrix H? ¼ Hmn 8 ðm; nÞ 2 f1; 2g2

.

From Eqs. (11a) and (11c) we get

ixB�1p ¼ ik? � iðH? � k?Þ
p

ix
þ H33

ix
q
@p

@x3

� �
þ @v3

@x3

:

(12)

Together with the momentum conservation in Eq. (11b), this

leads to

ixB�1p ¼ H33ðk? � qÞ2
p

ix
� k? � ðH? � k?Þ

p

ix

þ iðk? � qÞv3 þ
@v3

@x3

; (13)

where after rearranging the pressure terms, emerges the

equivalent bulk modulus:

B�1
eq ¼ B�1 þ H33 k? � qð Þ2 � k? � H? � k?ð Þ

h i.
x2;

(14)

which yields the following equation of mass conservation,

where Beq relates the compressibility effects of the equiva-

lent fluid, accounting for anisotropic dependencies and obli-

que considerations:

ixB�1
eq p ¼ ik? � qv3 þ

@v3

@x3

; (15)

and with Eq. (11b), they characterize the sound field in

the layer X, with equivalent density H�1
33 and bulk modu-

lus Beq. They can be written using a state-vector

formulation

dW

dx3

¼ Aðx3ÞW; (16)

where we have introduced the state vector W ¼ fp; v3gT

(with T the non-conjugate transpose), and the matrix

Aðx3Þ ¼
�ik? � q ixH�1

33

ixB�1
eq �ik? � q

" #
: (17)

At the interfaces C0 and CL between the anisotropic layer

and the surrounding fluid, the continuity of pressure and nor-

mal velocity is imposed as a boundary condition. As a conse-

quence, the state vector at both interfaces reads

WL ¼
1þ ~R

Z�1
e ð ~R � 1Þ

( )
and W0 ¼

~T

�Z�1
e

~T

( )
;

(18)

with Ze ¼ Z0= sin ðhÞ the apparent impedance of the air in

domain X0 with respect to the unit outward normal vector

n ¼ e3 at interface CL. Note that in the case where the layer is

rigidly backed (absorption problem), the boundary term at C0

simplifies to W0 ¼ fpð0Þ; 0gT
since the Neumann condition

involves zero normal velocity on the rigid layer backing.

III. SOLUTION PROCEDURES

The state-vector Eq. (16) can be solved using a variety

of numerical techniques. In this section three different meth-

ods are presented. The well-known TMM is first described,

then two other approaches are presented for continuously

graded media.

A. Transfer matrix method

The heterogeneous fluid layer X can be approximated

by a succession of N homogeneous layers. The propagation

of the waves through each homogeneous layer can be solved

exactly using the TMM.8 This approximation is accurate

provided that the thickness of each homogeneous layer is

small compared to the wavelength. We introduce the start-

and end-points of the successive homogeneous layers as x
ðiÞ
3

so that x
ð0Þ
3 ¼ 0 and x

ðNÞ
3 ¼ L. The state vectors on either

sides of the ith homogeneous layer can be related as follows

W x
ðiþ1Þ
3

� �
¼M x

ðiþ1Þ
3 ; x

ðiÞ
3

� �
W x

ðiÞ
3

� �
; (19)

where M is the matricant which can be written in terms of

the constant matrix Ai associated with the ith homogeneous

layer:

Ai ¼ A
x
ðiþ1Þ
3 þ x

ðiÞ
3

2

 !
: (20)

To do so, we first diagonalize this matrix by writing Ai

¼ V�1
i kiVi with ki the diagonal matrix of eigenvalues and Vi

the matrix of eigenvectors. The state-vector formulation Eq.

(16) in the ith layer can be transformed into two decoupled

ordinary differential equations:
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d

dx3

ViWð Þ ¼ ki ViWð Þ: (21)

These can be readily solved to obtain the matricant:

M x
ðiþ1Þ
3 ; x

ðiÞ
3

� �
¼ V�1

i

ek1li 0

0 ek2li

 !
Vi; (22)

with li ¼ x
ðiþ1Þ
3 � x

ðiÞ
3 . This expression can be directly written

as a matrix exponential:20

M x
ðiþ1Þ
3 ; x

ðiÞ
3

� �
¼ expðAiliÞ: (23)

The overall transfer matrix M relating the state vectors at the

two interfaces C0 and CL is defined as the product of the

matricants of all the homogeneous layers:

WL ¼ MW0 ; M ¼
YN�1

i¼0

eAi li : (24)

The discretization of domain X is chosen to be linear across

N¼ 40 positions, and will serve as comparison with two dif-

ferent methods which follow.

B. Peano series

Another approach to solve Eq. (16) is to use the PS

which have previously been used for continuously graded

isotropic materials.9 In the homogeneous case, i.e., when A

is constant, the PS can be shown to be equivalent to the prod-

uct of matrix exponentials in Eq. (24). In the present case of

x3 dependent properties, the matrix A does not commute

with itself for different values of x3, so 8ðx03; x003Þ 2 ½0; L�
2; x03

6¼ x003; ½Aðx03ÞAðx003Þ � Aðx003ÞAðx03Þ� 6¼ 0 and the matricant is

no longer defined by matrix exponentials, but rather by the

Peano series. Using this formalism, the matricant M defined

by Eq. (24) is written as an infinite series of integrals:18,20

Mð0; x3Þ ¼ Id þ
ðx3

0

AðnÞdn

þ
ðx3

0

AðnÞ
ðn

0

Aðn1Þdndn1 þ � � � : (25)

In practice this is calculated through the use of the following

recurrence relations,11

Mf0gð0; LÞ ¼ Id

Mfngð0; LÞ ¼ Id þ
ðL

0

Aðx3ÞMfn�1gðx3Þdx3

8><
>: (26)

and the state vector relation at both interfaces now reads

WL ¼ lim
n!1

Mfngð0; LÞW0: (27)

An approximate solution is obtained by truncating this

infinite series. In fact, unlike the TMM where the matricant

of the system is assembled piece by piece, each term of the

integral series accounts for the whole domain 0 < x3 < L.

The integral itself is estimated by the trapezoidal method at

each iteration, using the same unit spacing L/N. Hence, any

additional term of the truncated series tends to refine the

solution given by this method. The recurrence relation is

chosen to be expanded up to 50 terms, a sufficient number

for the series to converge.

C. Wave-splitting, transfer Green’s functions

The wave-splitting method relies on the separation of the

overall acoustic field into forward and backward propagative

waves.14,18 Since the effective properties of the medium are

inhomogeneous along x3, the wave-splitting applied in the cur-

rent paper is not related to X, but rather with respect to the

domain X0.15,16 The wave-splitting matrix is independent of

the graded parameters (tensorial density q and equivalent bulk

modulus Beq), which ensures the split fields to be continuous

across any x3-plane in the medium X.17 These are defined as

s6 ¼ ðp6Zev � nÞ=2 where the 6 sign indicates the direction

of propagation relative to the unit vector n. Although they only

have a physical sense in X0 according to the wave-splitting

transformation, the associated change of basis remains valid. It

is then possible to introduce a new vector S ¼ sþ; s�f gT
which

is related to the original vector W by

Sðx3;xÞ ¼ ZWðx3;xÞ; with Z ¼ 1

2

1 Ze

1 �Ze

" #
:

(28)

Introducing this definition in the state vector formulation Eq.

(15), it is straightforward to obtain

d

dx3

S ¼ Bðx3ÞS; (29)

with

Bðx3Þ ¼ ZAðx3ÞZ�1 ¼
Uþ U�

�U� �Uþ

" #
� iðk? � qÞId;

(30)

Id being the identity matrix, and

U6ðx3;xÞ ¼
ix
2

ZeB�1
eq ðx3;xÞ6H�1

33 ðx3;xÞZ�1
e

h i
:

The differential equations Eq. (29) can be solved using

the transfer Green’s functions (TGF)19 method by writing

the forward and backward internal fields in terms of the

transmitted wave s�ð0;xÞ as follows:

s6ðx3;xÞ ¼ G6ðx3;xÞs�ð0;xÞ;

where G6 denote the two Green’s functions. They are solu-

tions of the following differential equations

dG

dx3

¼ BG; (31)

with G ¼ fGþ;G�g.
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In the case of an absorption problem (rigid backing at

C0), the boundary condition for the Green’s functions Eq.

(30) reads G0 ¼ f1; 1g as a total specular reflection. In the

case of a transmission problem, we must have a total trans-

mission at the interface C0, corresponding to G0 ¼ f1; 0g.
The fluid layer heterogeneity being of macroscopic scale

(the order of L), the spatial discretization is easily achieved.

The continuous graded properties along x3 in the domain X
are split linearly into N¼ 40 positions. The differential sys-

tem of equations, Eq. (30) is solved numerically.

IV. RESULTS AND DISCUSSIONS

This section deals with the numerical validation of the

proposed models. The scattering coefficients are retrieved

with all three different methods and applied to an heteroge-

neous anisotropic porous material.

A. Scattering coefficients

With the TMM and the PS, the reflection and transmission

coefficients are readily available as part of the solution proce-

dures. From the relation WL ¼MW0 from Eq. (24) one can

derive the following expressions for these coefficients:

~T ¼ 2Z�1
e Z�1

e TrðMÞ � Z�2
e M12 �M21

� ��1
; (32a)

~R ¼ M11
~T � Z�1

e M12
~T � 1; (32b)

where TrðMÞ is the trace of the square matrix M and Mij are

the coefficients of the matrix. Note that ~R and ~T are func-

tions of the angular frequency x and the incidence angles

(the polar and elevation angles w and h, respectively).

For the wave-splitting method, the reflection and trans-

mission coefficients are recovered from the solutions for the

Green’s functions Gþ and G� as follows:14–17

~T ¼ 1=G�ð0Þ; (33a)

~R ¼ GþðLÞ=G�ðLÞ: (33b)

To quantify the acoustic dissipation inside the layer X we

calculate the absorption coefficient. As mentioned earlier, as

the scattering coefficients depend from the direction of inci-

dence, the absorption coefficient follows the same dependency,

a6ðxÞ ¼ 1� j ~R6ðxÞj2 � j ~TðxÞj2: (34)

It will vary between 0 and 1 and can also be calculated when

the layer is rigidly backed so ~T ¼ 0. The different computing

methods have been compared to the transfer matrix method.

For a similar spatial sampling (linear with N¼ 40) the relative

error between each method is below 0.2% and the average

computation time per frequency is ttgf � 0:21 s for Green’s

functions (and mainly depends on absolute and relative toleran-

ces of the numerical integration), while tps � 0:05 s for

50 terms of Peano series and ttmm � 0:01 s for TMM. These

results are obtained by averaging the computing time over

100 frequency points, the overall comparison for the three dif-

ferent methods can also be done in parallel. Moreover, other

numerical differentiation procedures can be set up to reach the

scattering coefficients, such as Runge-Kutta schemes.14

B. Porous material

The anisotropic fluid layer considered as an example in

the present work is a periodic porous material. The unit cell

that is periodically distributed to form this periodic material is

a rigid cube of length ‘c from which an ellipsoid with semi-

axes of different lengths is carved out, see Fig. 2(c). The

effective properties of this unit cell are obtained using the

multiple-scale method outlined in Refs. 2 and 7. The resulting

parameters of the JCAL model1 are listed in Table I as func-

tions of the unit cell size ‘c and in the coordinate system R0.

Some of these parameters are scalar quantities (porosity /,

characteristic thermal length K0 and static thermal permeabil-

ity K00) while others are tensorial (high-frequency tortuosity

s1, characteristic viscous length K and static viscous perme-

ability K0).

To obtain an inhomogeneous material the unit cell size

‘c is varied along the x3 direction. As a consequence the

effective JCAL parameters will also vary along this direc-

tion. The profile chosen as an example in this work is the

“ramp” shown in Fig. 2(a). The unit cell size ‘c is varied

continuously from 0:1 mm at the base of the layer (x3 ¼ 0)

to 2 mm at the top of the layer (x3 ¼ L). This profile was

chosen to achieve an impedance matching between the

FIG. 2. (Color online) (a) Variation of the unit cell size ‘c along the depth of

the porous material layer between C0 and CL. (b) Cartesian coordinate sys-

tem R0 with its associated orthonormal basis ðe1; e2; e3Þ and the rotation

angles ðu1; u2; u3Þ. (c) Unit cell for the periodic anisotropic porous material.

Shown here is the rigid skeleton and a fluid region formed by a body-

centered ellipsoid with semi-axes r1 ¼ 0:51‘c; r2 ¼ 0:7‘c; and r3 ¼ 0:55‘c.

TABLE I. Homogenized JCAL parameters for the anisotropic unit cell with

characteristic size ‘c in the coordinate systemR0.

/ (1) K0 (m) K00 (m2) s1 (1) K (m) K0 (m2)

X 0.7210 0.533 ‘c 0.0214 ‘2
c — — —

e1 — — — 2.987 0.129 ‘c 5.74 10�4‘2
c

e2 — — — 1.089 0.448 ‘c 1.56 10�2‘2
c

e3 — — — 1.487 0.273 ‘c 4.83 10�3‘2
c
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exterior domain and the porous material. The layer thickness

is L ¼ 50 mm and achieves perfect absorption at the fre-

quency f0 ¼ 2500 Hz.

C. Influence of wave incidence

We begin by considering the case of a plane wave at

oblique incidence with ki ¼ ðk1; k2; k3Þ. Results are shown

for an absorption problem, when the layer is rigidly backed

at C0. Figure 3(a) shows the absorption coefficient as a func-

tion of frequency between 100 Hz and 5 kHz. The second axis

spans the values of elevation angle, while the polar angle of inci-

dence is w ¼ 0 in Fig. 3(a) and w ¼ p=2 in Fig. 3(b). While the

absorption is limited at low frequency, this material is able to

achieve a perfect absorption (a ¼ 1) for a frequency close to

f0 ¼ 2500 Hz. However, we can observe a notable change in the

absorption depending on the polar angle of incidence. Figure

3(c) also shows that the three solution procedures presented here

(namely, the TMM, PS, and TGF) are in excellent agreement

over the whole range of frequencies. Figure 3(d) shows the evo-

lution of the forward and backward components s6ðx3Þ in the

layer X for the frequency where the perfect absorption f0 is

achieved. It is clear that the magnitude of the backward wave

sþðx3;xÞ ¼ ðpþ Zev3Þ=2 vanishes on the upper side of the

layer (x3 ¼ L), which is consistent with the fact that there are no

reflected wave at this frequency. Also visible in Fig. 3(d) is the

strong absorption of the forward propagating component s�

when it reaches the more resistive part of the porous layer (i.e.,

where ‘c is small). Concerning the dependence of a with the ele-

vation angle h, the system tends towards total reflection for graz-

ing incidences and the anisotropic properties of the fluid layer

are clearly visible, as shown in Figs. 3(e) and 3(f).

D. Effects of anisotropic coupling

In the results above, the unit cell has been aligned with

the coordinate system, as shown in Fig. 3. To illustrate the

effects of the anisotropy of the material, one can rotate the

unit cell using the expression given in Eq. (3). This is shown

in Fig. 4 for the absorption coefficient a. Depending on the

rotation components ðu1; u2; u3Þ involved in the density ten-

sor, the acoustic behavior of the fluid layer is significantly

impacted, especially at high frequencies.

To provide further insight into the losses occurring

within the layer, we derive the balance of acoustic energy in

an anisotropic fluid. From the governing Eq. (1) in X, one

can derive

ixv	qv� v	 � rp ¼ 0; (35a)

ixB�1jpj2 � �pr � v ¼ 0; (35b)

where we have introduced the conjugated transposed veloc-

ity v	 and the conjugated pressure �p. As depicted in Eq. (3),

FIG. 3. (Color online) Absorption coefficient at oblique incidence, on the frequency range 100 Hz� 5 kHz and for elevation angle h from 0 to p, with w ¼ 0

(a) and w ¼ p=2 (b). (c) Absorption coefficient at normal incidence, on the same frequency range, using the TMM, PS, and TGF methods. (d) Magnitude of

the split fields S in the porous layer, for perfect absorption frequency f0 at normal incidence. Absorption coefficient at grazing incidence, on the frequency

range 100 Hz� 5 kHz and for elevation angle h ¼ p=20, with w ¼ 0 (e) and w ¼ p=2 (f).
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the density tensor is complex and symmetric, and emerges

from the dynamic viscous permeability of the medium X. It

can be split into its complex components from the Toeplitz

decomposition21 so, q ¼ qR þ iqI with qR ¼ ðqþ q	Þ=2 and

qI ¼ ðq� q	Þ=2i. In the general case of a non-symmetric q

tensor, both Hermitian matrices qR and qI remain complex-

valued, however, in our case of symmetric tensor density, qR

and qI are real-valued. Taking the sum of both of the Eqs.

(35) yields

1

2
ðixÞ v	ðqR þ iqIÞvþ B�1jpj2

� �

¼ 1

2
v	 � rpþ �pr � vð Þ; (36)

which after expansion of the complex terms reads

1

2
x iv	qRv� v	qIvþ iB�1jpj2
� 	
¼ 1

2
v	 � rpþ �pr � vð Þ: (37)

Now considering the real part of this equality, it yields to the

time average of the acoustic instantaneous intensity,22 as the

products v	qRv and v	qIv are real-valued,

1

2
x v	qIvþ ImfB�1gjpj2
� 	

¼ � 1

2
Re v	 � rpþ �pr � vf g;

(38)

where from the product rule of the divergence we now reach

r � 1

2
Re Pf g


 �
¼ � 1

2
x v	qIvþ ImfB�1gjpj2
� 	

: (39)

The left-hand side of this equation is the divergence of the

Poynting vector P ¼ pv	; since the porous layer is purely

lossy, we expect this term to be strictly negative. This quan-

tity is homogeneous to the dissipation rate of acoustic energy

at each infinitesimal point x3 2 X and is expressed in

W m�3. Although, it is estimated as only dependent of the

normal direction x3 since the acoustic fields in Eq. (10) show

an harmonic spatial dependence.

FIG. 4. (Color online) Absorption coefficient at normal incidence as a function of the circular frequency x, the rotation angle u1 in (a) and u2 in (b). Energy

dissipation rate at normal incidence between x3 ¼ 0 and L for rotation angles u1 (c) and u2 (d), from 0 to p at the perfect absorption frequency f0.
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It highlights the role of the coupling vector q and its

effect on the fully anisotropic behavior of such medium. The

total energy lost in the system can be retrieved by spatial

integration between boundaries C0 and CL. As all three com-

ponents of the particle velocity are involved, the transverse

part of v is derived from Eqs. (11a) and (11b).

Inside the domain X, the transverse components of parti-

cle velocity read

v? ¼ H? � k? � H33qðk? � qÞð Þp=xþ v3q: (40)

It is worth noting that even at normal incidence, with

k? ¼ ð0; 0Þ, the coupling still occurs from the term v3q. In

order to illustrate this effect, Fig. 4 shows the absorption coef-

ficient when the fluid is taken out of its principal directions.

Also considering normal incidence and withR0 
 RX, a sole

rotation around e3 cannot impact the acoustic properties of

the fluid. First, the dependence on the rotation angle around

e1 is shown in Fig. 4(a), which is p-periodic. Then on Fig.

4(b) the absorption coefficient varies as the cell is rotated

around the e2 unit vector.

As depicted in Eq. (37), the estimated dissipation rate

directly depends on the rotations applied to the density ten-

sor. Figures 4(c) and 4(d) display the estimated dissipation

inside the domain X, at frequency f0. As previously, the

dependence on the rotation angles (u1, u2) affects the losses

in the fluid, hence on the absorption properties. We notice

that most of the energy losses in the domain are localized

where the pore size becomes small, which is correlated to

the total pressure profile in Fig. 3(d).

E. Diffuse field absorption

Instead of a single wave with a specific incidence angle,

one can also consider a diffuse field where all wave direc-

tions are present, but uncorrelated with the same intensity.

The corresponding absorption coefficient accounts for the

absorption averaged over all possible angles of incidence:

adif ðxÞ ¼
1

2p

ðp

0

ðp

0

aðx; h;wÞ cosðhÞ dhdw; (41)

with ðh;wÞ 2 ½0; p�2 and angular frequency x. The averaging

process is done accounting for the solid angle associated to

each direction of incidence, which induces the weight

cos ðhÞ. This diffuse field absorption coefficient is shown in

Fig. 5 as a function of frequency using 400 plane wave direc-

tions to compute the average. As pictured in Fig. 5, the

graded anisotropic materials are able to provide good diffuse

absorption over a wide range of frequencies. However its

absorption is limited at low frequencies. Unlike the absorp-

tion of the plane wave at normal incidence which is perfect

around 2500 Hz (see Fig. 3), the diffuse field case is unable

to reach a perfect absorption. This is explained by the contri-

butions of the plane waves with grazing incidence which can

only be partially absorbed. But as oblique incidences weight

a lot in this considerations, the anisotropic properties firmly

impact the diffuse field absorption coefficient.

V. CONCLUSIONS

In this work, the propagation of acoustic waves through

a graded layer of anisotropic fluid has been modeled to cal-

culate the transmission and reflection coefficients. This

approach is applicable to a wide range of porous materials

that are described by their effective bulk modulus and den-

sity tensor, and in this case is developed for non-symmetric

heterogeneous systems. Three different numerical techniques

have been presented and compared to solve for the sound

field in such a layer. Two of the solution procedures account

for the continuous macro-modulated effective properties of

the anisotropic medium, and altogether show excellent

agreement with the more traditional TMM approach. In addi-

tion, the knowledge of the pressure and velocity fields inside

the anisotropic fluid provides useful insight into the losses

occurring within the layer.

The dependence of the absorption coefficient with fre-

quency (over the range 100 Hz–5 kHz), angles of incidence,

and orientation of the micro-structure has been discussed in

detail. All the results demonstrate the complex interplay

between these parameters and the fact that the anisotropy

plays a significant role in the absorption achieved by this

kind of material. The absorption of a diffuse field was also

considered.

The use of anisotropic and heterogeneous materials

drastically enhances the potential for efficient acoustic con-

trol in scattering and absorption problems. The next step for

this topic would be to perform a full optimization of both the

anisotropy and the heterogeneity of a porous layer, so as to

maximize the acoustic absorption in specific applications.
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