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ABSTRACT

The vibration filtering properties of a phononic crystal pipe whose unit cell consists of two segments of different materials and cross sections
are studied numerically and experimentally. Such an architected bi-material pipe leads to the alignment of the dispersion branches in the
same frequency ranges for all types of waves (flexural, longitudinal, and torsional), leading to an absolute bandgap. Each motion is studied by
a 1D model in which the propagation of Floquet–Bloch waves in lossy media is considered. Numerical optimization is based on the simplex
algorithm and aims to control both the central frequency and the bandwidth of the absolute bandgap on a selected target. Experimental char-
acterization of a demonstrator confirms the filtering effects due to partial and absolute bandgaps even in the presence of quite high structural
damping.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0007532

The mitigation of noise pollution is a major societal challenge for
which extensive research has been conducted1 and NVH (Noise,
Vibration, and Harshness) departments have been widely integrated
notably in the transportation industry. Structure-borne sound results
from bending vibrations and their couplings with other types of waves,
due to the complex geometries classically encountered in industrial
systems.2 An effective reduction in the radiated sound levels then
requires us to mitigate all types of waves. In this context, the approach
presented here concerns the design of “total filters” that can be
inserted into engine components acting as structural waveguides that
transmit vibrations to other components able to radiate sound. To
reach such total filter features, the design strategy is based on the con-
cept of absolute bandgap.

The control of elastic waves by periodic structures has been dra-
matically developed during the last few decades by using Phononic
Crystals (PCs)3,4 as analogously done for light waves by Photonic
crystals.5 These systems, made of either periodic distributions of scat-
terers embedded in a physically dissimilar host material or simply peri-
odic geometries, are driven by a particular dispersion relation showing
bandgaps,6,7 ranges of frequencies produced by the Bragg interference
in which the propagation of waves is forbidden.8 Significant progress
has been made on the control of flexural or longitudinal waves by
PCs showing different applications including filtering,9,10 wave

trapping,11,12 wave-guiding,13 focusing by refracting14,15 or scattering16

waves, and self-collimation,17,18 among others.4 One of the main chal-
lenges of PCs has been the design of absolute bandgaps over which the
propagation of all elastic waves is forbidden, whatever their polarization
and wave vector.

PCs with a fluid-type host medium, known as sonic crystals,9

have theoretically and experimentally reported absolute bandgaps in
broad ranges of frequencies.10,19,20 These systems represent the most
simple PC as only longitudinal waves are propagating in the medium.
Perhaps the most known application of sonic crystals is the design of
tunable sound screens.21–23 However, once the host medium is a solid,
the problem becomes more complex as different polarisation can be
excited in the system. In this case, theoretical evidence of absolute
bandgaps is also widely reported in the literature. 1D PCs exhibiting
absolute bandgaps have been analyzed by the transfer matrix
method,24 and recently, 1D PCs with alternating materials in the radial
and axial directions have been used to show absolute bandgaps.25

Two-dimensional (2D) PC slabs consisting of either solid26 or
piezoelectric27 inclusions placed periodically in an isotropic host mate-
rial have been theoretically analyzed, showing absolute bandgaps with
a variable bandwidth for elastic waves of any polarization and inci-
dence. Bulk 2D PCs have also been proposed for bulk wave attenua-
tion with solid28 or magnetostrictive29 inclusions. Using specialized
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genetic algorithms, 2D PCs formed from silicon and solid voids have
been optimized to obtain unit cell designs exhibiting absolute bandg-
aps for both in- and out-of-plane motions.30

From the experimental point of view, absolute bandgaps have
also been reported in the literature. 2D binary solid/solid composite
media with cylindrical inclusions embedded in an epoxy resin matrix
showed dips of transmission, evidencing the presence of absolute
bandgaps.31 More recently, the presence of absolute bandgaps in pil-
lared PC slabs has been shown by double-vibrator three-components32

and temperature-driven adaptive systems.33 3D PCs made of face-
centered cubic unit cells composed of a single material have been used
to experimentally show ultra-wide absolute bandgaps.34,35 Recently,
3D load-bearing architected lattices, composed of a single material,
have been designed for presenting broadband frequency bandgaps for
all directions and polarizations for airborne sound and elastic vibra-
tions simultaneously.36 However, although 2D and 3D PCs have been
widely validated experimentally, less attention has been paid to the
experimental analysis of 1D cases acting simultaneously on longitudi-
nal, flexural, and torsional waves. The control of vibrations in such 1D
PC systems can impact the design of piping systems, which can be
exploited in areas such as the automotive industry, heat exchanger
tubes in chemical plants, oil pipelines, marine risers, and pump
discharge lines, among others.37

In this work, we apply the concept of absolute bandgap in order
to design and experimentally validate 1D PC pipes able to mitigate
longitudinal, flexural, and torsional waves in the same target band. A
1D PC pipe made of a unit cell consisting of two different hollow
cylinders made of aluminum and nylon (see Fig. 1) is optimized.
Considering lossy constitutive materials, the eigenvalue problems of
the three types of waves are analytically solved by imposing continuity
conditions between the different parts of the unit cell and
Floquet–Bloch periodic conditions at its extremities. The three prob-
lems are combined via a minimizing algorithm in order to reach the
geometry of the 1D PC pipe that exhibits an absolute bandgap of target
central frequency and bandwidth. Full 3D finite element simulations
and experimental characterization of a demonstrator of finite size are
in good agreement and show dips in the transfer functions associated
with the predicted absolute bandgap.

Figures 1(a)–1(d) show the images of the 1D bi-material PC pipe
used in the experiments. A detailed scheme with the geometrical
parameters of the system is shown in Figs. 1(e) and 1(f). Each segment
of the unit cell is assumed to be a thin-walled pipe of annular cross sec-
tion. We define c ¼ l2=ltot as the length ratio and b ¼ R2=R1 as the
outer radius ratio. The inner radius Rint is constant for the two seg-
ments of the unit cell. These two geometrical parameters will be used
to describe the geometry in the optimization procedure. The 1D PC
pipe is made of aluminum and nylon, considered as linear and isotro-
pic elastic materials. Nylon is characterized by its Young modulus
EN ¼ 2:3 GPa, its density qN ¼ 1240 kg/m3, and its Poisson ratio
�N ¼ 0:3. The aluminum characteristics are EA¼ 71GPa, qA ¼ 2170
kg/m3, and �A ¼ 0:3.

Here, we consider harmonic wave motion with the time conven-
tion eıxt . In what follows, the subindex i ¼ N;A and the superindex
w ¼ l; t will represent each segment of the unit cell and the wave type
(longitudinal, l, or torsional, t), respectively. On the one hand, the
propagation of longitudinal and torsional waves in the i-th part of the
unit cell is modeled by a 1D Helmholtz equation,38

@2uwi
@x2
þ ðkwi Þ

2uwi ¼ 0; (1)

where uwi is the displacement of wave w of the i-th segment of the unit

cell. kwi ¼ x
cwi
is the wave number, with cwi ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Ew
i =qi

p
being the speed

of the wave; El
i ¼ Ei is the Young modulus, and Et

i � Gi ¼ Ei=2
ð1þ �iÞ is the shear modulus.

On the other hand, flexural waves are described using
Timoshenko’s beam theory39,40 that takes into account shear deforma-
tion and rotational inertia effects. Even this framework is based on low
frequency assumptions; this makes it possible to analyze the propaga-
tion at higher frequencies or for thicker beams than with
Euler–Bernoulli’s theory. Following Timoshenko assumption, the flex-
ural displacement vi satisfies the motion equation,

Ei
qi
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@x4
þ x2 1þ Ei

jiGi

� �
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@x2
þ Six2

Ii
� qiIix

4

jiGi

� �
vi ¼ 0; (2)

where ji, Si, and Ii are the shear coefficient, the cross-sectional area,
and quadratic moment, respectively. In order to obtain the eigenvalue
problem whose solutions give the complex dispersion relation,
kb ¼ kðxÞltot=p, we apply the continuity boundary conditions at the
interfaces between each segment of the unit cell as well as the

FIG. 1. Scheme and images of the manufactured PC pipe. Nylon and aluminum
sections are nested by force fitting, which holds the assembly together without the
use of glue and, therefore, minimizes unwanted losses. (a) Experimental setup; (b)
details of the 2 face-to-face three-axis accelerometers; (c) view of the 2 aluminum/
nylon unit cells of the demonstrator; (d) view of the shaker excitation implemented
at the oblique position such that all wave types are excited. (e) and (f) show lateral
and cross-sectional schematic representation of the modeled PC pipe, respectively.
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Floquet–Bloch periodic conditions at its extremities (see the supple-
mentary material for more details). The resulting set of equations leads
to a linear system Mðx; kbÞ:B ¼ 0, where for each given x of a fre-
quency range of interest, the values of kb satisfying det(M)¼ 0 are
found numerically to provide the dispersion relation. By solving each
1D model in this way, we obtain the dispersion relations for all types
of waves in the PC pipe. Solutions obtained by the previous semi-
analytical methodology are compared with reference solutions pro-
vided by 3D elasticity finite element simulations (solid mechanics
COMSOL package).

Figure 2(a) shows the real part of the dispersion relation for a PC
pipe with the following geometry: ltot¼ 0.1 m, c ¼ 0:2; R1 ¼ 8 mm,
and b ¼ 0:5. Colored dots (each color a wave type) represent the
results obtained from the semi-analytical model, while gray circles rep-
resent the FEM reference solutions. The results are in very good agree-
ment, and so the semi-analytical modeling is well validated. However,
some disagreements appear for flexural waves at high frequencies (dis-
persion branch just under 20 kHz) due to the expected limitations of
Timoshenko’s beam model. Anyway, the dispersion relation obtained
for this geometrical layout exhibits a wide absolute bandgap in the
range of [3–10] kHz.

Figure 2(b) shows the evolution of the bandgaps as b changes.
Each colored patch in the plot encloses the frequencies between the
lower and the upper edge of the bandgap. The results indicate that b
essentially controls the bandgap bandwidth and has a relatively weak
effect on their central frequencies. Such tendency has already been
observed in the case of monolithic corrugated beams.41

Analogously, Fig. 2(b) shows the evolution of the bandgaps as c
changes. Both the central frequency and the width display

nonmonotonous variations of the same range. In particular, some
optimal band widths appear around c ¼ 0:2. Finally, c has a more
complex effect on the bandgap features that do not follow any clearly
identifiable law. Anyway, there are some configurations for which all
bandgaps overlap, creating an absolute bandgap. This feature is
obtained in the range of ½4� 10� kHz for c ¼ 0:2, for example. In this
case, the second flexural bandgap and the first longitudinal and tor-
sional bandgaps are involved. However, Figs. 2(b) and 2(c) show that
it is difficult to tune by hand the absolute bandgap to a target band. In
order to achieve this goal, a numerical optimization procedure is pro-
posed below.

A Nelder–Mead local minimisation algorithm42 is used in this
work to provide the geometrical parameters of a PC pipe with an abso-
lute bandgap defined from both a target central frequency f0 and a tar-
get bandwidth Df0. The set of parameters subject to the optimization
is defined as X ¼ ½ltot ; c;R1; b�. It is worth noting here that the first
unit cell segment will be made of aluminum and the second one of
nylon. The cost function f is defined as a weighted sum of two con-
vergence indicators and reads

f ¼ afc Ifc þ aDf IDf : (3)

The weighting coefficients afc and aDf are adjustable such that
afc þ aDf ¼ 1, and the convergence indicators are defined by

IDf ¼
����1� Df � Df0

Df þ Df0

����; (4)

Ifc ¼
����1� fc � f0

fc þ f0

����; (5)

with Df ¼min ðf ðiÞmaxÞ�max ðf ðiÞminÞ being the absolute bandwidth and
fc ¼ 1

2 ½maxðf ðiÞminÞ þminðf ðiÞmaxÞ� the central frequency. f ðiÞmax;min repre-
sents the upper (index max) and lower (index min) edges of the
bandgap for the i-th wave, where the subindex i represents each type
of wave type i ¼ F; L;T for flexural, longitudinal, and torsional waves,
respectively. Ifc and IDf evaluate the deviation between the bandgap
features fc and Df and the target features f0 and Df0, respectively.
These definitions are chosen so that the cost function is unitary
(0 <f < 1).

This optimization procedure is applied to the solution of the
semi-analytical eigenvalue problems described above with a target
absolute bandgap of [3–6] kHz, which is a typical range of interest for
injection applications in the context of automotive industry.43 A
detailed study of the optimization is given in the supplementary
material and concludes that to ensure both accuracy and fast conver-
gence, the best choice for the weighting coefficient of the cost function
is ½afc ; aDf � ¼ ½5=6; 1=6�. The optimal geometry of the 1D PC pipe
obtained under these conditions and without considering material
losses is X ¼ ½87mm; 0:44; 7:5mm; 0:5�. From the optimized geome-
try in the conservative case, the final complex dispersion relation of
the PC pipe shown in Fig. 3(a) is calculated considering the viscoelastic
losses for both aluminum and nylon via the complex Young modulus
Ec
i ¼ Eið1þ ıgiÞ, with gA ¼ 1 � 10�4 and gN ¼ 4 � 10�2. Each

wave type displays bandgaps where the real part of the wavenumber is
low, while imaginary part is high [see the colored patches in Fig. 3(b)].
In the target range of frequencies, bandgaps are well overlapping, and
the obtained absolute bandgap is [3.2–5.7] kHz [gray patch in
Fig. 3(a)], which is slightly narrower than the target, due to the losses.

FIG. 2. Analysis of the dispersion relation of a bi-material PC pipe with ltot¼ 0.1 m;
(a) Real part of the dispersion relation with c ¼ 0:2; R1 ¼ 8 mm, and b ¼ 0:5 cal-
culated by both the semi-analytical model (colored dots, (blue) longitudinal, (red)
flexural, and (green) torsional) and 3D full FEM simulation (open circles �); (b) and
(c) evolution of the bandgap widths (colored patches) and mid frequencies (lines)
for the three wave types [the same color legend as in (a)] as a function of (b) b
with c ¼ 0:5 and (c) c with b ¼ 0:5. ltot¼ 0.1 m. The horizontal black line denotes
the configuration leading to the dispersion graph in (a).
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In order to experimentally evaluate the vibration mitigation per-
formances due to the absolute bandgap of the infinite PC pipe, a finite
pipe demonstrator with 6 unit cells is manufactured [Fig. 1(a)]. In the
experimental setup, the demonstrator is suspended vertically from
rigid gallows mounted on an optical breadboard. A shaker (LDS
V201) excites the demonstrator at its bottom end with a harmonic
point force F ¼ Fx:x þ Fy:y þ Fz:z [see the axis definition in
Figs. 1(e) and 1(f)] with a step-by-step sine in the range of [0–10] kHz
with a frequency step of 5Hz. 3 cases are considered: “flexural loading”
such as Fz 6¼ 0 and Fx ¼ Fy ¼ 0 (when the shaker is perpendicular to
the pipe x-axis, only flexural waves are excited), “longitudinal loading”
such as Fx 6¼ 0 and Fy ¼ Fz ¼ 0 (when the shaker is aligned with the
pipe x-axis, only longitudinal waves are excited), and “full loading”
such as Fx;y;z 6¼ 0 as shown in Fig. 1(d) where the force of the shaker is
applied obliquely on a cut plane and off-centre with respect to the pipe
x-axis so that all wave types are generated. The acceleration response
a ¼ ax:x þ ay:y þ az:z is measured at the upper end using 2 three-
axial accelerometers (PCB 356A01) that face each other [Fig. 1(b)]. This
experimental situation is also numerically simulated from a full wave
3D FEMmodel in order to compare transfer functions.

Figure 3(c) represents both numerical and experimental transfer
functions jaz=Fj in the flexural loading case. The transfer functions
show an attenuation of about 70 dB in the frequency range corre-
sponding to the predicted flexural bandgap. The same trend is exhib-
ited in Fig. 3(d) that plots the transfer functions jax=Fj in the
longitudinal loading case. Finally, the full loading case is shown in
Fig. 3(e), evidencing a strong attenuation in the transfer function ja=Fj
in the range corresponding to the predicted absolute bandgap. It is
also worth noting that finite size effects can be seen at low frequencies
with peaks of the transfer function corresponding to the Fabry–P�erot
resonances of the system.

To complete the analysis, 3D views of the simulated total dis-
placement field in the full loading case are shown in Figs. 3(f)–3(h). At
900Hz where all wave types propagate [Fig. 3(f)], the superposition of
all motions results in a complex total displacement field. At 2.5 kHz
[Fig. 3(g)], the field mainly exhibits the longitudinal component, with
the flexural component being strongly attenuated due to the bandgap

effect. At 4.5 kHz [Fig. 3(h)], the total field vanishes close to the excita-
tion due to the total filtering effect associated with the absolute
bandgap.

To summarize, we apply the concept of absolute bandgap to a bi-
material PC pipe. Three 1D analytical Floquet–Bloch models giving the
dispersion of longitudinal, flexural, and torsional waves considering
losses are combined in an optimization procedure to reach a unit cell
design that exhibit absolute bandgaps with target features. The hand
ability and reliability of such design methodology are shown through a
set of cases detailed in the supplementary material, which brings a first
main insight. On the top of that, the study of a 6-cell demonstrator
shows both numerically and experimentally dips of the transfer func-
tions corresponding to the absolute bandgap analytically predicted,
bringing a second main insight. These results illustrate how absolute
bandgaps in the high frequency domain can be applied to mitigate
vibrations that may result in structure-borne sound in some industrial
systems. In further works, the design and optimization of such PC
pipes would be extended considering an enclosed pressurized liquid,
hence considering couplings between acoustic and elastic waves.

See the supplementary material for both the analytical wave dis-
persion models and the numerical optimization procedure and its
application to a set of optimization cases.

The authors thank the Vitesco Technologies company and
ANRT French agency who funded this research, Julien Nicolas and
Stanislas Renard who manufactured the demonstrator, and F�elix
Foucard for his fruitful contribution in the experiments.
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