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Abstract
We theoretically, numerically and experimentally report the localization of an acoustic wave at
the interface between two one-dimensional hyperuniform materials of different geometrical
representations. These materials suppress the acoustic scattering in the long wavelength regime,
being rather disordered and degenerate, while possessing a wide band gap. In this work, these
hyperuniform materials are made of an air-filled acoustic waveguide with rigid diaphragms
acting as scatterers. A wide band gap and the emergence of the edge modes provide promising
applications in wave control devices.

Keywords: hyperuniform materials, localized edge states, phononic crystals, acoustics

(Some figures may appear in colour only in the online journal)

1. Introduction

Localized edge modes occurring at the connection between
two materials yielding in different topological phases have
long attracted attention due to their potential applications for
robust transport of different types of waves. The eigenfrequen-
cies of such boundary modes lie inside the band gap flanked by
allowed bands. Translational symmetry is of crucial import-
ance for both the existence of the band gaps and the intro-
duction of bulk topological invariants of the system. In this
regard, the topological properties are traditionally attributed
to ordered materials. The emergence of the boundary modes
is governed by the bulk-boundary correspondence, which is a
relation between the eigenstates of the system within the bulk
spectrum and the number of the supported interface modes.
These modes are topologically protected, i.e. they are stable

∗
Author to whom any correspondence should be addressed.

against adiabatic chiral symmetry preserving perturbations if
the band gap remains open [8, 22]. The topological state of
the system can be controlled by the gap closing and reopen-
ing, which is driven by the geometrical parameters.

One of the most established and common one-dimensional
(1D) systems to describe topological edge states is the Su–
Schrieffer–Heeger (SSH) model [27]. This model is widely
used to predict and investigate the localized boundary modes
in binary waveguide arrays [6], diatomic chains of plasmonic
particles [16], dielectricmicrowave resonators [24], spins [11],
etc. Topology has recently enriched the fields of acoustics
and mechanics by introducing various classical analogs of
quantum and electronic effects, such as Dirac cone disper-
sion, quantum Hall and spin Hall effects [17, 21, 33]. Peri-
odic acoustic structures have been shown to undergo a topo-
logical phase transition accompanied by the emergence of
the edge localized modes by means of varying the geometry
of the sample [7, 10, 15, 20, 23, 31, 34]. In particular, the
variation of the lengths of the unit cell components has been
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shown to affect the topological properties of the second [31]
and higher order gaps [20] in one-dimensional systems.

Meanwhile, topologically nontrivial states have been
achieved not only in periodic structures. Topological edge
modes have been observed in quasiperiodic structures [2],
coupled resonator smartly patterned systems [3] and even in
amorphous systems with randomly distributed particles [1, 9].

Lately, hyperuniform materials have emerged as prom-
ising candidates for the wave control, exhibiting transpar-
ency for a set of wavevectors in the long wavelength limit.
Hyperuniform structures stand apart from conventional media
exhibiting the properties of liquids (amorphous) and crys-
tals (periodic) simultaneously—suppressing large scale dens-
ity fluctuations. They are statistically isotropic with no long-
range order [5, 29, 30]. They were found to possess wide iso-
tropic bandgaps both in photonic [18, 19] and phononic [13]
systems, in spite of being highly disordered and degenerate.
These materials thus offer remarkable capabilities for engin-
eering waveguiding devices. The band gap formation is attrib-
uted to the interplay of the hyperuniformity and the reminis-
cences of crystallinity always present due to the constraints
imposed on the system [12]. Since the band gap closing and
reopening can be achieved by varying the geometric para-
meters of the hyperuniform material similarly to the periodic
systems, the crucial changes in the bulk eigenstates can be
undergone.

In this work, we theoretically and numerically predict and
experimentally observe the wave localization at the interface
between two hyperuniform materials both possessing a band
gap in similar ranges of frequencies. This counter-intuitive res-
ult shows the possibility of localizing waves in a controlled
manner between two disordered systems due to the reminis-
cence of periodicity in the hyperuniform materials. To obtain
a hyperuniform structure, we utilize the optimization proced-
ure described in reference [25]. The extracted hyperuniform
point distribution is used to manufacture a 1D hyperuniform
material made of an air-filled waveguide of circular cross-
section in which the hyperuniform distribution of rigid dia-
phragms is embedded. Wave propagation is numerically ana-
lyzed and experimentally validated showing good agreement.
By changing the geometry of the diaphragms, the band gap
closing and reopening is achieved and two complementary
configurations at the opposite sides of the band gap clos-
ing are obtained. These two systems are then connected to
analyze the possible localization of the acoustic wave at the
interfaces between these two hyperuniform media. We also
revisit the periodic counterpart of the localized edge states
in periodic media from a theoretical and experimental points
of view.

2. Hyperuniform materials

Consider a 1D distribution of N identical scatterers located at
positions xj which form a unit cell of size L that is periodically
repeated along the x-coordinate. The reciprocal counterpart of

this complex lattice is given by the reciprocal lattice vector
G= 2πm/L, m ∈ Z. In case of negligible interactions between
the scatterers, such systems can be described by the structure
factor S(G)

S(G) =
1
N

∣∣∣∣∣∣
N∑
j=1

eiGxj

∣∣∣∣∣∣
2

. (1)

The system is hyperuniform if the long-range density fluc-
tuations are suppressed leading to vanishing structure factor
S(|G|< K) = 0 in the vicinity of the origin of the reciprocal
space with K= 2πn/L, n ∈ N. The hyperuniform patterns are
also characterized by the parameter χ, which defines a relative
number of the independent reciprocal lattice vectors lying in
the region |G|< K. For 1D systems, χ= n/N. When χ≥ 0.5,
the pattern becomes crystalline, because crystal becomes the
only way to meet the requirement of minimum value of the
structure factor [12]. In the limit χ→ 0, the configurations are
disordered and represent an ideal gas, since there is no con-
straint anymore on the reciprocal lattice vectors [30]. In the
intermediate regime, 0< χ < 0.5 the configurations are dis-
ordered, although they still display some hints of crystallinity,
such as reminiscences of the Bragg peaks [12] leading to iso-
tropic gaps in the transmission spectrum. Thus, the introduc-
tion of χ as an order measure illustrates that states of matter
exist between crystals and ideal gases with counter-intuitive
physical properties.

To design the hyperuniform pattern, we use an optimization
procedure, which looks for the positions of point scatterers xj
that minimize the structure factor for a target region |G|< K
as described in reference [25]. The algorithm provides a cer-
tain configuration starting from a random distribution satisfy-
ing the constraint that the particles cannot overlap (|xi− xj| ≥ l
with l being the size of the particle), so that the a posteri-
ori experimental validation should be performed. The object-
ive functions to be simultaneously minimized are the structure
factor

ϕ(x1, ...xN) =
∑
|G|<K

S(G), (2)

and the standard deviation function

σ =

√√√√√ 1
N− 1

∑
|G|<K

∣∣∣∣∣∣S(G)− 1
N

∑
|G|<K

S(G)

∣∣∣∣∣∣
2

. (3)

We focus on the single unit supercell of the hyperuniform
sample with χ= 0.2 to ensure a high degree of disorder in
the structure. Studying a single unit supercell is sufficient to
represent a hyperuniform material in 1D systems. With such
moderate value of χ, the area of suppressed structure factor
(f ≤ 680 Hz) is small and the material is closer to a disordered
material than to a periodic one. Nevertheless, the constraint
on the minimum distance between the scatterers introduces a
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Figure 1. (a) Schematic view of the experimental setup, (b),
(d) longitudinal section of the positive and negative periodic
waveguides, respectively, (c), (e) longitudinal section of the positive
and negative hyperuniform waveguides, respectively. The dark blue
regions correspond to the diaphragms and the light blue regions
correspond to the empty spaces inside the waveguide.

short-range correlation and leads to the reminiscences of crys-
tallinity of the system, whichwill be discussed in the following
sections.

3. Experimental setup

The setup utilized in this work is made of a main waveguide of
radiusR in which diaphragmswith inner radius r< R act as the
scatterers of the system. N diaphragms located at the specific
positions provided by the optimization procedure will consti-
tute the whole system (see appendix A for the exact positions).
A scheme of the setup is shown in figure 1. The dimensions are
chosen to satisfy the single mode propagation regime in the
frequency range of interest, i.e. the range of frequencies ana-
lyzed in the setup are always smaller than the cutoff frequency
of the waveguide. The radius of the waveguide is R= 1.5 cm
and its length is L= 1 m. The hyperuniform material supercell
is optimized considering N= 20 scatterers. The radii of the
diaphragms are chosen identical r=R/2 in order to open the
band gap of the hyperuniform material. A plexiglass tube and
PVC diaphragmswere used in the experiments. Bothmaterials
are considered acoustically rigid due to their large impedance
mismatch with respect to that of the air. A loudspeaker was
used to generate a plane wave at one end of the plexiglass tube
and a single microphone was used to measure the amplitude
of the pressure field at the desired locations. At the opposite
end of the tube, an anechoic termination with less than 5% of
reflection amplitude in the analyzed frequency rangewas used.

In this work, we consider either a periodic or a hyperuni-
form distributions of scatterers represented by two configur-
ations residing in different states. We introduce the variable
radii r ′(t) = R/2(1+ t), R ′(t) = R(1− t/2) and the parameter
t∈ [0, 1] for the simulation of the band gap closing and reopen-
ing. Two complementary configurations referred to as the pos-
itive and the negative configurations are obtained by varying
t from 0 to 1 (see figures 1(c) and (e)). They stay at different
states, i.e. the positive configuration stays on the left of the

Figure 2. (a) Scheme of a 1D waveguide of radius R with
diaphragms of radius r and length l2, (b), (c) corresponding
SSH-like chains of point particles of type A and B with different
choices of a unit cell [AB].

band gap closing with t< 0.5 while the negative one stays on
the right of the band gap closing with t> 0.5.

In practice, the positive configuration is realized by locating
the diaphragms of length l= 1.5 cm at the scatterers positions
of the hyperuniform point pattern, while the negative configur-
ation is realized by locating the different diaphragms between
the scatterers positions. These two configurations with t= 0
and t= 1 are used in the experiments.

The same concept is applied to the periodic system. The
positive and the negative periodic waveguides with five inser-
ted diaphragms are considered. Two types of diaphragms
were fabricated—the first type of lengths l2 = 1.5 cm and the
second type of lengths l2 = 3.5 cm—for the construction of
the periodic waveguides. The size of the constituent unit cell
in both configurations is fixed to d= l1 + l2 = 5 cm. In this
way, the two configurations are complementary to each other
(see figures 1(b) and (d)). The periodic structure made of the
diaphragms of length l2 = 1.5 cm is referred to as positive
configuration, while that made of the diaphragms of length
l2 = 3.5 cm is referred to as the negative configuration.

4. Revising the localized modes in 1D periodic
systems

4.1. Characteristics of 1D periodic materials

A 1D crystalline scatterers distribution is implemented by
periodically embedding diaphragms of radii r=R/2 and length
l2 acting as scatterers in an air-filled waveguide of radius
R (figure 2(a)). Only plane acoustic waves are assumed to
propagate.

The pressure p and the acoustic flow u at two points (initial
i and final f ) along the waveguide are related via the transfer
matrix T

(
pi
ui

)
= T

(
pf
uf

)
, (4)
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where T is the product of all the intermediate transfer matrices
along the i→ f path

T=
N∏
j=1

Tj. (5)

The transfer matrix of a waveguide or a diaphragm of the
length lj, cross section Sj and reduced impedance Zj = ρc/Sj
is

Tj =

(
cos(klj) ıZj sin(klj)
ı
Zj
sin(klj) cos(klj)

)
, (6)

where k is a wavenumber and the e−iωt time harmonic depend-
ence is assumed. The flow in the final point is obtained from
equation (4)

uf = Vi,f pf+Wi,f pi, (7)

where Vi,f =− T11
T12

, Wi,f =
1
T12

. Considering the acoustic flows
from the points (m+ 1) and (m− 1) into the point m, we
obtain

(Vm−1,m+Vm+1,m)pm =−Wm−1,mpm−1 −Wm+1,mpm+1. (8)

The opposite signs of flows coming from opposite direc-
tions (from the points m+ 1 and m− 1) into the point m have
been accounted for.

Let us refer to the junctions with a large radius part at the
right as the A-junctions and those with a large radius part at the
left as the B-junctions (figure 2(b)). If l1 = l2 = l, equation (8)
takes the form of a pair of SSH equations

εAn = κ2Bn−1 +κ1Bn,

εBn = κ2An+1 +κ1An, (9)

where An,Bn represent the pressures at the corresponding
junctions, ε= cos(kl), κ1 =

R2

r2+R2 , and κ2 =
r2

r2+R2 . The junc-
tions are now identified to the particles in a dimer chain of
the original SSH model with a unit cell [AB]. According
to the expressions of the coupling coefficients κ1,2, the parts of
the tube with radii R and r correspond to the strong and weak
couplings between the particles. Thus, the region between the
junctions An and Bn of a waveguide plays the role of the unit
cell and the region between the junctions Bn and An+ 1 plays
the role of the connection between the unit cells. Another unit
cell can be chosen, as that depicted in figure 2(c), which would
lead to the same system of equation but with interchanged
coupling coefficients κ1 and κ2.

The dispersion relation of the SSH system exhibits a gap
∆ε= |κ1 −κ2|. When κ1 = κ2 the gap closes and the eigen-
states of the system with arbitrarily small eigenvalues are
allowed propagating modes. The condition κ1 = κ2 corres-
ponds to R= r, i.e. the empty tube. If the system is finite
(n= 1, . . . ,N), it may support zero-eigenvalue states. Assum-
ing ε= 0 in equation (9), the solution becomes(

An
Bn

)
= (−1)n−1

(
κ1

κ2

)n−1(
A1

0

)
, (10)

Figure 3. (a) A monomer and (b) a trimer defects between two
periodic waveguides and the corresponding SSH-like particle
chains.

(
An
Bn

)
= (−1)n−1

(
κ2

κ1

)n−1(
0
B1

)
. (11)

Having an eigenfrequency inside the band gap, the solu-
tions should be localized at the sites A1 and BN . This require-
ment is fulfilled if the inter-cell coupling κ2 is stronger than
the intra-cell one κ1. Otherwise, the solutions are delocal-
ized and should be disregarded. The localized edge states are
topologically protected. They remain present under the adia-
batic modifications of the parameters (continuous modifica-
tions preserving the chiral symmetry inherent to this system
[4] and the open band gap). The case κ2 > κ1 is qualified as
topological, while the opposite one is trivial.

Now, we consider the waveguide with different lengths of
the diaphragms and the empty spaces (l1 ̸= l2). The system
is thus described by modified equations. However, the chiral
symmetry is preserved and the system presents the features
similar to those of the SSHmodel in terms of the band structure
and emergence of interface states.

The localized edge states appear not only at the edges of
the chain, but also at the interface between the two phases—
the trivial and topological ones. There are two ways to con-
nect two finite structures of different topological phases—via
weak (figure 3(a)) or strong (figure 3(b)) coupling [6]. The
former is a monomer defect and the later is a trimer defect,
represented by a particle A and particles ABA written in red
in figures 3(a) and (b), respectively. When l1 = l2 a monomer
defect supports a localized mode with a maximum amplitude
at the defect particle A, while the trimer defect supports a
localized mode with a node at the defect center B [6, 10].
When l1 ̸= l2 the similar behaviour of the interface modes is
expected.

4.2. Observation of the localized interface modes in periodic
systems

We consider a 1D crystalline scatterers distribution with
l1 ̸= l2. In figure 4(a), we plot the dispersion relation of the
positive (red dots) and the negative (blue dots) configurations.
If R and r are continuously interchanged, the band gap closes
and reopens (see the inset in figure 4(a), where the lower and
upper edge bands of the band gap of the different configura-
tions at dk=π are represented). The transmission coefficients
of these finite configurations are plotted in figures 4(b) and (c).
The region with transmission suppression corresponds to the
position of the band gap predicted by the dispersion relation.

4
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Figure 4. (a) Dispersion diagram of a periodic waveguide in
positive (red dotted line) and negative (blue dotted line)
configurations, the band gap closing and reopening is shown on the
inset, (b), (c) transmission coefficients of the positive and negative
cases respectively. The solid lines correspond to the calculations and
the circles correspond to the experimental results.

The equidistant peaks outside the band gap are attributed to
the Fabry–Perot resonances of a finite waveguide.

Since the connection of two materials in different topolo-
gical phases supports a localized interface mode in the SSH
model, we expect the same behavior in our periodic struc-
tures. In order to analyze the effect of the localized modes in
the dispersion relation, we have to consider a new supercell
made of the combination of a positive and a negative super-
cells in which the defect is in the middle, as it is usually done
in the literature [6, 23]. Thus we consider a supercell consist-
ing of the connection of a positive and a negative supercells
with five periods in each, being enough distance to avoid the
coupling between the localized modes due to the periodicity
of the supercell. Indeed, two localized modes inside a band
gap with a flat dispersion, corresponding to two types of con-
nection between the waveguides—weak and strong ones—are
encountered in the dispersion diagram depicted in figure 5(a).
The weak connection supports a lower frequency mode, with
a symmetric pressure profile relative to the connection point.
The strong connection maintains a higher frequency mode
with an antisymmetric profile. In figure 5(b), we plot the nor-
malized pressure amplitudes at the connection between the
two waveguides coupled in the two described ways: red (blue)
lines and symbols correspond to the strong (weak) connection
supporting an antisymmetric (a symmetric) mode. In the insets
of figure 5(b), we plot the pressure field distributions (the real
parts) of the interface modes showing the symmetry of each
interface mode. The experimental measurements are shown as
circles and appear to be in a good agreement with the predic-
tions. The black lines represent the expected interface modes

Figure 5. (a) Dispersion diagram of connected positive and
negative periodic waveguides, (b) normalized pressure amplitude at
the connection between the positive and negative waveguides
measured with respect to the amplitude inside an empty tube p0. The
red line corresponds to the strong connection and the blue line
corresponds to the weak connection. The circles represent the
experimental results. The insets represent pressure distributions in
the corresponding modes, (c) Re(RpRn) (solid lines) and Im(RpRn)
(dotted lines) as functions of frequency for strong (red) and weak
(blue) connection of two periodic waveguides. Black dotted lines
correspond to the expected frequencies from the dispersion diagram.

frequencies from the dispersion diagram that match the exper-
imental peaks.

Surface modes at the interface between two materials of
surface impedances Z1 and Z2 appear as the poles of the reflec-
tion coefficient R12 =

Z1−Z2
Z1+Z2

. For photonic [14] and phononic
[20, 32] crystals, Z1,2 are related to the topological invariants
of the corresponding materials. The equality

Z1 +Z2 = 0, (12)

is thus a condition for the emergence of the topologically pro-
tected interface states. Different signs of the surface imped-
ances indicate that the two connected materials reside in
different topological phases. The surface impedance of the
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Figure 6. (a) Positive and (b) negative waveguides designed upon a hyperuniform scatterers distribution, (c), (d) dispersion diagram and the
transmission coefficient of a positive waveguide, (e) closing of the band gap of a hyperuniform material with the variation of the waveguide
and diaphragms radii, the red region corresponds to the positive waveguide, the blue region corresponds to the negative one, (f),
(g) dispersion diagram and the transmission coefficient of a negative waveguide, (h), (i) pressure profiles in the edge modes of single
positive and negative waveguides for Dirichlet and Neumann boundary conditions.

material can be obtained by measuring the reflection coeffi-
cient at its interface with air Z1,2 = Z0

1+R1,2

1−R1,2
, where Z0 is the

impedance of air. Thus, the equation equation (12) reduces to
the requirement [20, 32]

ℜ(R1R2) = 1,

ℑ(R1R2) = 0. (13)

Figure 5(c) illustrates the product of the reflection coeffi-
cients from the single positive and negative waveguides RpRn
at the ends, which form a strong (read line) and a weak (blue
line) connections. The frequencies satisfying equation (13)
perfectly match the frequencies of the localized modes iden-
tified in the dispersion diagram (black dotted lines). Thus, the
red and blue regions on the inset in figure 4(a) correspond to
different topological phases.

5. Properties of the hyperuniform materials: closing
and reopening band gap

5.1. Characteristics of the 1D hyperuniform materials

We first analyze both the dispersion relation and the transmis-
sion through the system. Figure 6(a) shows the distribution of
scatterers in the designed positive hyperuniform material and
figure 6(c) depicts its dispersion relation. Several flat eigen-
modes, attributed to the modes localized inside the waveguide
due to the disordered distribution of scatterers, are located in
the band gap. These modes present a very low dispersion with
small group velocity. The presence of the viscothermal losses
in the system dramatically impacts them [28]. This results in

a very low transmission coefficient over a broad frequency
range, as shown in figure 6(d). This remarkable transmission
dip is much wider than that of a periodic waveguide studied in
the 4. The peaks in the transmission coefficients in the low fre-
quency propagative regime are attributed to Fabry–Perot res-
onances (see appendix B).

We now focus on the blue region highlighted in the disper-
sion diagram in figure 6(c). It corresponds to the gap between
the 20th and 21st modes, where a periodic structure consist-
ing of 20 unit cells possesses a band gap due to the fold-
ing of the Brillouin zone. Thus, we expect to observe some
reminiscence of the periodicity in this region. The width of
this band gap is defined by the ratio of the radius of the dia-
phragm over that of the waveguide, as it can be seen from the
figure 6(e), where the lower and upper edge of the band gap
at Lk= 0 represented by the blue area in figure 6(c) are depic-
ted. The positive and the negative configurations are shown in
figures 6(a) and (b), respectively. The dispersion diagram and
the transmission spectrum of the negative configuration shown
in figures 6(f) and (g) respectively are similar to those of the
positive one. The band gap we are interested in, shown by the
blue region, lies in the same frequency range as for the positive
configuration.

5.2. Observation of the localized edge states in hyperuniform
materials

We have revised the features of periodic structures as well
as theoretically and experimentally shown in section 4 the
excitation of edge modes by using periodic distribution of
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Figure 7. (a) Dispersion diagram of connected positive and negative
hyperuniform waveguides, (b) normalized pressure amplitude at the
connection between the positive and negative waveguides measured
with respect to the amplitude inside the empty tube p0. The red line
corresponds to the strong connection and the blue line corresponds
to the weak one, the circles represent the experimental results,
(c) Re(RpRn) (solid lines) and Im(RpRn) (dotted lines) for strong
(red) and weak (blue) connection. Black dotted lines correspond to
the expected frequencies from the dispersion diagram.

scatterers in our setup. In this work, although we study a dis-
ordered system, periodicity related features still remain. Thus,
we expect to observe the reminiscences of the topologically
protected states at the interface between a positive and a neg-
ative hyperuniform materials. To do that we proceed as in the
periodic case by considering a supercell made of the connec-
tion of a positive and a negative supercells allowing us to ana-
lyze the effect of the localizedmodes in the dispersion relation.

Both positive and negative waveguides under considera-
tion possess localized edge modes with frequencies inside the
band-gap. Their profiles are shown in figures 6(h) and (i) for
the two types of boundary condition—Dirichlet (p = 0) and
Neumann (v = 0), respectively.

The positive and negative waveguides can be connected
in two ways—either by means of the ends of a larger radius
(referred to as the strong connection), or by means of the ends
of a smaller radius (referred to as the weak connection). We

notice the localized interface modes inside the band gap, as
shown in the dispersion relation in figure 7(a). The mode pro-
files are shown on the insets of figure 7(b) next to the corres-
ponding normalized pressure amplitudes measured at the con-
nection. The numerical prediction (continuous line) and the
experimental results (symbols) are in good agreement. The
reminiscences of the symmetric and antisymmetric behavior
of Re(p) of the field of these modes, which is inherent in
the periodic case, are visible. The frequencies of the interface
modes are in good agreement with the predictions of the dis-
persion relation.

We evaluated numerically the reflection coefficients of the
single positive (Rp) and negative (Rn) hyperuniform materials
at their right and left ends, in order to account for both types
of connections, considering a single unit supercell. Due to the
fact that we are in the band gap region, that we are considering
a 1D system, and that at this particular frequency the reflection
coefficient is maximal, the recovered impedance is that of the
semi-infinite medium. The scattering coefficients are obtained
from the pressure evaluated at two points upstream and down-
stream the material [26]. The real and imaginary parts of RpRn
are shown in figure 7(c) in solid and dotted lines, respectively.
The frequencies, where the equation (13) is satisfied, perfectly
match those of the localized modes in the dispersion diagram
(vertical black dotted lines). Thus, the red and blue regions in
figure 6(e) correspond to the reminiscences of different topo-
logical phases inherent to periodic structures.

6. Conclusion

In this work, we have implemented a previously developed
approach [25] to engineer a 1D hyperuniform material, which
possesses extremely broad band transmission suppression.
The system was analyzed numerically and experimentally and
consists in a waveguide with rigid diaphragms embedded in.
Interchanging the locations of the diaphragms and the empty
spaces, we reach a transition point, which resembles the topo-
logical phase transition occurring in the periodic systems.
Despite the system is disordered, connecting two waveguides
yielding on opposite sides from this point leads to an emer-
gence of localized interfacemodes. Their profiles are similar to
those of the periodic waveguides. Thus, we observe the remin-
iscences of non-trivial topological behavior of periodic struc-
tures in the disordered system.
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Appendix A. Diaphragms positions in a
hyperuniform waveguide

Positions of the left edges of the diaphragms in the posit-
ive hyperuniform configuration are as follows: [0 0.020 0.077
0.147 0.178 0.225 0.286 0.343 0.369 0.440 0.477 0.540 0.574
0.644 0.673 0.734 0.793 0.820 0.892 0.922] (m).

Appendix B. Low-frequency Fabry–Perot
resonances

We have performed a calculation of the transmission coeffi-
cient T of the lossless positive hyperuniform material, which
is shown in the figure B1 together with the dispersion dia-
gram. The low-frequency peaks are equidistant and every
following peak provides a pressure profile with an addi-
tional node as compared to the previous one (the right panel
of the figure). These are the properties of the Fabry–Perot
resonances. In addition, from the dispersion diagram one
can calculate the velocity of approximately 260.7 m s−1.
Inserting this value into the condition of the Fabry–Perot
resonances Lk= nπ one obtains a resonance frequency dif-
ference of approximately 130.35 Hz, which equals to the
distance between the low-frequency peaks. As the speed of
sound reduces with the increase of frequency due to the dis-
persion, the higher-frequency peaks are farther apart. The
modes corresponding to the peaks (f) and (h) are attenu-
ated because of their location inside a band gap. The higher-
order modes (i) and (j) are localized inside the waveguide and
have a rather small velocity corresponding to the localized
modes.
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