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Abstract
As building blocks of acoustic metamaterials, resonant scatterers have demonstrated their ability to
modulate the effective fluid parameters, which subsequently possess extreme properties such as
negative bulk modulus or negative mass density. Promising applications have been shown such as
extraordinary absorption, focusing, and abnormal refraction for instance. However, acoustic waves
can be further controlled in Willis materials by harnessing the coupling parameters. In this work,
we derive the closed forms of the effective parameters from the transfer matrix in three
asymmetric and reciprocal one-dimensional resonant configurations and exhibit the differences in
terms of coupling coefficients. The way in which Willis coupling occurs in spatially asymmetric
unit cells is highlighted. In addition, the analysis shows the absence of odd Willis coupling for
reciprocal configurations. These effective parameters are validated against experimental and
numerical results in the three configurations. This article paves the way of a novel physical
understanding and engineering use of Willis acoustic materials.

1. Introduction

Since the seminal work of Willis in the 80’s [1], the eponymous materials have received an increasing
attention, because of their analogy with bi-isotropic electromagnetic metamaterials [2]. The Willis coupling
parameters couple the potential and kinetic energy in the acoustic conservation relations, therefore
enhancing the ability to control waves in metamaterials compared to other materials that do not exhibit
such coupling. These parameters have thus been employed to design PT symmetric [3], wave front shaping
[4, 5], or non-reciprocal [6] systems. Willis coupling arises from chiral inhomogeneities [7], asymmetric
inhomogeneities, nonlocal effects, and nonreciprocal biases [8]. Although most of the works to date have
focused on the experimental evidence [4, 9, 10], physical origins [11], calculation [12–14], and
enhancement [15] of Willis coupling, only a few have focused on deriving a closed form of these
parameters. The present article aims at filling this gap and therefore at easing its physical understanding and
engineering use. Effectively, it turns out that various systems rely on asymmetric meta-atoms for perfect
absorption in transmission problem [16], non-hermicity of the acoustic waves [17], PT symmetry [18], or
more generally most of the double negative one-dimensional devices [11, 19, 20].

We focus on three resonant, asymmetric, and reciprocal one-dimensional unit cells and derive closed
forms of the corresponding Willis coupling parameters, exhibiting different forms depending on the nature
of the asymmetry. By analyzing these Willis parameters, we show that Willis coupling in resonant systems
arises from second order Taylor expansion originating differently from multilayer systems [13, 21, 22] and
exhibit the dipolar feature of the coupling via arm terms. In addition, the reciprocity condition directly
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Figure 1. Pictures of the three studied Willis unit cells: (a) a straight duct loaded by two detuned HR located at different
positions, (b) a straight duct with two detuned plates clampled in it, and (c) a straight duct loaded by an HR and with a plate
clamped in it at a different position. A sketch of the configuration is provided below each picture.

provides even coupling and vanishing odd coupling [11], thus inducing doubt on the existence of odd
coupling in one-dimensional reciprocal acoustic systems. While even Willis coupling parameters appear
with opposite sign in the propagation matrix, odd Willis couplings appear with identical sign in the
propagation matrix for reciprocal structures.

The article is organized as follows. The general procedure for the derivation of the effective parameters is
detailed in section 2. It relies on the Padé’s approximation of the total transfer matrix, which links the state
vectors at both sides of a unit cell. The procedure is applied in section 3 to three different resonant
asymmetric and reciprocal one-dimensional unit cells. While the first two unit cells are composed of
detuned resonators either in parallel or in series of a duct, the third one combines resonators in parallel and
in series in the duct, see figure 1. Two of these unit cells have already been studied as Willis materials
[9, 11], but the closed forms of the coupling parameters have not been provided. The derived forms clearly
unveil dipolar feature of Willis coupling, as well as the differences between resonant and non-resonant
asymmetries and nature of the resonant asymmetry. The effective parameters are validated against
experimental and numerical (derived from [13]) results for each unit cell in section 4. The order of Taylor
expansion required to correctly model an asymmetric resonant unit cell is questioned. Finally, concluding
remarks and perspectives are provided. Additional information are also given in appendices.

2. Derivation of the Willis coupling parameters

We consider a one-dimensional asymmetric and reciprocal material composed of the periodic repetition of
a unit cell of length d. The pressure and particle velocity (alternatively the flow in a duct) form a state vector
WT =< p,V >, where T is the transpose operator. This state vector satisfies the following matrix equation
which directly arises from the mass conservation and constitutive law:

d

dx
W = AW. (1)

Assuming an implicit time dependence e−iωt, the matrix A reads as

A = iω

[
χ ρ

1/K −χ

]
, (2)

for Willis type materials, where ρ, K and χ are respectively the density, bulk modulus and Willis coupling
parameter. Please note that a usual isotropic and symmetric effective fluid implies χ = 0. The state vectors
at both sides of the unit cell, W(d) and W(0), are thus linked by

W(d) = exp (Ad) W(0) = TW(0), (3)

where the term exp (Ad) is the matrix exponential of Ad also known as the transfer matrix T. Among the
different ways of evaluating the matrix exponential [23] is the Padé’s approximation. The transfer matrix T
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is thus approximated in the long wavelength regime, i.e. when the wavelength λ is much larger than the
period d, by

T = exp (Ad) ∼
(

I − Ad/2
)−1 (

I + Ad/2
)

, (4)

where I is the identity matrix. Assuming the transfer matrix T between the state vectors at both sides of the
unit cell being known, equation (4) can be inverted and the expression of the constitutive matrix A becomes

A ∼ d/2(T + I)−1 (T − I) . (5)

The Padé’s approximation is of particular interest compared to other approximations such as the Taylor’s
expansion (see appendix A), because it allows us to account for the reciprocity of the material [24]. This
material property imposes det (T) = 1, i.e. t11t22 − t12t21 = 1, where tij are the elements of the matrix T.
Accounting for the reciprocity, equation (5) can be rewritten in the form

A ∼ 2

d (2 + t11 + t22)

[
t11 − t22 2t12

2t21 t22 − t11

]
, (6)

from which we immediately see that the diagonal terms are of opposite signs and we can identify

χ =
−2i (t11 − t22)

ωd (2 + t11 + t22)
, ρ =

−4it12

ωd (2 + t11 + t22)
,

and
1

K
=

−4it21

ωd (2 + t11 + t22)
,

(7)

by comparison with equation (2). Density, bulk modulus and Willis coupling parameter can then be
directly calculated via the elements of the transfer matrix that links the state vectors at both sides of the unit
cell. Please note that the odd Willis coupling introduced in reference [11] is completely canceled from
equation (6) only because of the reciprocal condition and that only even coupling remains. The effective
parameters that are derived following this procedure are indicated by a subscript e in the following.

3. Explicit effective parameters of Willis materials composed of resonant elements

The total transfer matrix T is evaluated thanks to the knowledge of different elementary transfer matrices
that are presented in appendix B. A circular duct of radius r and length d much smaller than the wavelength
is considered. Only plane waves propagate in this duct, i.e. the frequencies are lower than that of the first
cut-off of the duct and possible evanescent coupling between the unit cell elements is neglected. The
reduced density and bulk modulus (or alternatively the wavenumber and reduced impedance) in the duct
are ρ̄ and K̄ (or alternatively k̄ = k and Z̄). Three asymmetric and reciprocal unit cells are considered and
are represented in figure 1: (i) when the duct is loaded by two detuned Helmholtz resonators (HR) located
at different positions (figure 1(a)) of impedances Z̄(j)

HR, j = 1, 2, (ii) when two detuned plates are clamped in

the duct (figure 1(b)) of impedances Z̄(j)
p , j = 1, 2, and (iii) when the duct is loaded by an HR and a plate is

clamped in it at a different position (figure 1(c)). Each resonant element possesses its own local dynamics
which is assumed different from that of the duct, i.e. co-dynamic regime is assumed [25]. This is an
important difference with respect to a laminated two-material unit cell for example, for which it is clear that
a second order Taylor expansion of the total matrix elements in equation (7) is required to exhibit Willis
coupling terms as demonstrated in appendix C. The order of the resonant element impedances becomes
unclear notably around the resonance as explained in appendix B. Nevertheless, 1/Z̄HR (Lorentzian
function) and Z̄p (inverse of a Lorentzian function) are assumed to vary like O

(
(kd)2

)
to ensure reciprocity

of the configuration in the considered frequency range, see for example the discussion of appendix D in the
presence of a single HR. Note that this relies more on a frequency analysis rather than on a purely kd
analysis.

3.1. Unit cell composed of a duct loaded by two detuned Helmholtz resonators
We first consider a unit cell of length d composed of a straight circular duct loaded by two detuned HR of
respective reduced impedances Z̄(1)

HR and Z̄(2)
HR, assumed to be point-like resonators, and located at l(1) and

l(1) + l(2) such that d = l(1) + l(2) + l(3), as represented figure 1(a). Both inverse impedances 1

Z̄(1)
HR

and 1

Z̄(2)
HR

are

assumed to be O
(
(kd)2

)
terms. This configuration is formally that considered in reference [3], where the

loading quarter-wavelength resonators are replaced by HR. The total transfer matrix reads as

W (d) = TW (0) = Tl(3) THR(2) Tl(2) THR(1) Tl(1) W (0) , (8)
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where the transfer matrices accounting for the propagation along each length and for the loading HR are
given in equations (B.1) and (B.2). Assuming kd � λ, in such a way that kl(1) = ζ(1)kd, kl(2) = ζ (2)kd, and
kl(3) = ζ (3)kd, with ζ(j) = l(j)/d, j = 1, 2, 3, are also much smaller than the wavelength, and making use of
equation (7) leads to

χe =
ρ̄

2d

(
l(3) + l(2) − l(1)

Z(1)
HR

+
l(3) − l(1) − l(2)

Z(2)
HR

)
+O

(
(kd)3

)
,

ρe = ρ̄+O
(
(kd)3

)
,

1

Ke
=

1

K̄
+

1

d

(
− i

ωZ̄(1)
HR

− i

ωZ̄(2)
HR

)
+O

(
(kd)3

)
.

(9)

To get a grip on these equations, we compare them to those in the presence of a single HR presented in
appendix D. The Willis coupling term appears as the sum of the two Willis coupling terms arising from
each HR. Each of them clearly exhibits a momentum introduced by the resonator as testified by the
moment arm term l(3) + l(2) − l(1) for the first HR and the moment arm term l(3) − l(1) − l(2) for the second
HR. The Willis coupling parameter vanishes when the symmetry is introduced, for example, when the two
HR are identical and when l(3) = l(1). It appears in the form of an effective density divided by the impedance
of the HR. The density term, second line of equation (9), is not the subject of any specific remark and
simply reads as the effective density in the duct. The bulk modulus is the sum of the contribution of the
effective properties of the duct in the absence of the loading resonators, i.e. 1/K̄, and of each HR, i.e.
−i/dω Z̄(j)

HR, j = 1, 2. The presence of the HR causes the effective bulk modulus to become negative for
frequencies around their resonances [26, 27]. All in all, the effective parameters appear as the sum of those
of each elements, i.e. those of each segments and those of the HR, without any particular coupling. When a
subperiodicity can be introduced, i.e. when the two HR are identical and when l2 = d/2, the effective
parameters reduce to those of a unit cell of length d/2 consisting in a single, possibly uncentered, HR with
Willis parameter exhibiting a moment arm term equal to l(3) − l(1).

3.2. Unit cell composed of a duct with detuned clamped plates
We now consider a unit cell of length d, as depicted in figure 1(b), composed of a straight circular duct in
which two detuned plates, assumed to be point-like resonators, of respective reduced impedances Z̄(1)

p and

Z̄(2)
p are clamped at l(1) and l(1) + l(2) such that d = l(1) + l(2) + l(3). The clamped plates (CP) simply replace

the HR when compared to the previous configuration, but this time the impedances are in series instead of
being in parallel. This configuration is formally that considered in reference [9]. The total transfer matrix
reads as

W (d) = TW (0) = Tl(3) Tp(2) Tl(2) Tp(1) Tl(1) W (0) , (10)

where the transfer matrices accounting for the propagation along each length and for the CP are given in
equations (B.1) and (B.4). Proceeding similarly as in the previous section, equation (7) together with the
second order Taylor expansion of the total transfer matrix elements provides

χe =
1

2dK̄

(
Zp(1)

(
l(1) − l(2) − l(3)

)
+ Zp(2)

(
l(1) + l(2) − l(3)

))
+O

(
(kd)3

)
,

ρe = ρ̄+
1

d

(
−

iZp(1)

ω
−

iZp(2)

ω

)
+O

(
(kd)3

)
,

1

Ke
=

1

K̄
+O

(
(kd)3

)
.

(11)

The Willis coupling term appears as the sum of the Willis terms associated with each plate (see
appendix D). The momentum seems opposite to that imposed by the HR with an arm term l(1) − l(2) − l(3)

for the first CP and an arm term l(1) + l(2) − l(3) for the second CP. It appears in the form of an effective
compressibility multiplied by the impedance of the plate. Again, this term vanishes when the symmetry is
introduced as for example, when the two CP are identical and l(3) = l(1). The density is the sum of the
contribution of the effective density of the duct in the absence of the CP, i.e. ρ̄, and of each CP, i.e.
−iZp(j)/dω, j = 1, 2. The presence of the CP causes the density to be negative for frequencies lower than
their resonances [28]. Finally, the effective bulk modulus is that in the absence of the clamped plate and is
thus not the subject of any specific remark. The effective parameters again appear as the sum of those of
each elements, i.e. those of each segments and those of the CP, without any particular coupling. When a
plane of symmetry can be introduced, i.e. when the two CP are identical and when l2 = d/2, the effective
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parameters reduce to those of a unit cell of length d/2 consisting in a single, possibly uncentered, CP with
Willis parameter exhibiting a moment arm term equal to l(1) − l(3).

3.3. Unit cell composed of a duct with a clamped plate and loaded by a detuned Helmholtz resonator
We finally consider a unit cell of length d composed of a straight circular duct in which a plate, assumed to
be a point-like resonator, of reduced impedance Z̄p is clamped at l(1). The duct is in addition loaded by an
HR, also assumed to be a point-like resonator, of reduced impedance Z̄HR and located at l(1) + l(2) such that
d = l(1) + l(2) + l(3). A picture of the configuration is shown in figure 1(c). In other words, the first HR is
replaced by a CP compared to the configuration studied in section 3.1 or the second CP is replaced by an
HR compared to the configuration studied in section 3.2. Beyond the expected double negative effective
property [29], this asymmetric configuration combines impedances in series and in parallel and is similar to
that studied in reference [11]. The total transfer matrix reads as

W (d) = TW (0) = Tl(3) THRTl(2) TpTl(1) W (0) , (12)

where the transfer matrices accounting for the propagation along each length, for the CP, and for the HR
are given in equations (B.1), (B.4), and (B.2) respectively. Again, equation (7) together with the second
order Taylor expansion of the total transfer matrix elements provides

χe =
1

2d

(
ρ̄

Z̄HR

(
l(3) − l(1) − l(2)

)
+

Z̄p

K̄

(
l(1) − l(2) − l(3)

)
+

iZ̄p

ωZ̄HR

)
+O

(
(kd)3

)
,

ρe = ρ̄− iZ̄p

dω
+O

(
(kd)3

)
,

1

Ke
=

1

K̄
− i

dωZ̄HR
+O

(
(kd)3

)
.

(13)

Contrary to the configurations studied in both previous sections, the Willis coupling term is not only the
sum of the Willis terms associated with the presence of the CP and of the HR (see appendix D), but also
exhibits a coupling between the CP and the HR thanks to the term iZ̄p/2 dωZ̄HR. Note that the moment
arms are introduced by the first two terms, that related to the presence of the CP and that related to the
presence HR, while the coupling term does not present moment arm term. In addition, the Willis coupling
parameter never seems to vanish, because the configuration is structurally asymmetric. The density is the
sum of the contribution of the effective density of the duct in the absence of the CP and of the HR, and of
the CP, i.e. −iZ̄p/dω. In a similar way, the bulk modulus is the sum of the contribution of the effective bulk
modulus of the duct in the absence of the CP and of the HR, and of the HR, i.e. −i/dωZ̄HR. Note that
obviously no symmetry plane can be introduced for this configuration.

4. Experimental validation of the effective parameters and discussion

All experiments are conducted in a duct of radius r = 2.5 cm, see figures 1(a)–(c). The experimental set-up
consists of a 4 microphone measurement system with a pair of microphones upstream and a second pair of
microphones downstream of the sample. The microphones that compose each pair are separated by a
distance of 2.5 cm. A step signal from 100 Hz to 1000 Hz with a step of 1 Hz is delivered by a loudspeaker at
one end of the duct and an anechoic termination is mounted at the opposite end. Temperature, humidity
and atmospheric pressure are recorded for each experiment. The transfer function between the loudspeaker
and each microphone is recorded by an NI USB-4431 acquisition card driven by the INTAC software. Each
sample is measured in both direct and reverse orientations in order to form an overdetermined system
based on the scattering matrix [3, 30] as explained in appendix E to solve for T, R+, and R−, i.e. the
transmission, the direct orientation reflection, and the reverse orientation reflection coefficients. These
coefficients are also calculated by the transfer matrix method (TMM) using the total transfer matrix relying
on the elementary matrices and the Pade’s approximation of transfer matrix relying on the evaluated

effective parameters
(

I − Aed/2
)−1 (

I + Aed/2
)
, equation (4),

R+ =
t11 − t12/Z̄ + Z̄t21 − t22

t11 − t12/Z̄ − Z̄t21 + t22
, R− =

−t11 − t12/Z̄ + Z̄t21 + t22

t11 − t12/Z̄ − Z̄t21 + t22
,

T =
2

t11 − t12/Z̄ − Z̄t21 + t22
,

(14)

where Z̄ is the reduced impedance of the surrounding medium. From the measured direct and inverse
orientation reflection and transmission coefficients, the effective parameters are reconstructed following the
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Figure 2. (a), (e) and (i) |R+| (blue curve), |R−| (magenta curve), and |T| (red curve) as calculated with TMM with the total
transfer matrix (dashed line), with the effective parameters (solid line), and as measured experimentally (markers), for a unit cell
that is composed of a straight duct loaded by two detuned HR—with two detuned plates clamped in it—with a plate clamped in
it and loaded by a detuned HR. Subfigures ((b), (f), (j)), ((c), (g), (k)) and ((d), (h), (l)) depict respectively the real (blue curve)
and imaginary (red curve) of the corresponding Willis coupling parameter, normalized density, and normalized bulk modulus.
Subfigures (m) and (n) depict both the real and imaginary parts of the normalized dispersion relation for a unit cell composed of
a straight duct with a plate clamped in it and loaded by a detuned HR. The grey regions highlight the frequency band where the
real parts of both the effective density and bulk modulus are negative.

procedure described in appendix F. The effective properties can also be directly evaluated from the total
transfer matrix as explained in appendix G, which appears as a numerical version of the procedure
described in reference [13].

Figures 2(a), (e) and (i) depict respectively the absolute values of the two reflection and transmission
coefficients, calculated by the TMM with the total transfer matrix and by the Pade’s approximation using
the effective properties derived in section 3 for the three configurations considered in the present article. A
single unit cell is measured for each configuration. This measurement is entirely sufficient, because
one-dimensional structures are assumed. The first configuration (see figure 1(a)) consists in two detuned
HR, the dimensions of the cavities and necks of which are l(1)

c = 8 cm, l(2)
c = 4.2 cm and

r(1)
c = r(2)

c = 2.15 cm, and l(1)
n = l(2)

n = 2 cm and r(2)
n = r(1)

n = 3 mm, separated by a distance l(2) = 5 cm.
The resonant frequencies of both HR are thus f (1)

HR ≈ 165 Hz and f (2)
HR ≈ 230 Hz. The two remaining

dimensions l(1) and l(3) are chosen identical, i.e. l(1) = l(3) = 1 cm, such that d = 7 cm. The second
configuration (see figure 1(b)) consists in two CP separated by a distance l(2) = 5 cm +

(
h(1)

p + h(2)
p

)
/2. The

first CP is a plastic shim plate of thickness h(1)
p = 254 μm and material properties ρ(1)

p = 1400 kg m−3,

ν(1)
p = 0.41, and E(1)

p = 4.6 (1 − 0.03i) GPa already used in reference [31]. The second CP is a poroelastic

plate of thickness h(2)
p = 3.1 mm and material properties ρ(2)

p = 40 + 380i/
√
ω kg m−1, ν(2)

p = 0.1, and

E(2)
p = 470 − 0.007iω kPa already used in reference [32]. The resonant frequencies of both CP are thus

f (1)
p ≈ 380 Hz and f (2)

p ≈ 255 Hz and the two remaining dimensions l(1) and l(3) are chosen almost identical,

i.e. l(1) = 5 mm + h(1)
p /2 and l(3) = 5 mm + h(2)

p /2, such that d = 6 cm + h(1)
p + h(2)

p . The last configuration
(see figure 1(c)) is composed of the poroelastic plate and a loading HR, the cavity and neck dimensions of
which are lc = 5 cm and rc = 2.15 cm, and ln = 2 cm and rn = 2 mm, separated by a distance
l(2) = 5 cm + hp/2. The resonance frequency of the CP is still fp = 255 Hz and that of the HR is

6
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fHR = 140 Hz and the two remaining dimensions l(1) and l(3) are again chosen almost identical, i.e.
l(1) = 1 cm + hp/2 and l(3) = 1 cm, such that d = 7 cm + hp. The lengths of the unit cells are thus much
smaller than the wavelengths over the frequency range considered in each configuration. The neck was
manufactured by fused deposition modeling to fit in an initial radius of 1 cm. The neck also presents some
rugosity inherent to this rapid manufacturing technique, which can influence the viscothermal losses in
these resonator narrow elements [33]. The configurations were designed to present a reflection coefficient
that vanishes at a specific frequency while the reflection coefficient of the reverse sample is different from
zero at this frequency. The calculated coefficients are found in very good agreement with the experiments,
which therefore valid the derived effective properties and prove the asymmetry of the acoustic response of
each configuration. Some discrepancies are visible, notably for the third configuration at very low
frequencies. These discrepancies are attributed to measurement complexity at low frequencies and to
possible evanescent coupling between the resonant elements that is not accounted for in our modeling. At
high frequency, the calculated transmission coefficient based on the effective parameters starts to deviate
from its value for the second configuration because the scale separation is not ensured anymore and the
Pade’s approximation is not valid anymore, see figure 2(e). In addition, slight shifts between the coefficients
calculated with the total transfer matrix and with the effective parameters can also be notice at low
frequencies and around the resonances, see figures 2(e) and (j). These discrepancies are attributed to the
assumption we made on the dependency of the resonant element impedances, that are supposed to vary like
kd. Around the resonances, this assumption is not fully valid and the effective properties would require
additional terms to be Taylor expanded to the second order.

The normalized effective properties, i.e. χeS, ρe/ρ̄, and KeS/γP0, are respectively depicted in
figures 2((b), (f), (j)), ((c), (g), (k)) and ((d), (h), (l)) for each configuration. The numerical and
experimental effective properties match those evaluated in section 3. Generally speaking, the real parts of
the effective densities (CP) and bulk moduli (HR) are negative in stop bands and follow regular trends
[26–29]. Some discrepancies are visible for the third configuration again due to the fact that the
phenomenon are encountered at very low frequencies, but also to the assumption made on the order of the
resonant element impedances. The amplitude of the Willis parameter is usually much smaller than the other
ones, partially due to the fact that this parameter is only normalized by the cross-sectional area of the main
duct S, in the absence of a normalization value for this parameter. Note that χeS vanishes away from the
resonances in case of detuned HR, while it tends to infinity at low frequency when a plate is involved, see
figures 2(f) and (j). A similar remark is made concerning the effective density ρe/ρ̄. This is due to the
presence of the term Z̄p in both χe and ρe, equations (11) and (13), which varies like 1/ω at low
frequencies. This also blurs the required order of Taylor expansion to derive these effective parameters even
away from the resonances in case of unit cells involving plates as it can be seen in figures 2(e) and (i). This
divergence is nevertheless physical, because a plate should be a rigid wall at low frequency. Note that to
reach the request accuracy near to resonance, non-local effective medium are probably requested, which are
outside the scope of the current paper. The dispersion relation is also plotted for the configuration
comprising a straight duct with a CP and loaded by a detuned HR in figures 2(m) and (n). The grey areas
highlight the frequency range where the real parts of both the effective density and bulk modulus are
negative. The viscothermal losses and Willis coupling induce a slight shift in the negative index part. The
dispersion relation for the other two configurations (not shown here) are found in good agreement.

5. Conclusion

We derive closed forms of the effective properties of Willis materials thanks to a Pade’s approximation of
the total transfer matrix linking the state vectors at both sides of an asymmetric and reciprocal
one-dimensional unit cell. We primarily show that the reciprocal condition leads to the unique existence of
the even Willis coupling. Similarly to the case of laminated structures, which are usually in nonresonant
acoustic structures, second order Taylor expansion of the transfer matrix elements is sufficient to exhibit
Willis coupling parameters. Nevertheless, this result relies on a strong assumption on the resonant element
behavior and its veracity is questioned around the resonance. Higher order Taylor expansion of the full
transfer matrix terms involving the resonant elements may therefore be more suitable. The dipolar feature
of the Willis coupling is clearly evidenced, because the coupling parameter presents moment arm terms.
This also links Willis material to higher order strain gradient theories [34]. We also evidenced different
types of coupling terms due to the asymmetry, either absent when the unit cell consists in detuned identical
type resonators or due to a physical asymmetry when the unit cell involves different types of resonators.
Beyond the derivation of these closed-forms, we also show that various asymmetric structures can be
modeled as Willis materials. Each effective parameter (effective density, effective bulk modulus, and effective

7
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Willis coupling parameter) is validated against experimental and numerical results, showing the robustness
of the derivation method. This work paves the way for the engineering use of Willis materials, from perfect
absorption devices in transmission problems, to double negative structures, but also to metaporous
materials and liquid foams [35–37].
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Appendix A. Padé’s approximation versus Taylor’s expansion

In the long-wavelength regime, the first order Taylor’s expansion of the transfer matrix reads as

T = exp (Ad) ∼ I + Ad, (A.1)

which can be inverted to provide

A ∼ 1

d
(T − I) ∼ 1

d

[
t11 − 1 t12

t21 t22 − 1

]
. (A.2)

This expression does not ensure the reciprocity of the material and the diagonal terms are not opposite each
other. Taylor’s expansion, at least of first order, is not a sufficiently robust tool to derive effective
parameters, when compared to Padé’s approximation.

Appendix B. Elementary transfer matrices

This section details the different elementary transfer matrices that are used to evaluate the total transfer
matrix T.

Appendix B.1. Propagation in a duct of length l
The elementary matrix Tl that connects the state vectors at two locations separated from a length l in a
straight duct of section S reads as

W(l) = TlW(0) = exp (Al) W(0) =

[
cos (kl) iZ̄ sin (kl)

i sin (kl)

Z̄
cos (kl)

]
W(0), (B.1)

where k = ω/c = ω/
√

K̄/ρ̄ is the wavenumber, K̄ = K/S, ρ̄ = ρ/S and Z̄ =
√

K̄ρ̄ are respectively the
reduced bulk modulus, density and impedance.

Appendix B.2. Impedance in parallel
A flow split at a position s associated with the continuity of pressure is modeled by an impedance ZHR in
parallel leading to an elementary matrix THR

W(s) = THRW(s) =

[
1 0

1/Z̄HR 1

]
W(s). (B.2)

In particular, the impedance of a side branch HR to a duct of radius r, assumed to be a point-like resonator,

8
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is [38]

Z̄HR =
−iZ̄n

(
1 − kn

Z̄n
Z̄c
δ tan (kclc) − Z̄n

Z̄c
tan (knln) tan (kclc)

)
tan (knln) − kn

Z̄n
Z̄c
δ tan (knln) tan (kclc) + Z̄n

Z̄c
tan (kclc)

, (B.3)

where kn and Z̄n are respectively the wavenumber and reduced impedance of the neck, kc and Z̄c are
respectively the wavenumber and reduced impedance of the cavity, and δ =

0.82(1 − 1.35rn/rc + 0.31(rn/rc)3)rn + 0.82(1 − 0.235rn/r − 1.32(rn/r)2 + 1.54(rn/r)3 − 0.86(rn/r)4)rn is
the correction length, with rn and rc the radius of the neck and of the cavity respectively.

In the absence of losses and correction length, the latter impedance reduces to
Z̄HR = −iZ

(
1 − k2lnSclc/Sn

)/
k (Snln + Sclc) at low frequencies, from which it follows that 1/Z̄HR varies

like ω when ω → 0, but like a Lorentzian around the resonance frequency.

Appendix B.3. Impedance in series
A pressure drop at a position s associated with the continuity of the normal velocity (or flow) is modeled by
an impedance Zp in series leading to an elementary matrix Tp

W(s) = TpW(s) =

[
1 Z̄p

0 1

]
W(s). (B.4)

In particular, the impedance of a hp-thick plate clamped in a circular duct of radius r and section S,
assumed to be a point-like resonator, is [39]

Z̄p =
−iωρphp

S

I1

(
kpr

)
J0

(
kpr

)
− I0

(
kpr

)
J1

(
kpr

)
I1

(
kpr

)
J2

(
kpr

)
+ I2

(
kpr

)
J1

(
kpr

) , (B.5)

where In and Jn are respectively the modified and regular Bessel functions of first kind and order n, and ρp

and kp are respectively the density and wavenumber of the plate. The wavenumber is k4
p = ω2ρphp/Dp,

where Dp = Eph3
p/12

(
1 − ν2

p

)
is the bending stiffness, with Ep and νp the Young’s modulus and Poisson’s

ratio of the plate material respectively. Note that poroelastic and viscoelastic plates can be modeled with a
complex and frequency dependent Young’s modulus and/or density.

The plate impedance reduces to Z̄p = −iω192ρphp

(
1/
(
kpr

)4 − 5/384
)
/S at low frequencies, from

which it follows that Z̄p varies like 1/ω when ω → 0 because a plate tends to a rigid wall (Z̄p →∞) at low
frequency, like the inverse of a Lorentzian around the resonance frequency, and like ω otherwise.

Appendix B.4. Viscothermal losses
Circular ducts are considered all along this article. The boundaries give rise to viscothermal losses from
viscous and thermal skin depths. Assuming that only plane waves propagate in a circular duct of radius r,
the effective complex and frequency dependent density and bulk modulus read as [40]

ρ = ρ0

⎛
⎝1 − 2

r
√

iωρ0/η

J1

(
r
√

iωρ0/η
)

J0

(
r
√

iωρ0/η
)
⎞
⎠

−1

,

K = γP0

⎛
⎝1 +

2 (γ − 1)

r
√

iPrωρ0/η

J1

(
r
√

iPrωρ0/η
)

J0

(
r
√

iPrωρ0/η
)
⎞
⎠

−1

,

(B.6)

where ρ0, γ, η, and Pr are respectively the density, specific heat ratio, dynamic density and Prandtl number
of the saturating fluid, and P0 the atmospheric pressure. The reduced density and bulk modulus can then be
straightforwardly evaluated by ρ̄ = ρ/S and K̄ = K/S, with S = πr2.

Appendix C. Derivation of the Willis parameters in the case of a laminated
two-material unit cell

We assume a unit cell of length d composed of a material M(1) of density ρ(1) and bulk modulus K(1) and of
length l(1) and a material M(2) of density ρ(2) and bulk modulus K(2) and of length l(2) = d − l(1). The state
vectors at both sides of the unit cell are thus related by the total transfer matrix composed of the
multiplication of the transfer matrix modeling the propagation in the material M(1) over the length l(1) and
that in the material M(2) over the length l(2)

W (d) = TW (0) = Tl(2) Tl(1) W (0) , (C.1)
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where the expression of Tl(2) and of Tl(1) are given equation (B.1). Assuming kd � λ, in such a way that
k(1)l(1) = ζ (1)kd and k(2)l(2) = ζ(2)kd, with ζ (j) = l(j)/d, j = 1, 2, are also much smaller than the wavelength
and making use of equation (7) leads to

χe = 0 +O
(
(kd)2

)
, ρe =

1

d

(
l(2)ρ(2) + l(1)ρ(1)

)
+O

(
(kd)2

)
,

and
1

Ke
=

1

d

(
l(2)

K(2)
+

l(1)

K(1)

)
+O

(
(kd)2

)
,

(C.2)

if we only Taylor expand the elements of the transfer matrix to the first order. In the opposite, it leads to

χe =
iωl(1)l(2)

2d

(
ρ(2)

K(1)
− ρ(1)

K(2)

)
+O

(
(kd)3

)
,

ρe =
1

d

(
l(2)ρ(2) + l(1)ρ(1)

)
+O

(
(kd)3

)
,

1

Ke
=

1

d

(
l(2)

K(2)
+

l(1)

K(1)

)
+O

(
(kd)3

)
,

(C.3)

if we Taylor expand the elements of the transfer matrix to the second order. Of particular interest is the fact
that the eigenvalues of Ae, i.e. the wavevectors, are identical for both orders of expansion (assuming
respectively first and second order expansion) and equal to ke = ± iω√

Ke/ρe
, while the eigenvectors exhibit

Z±
e = Ke(ke ± χe) at the second order against Z±

e = Keke at the first order. In the lossless case, the Willis
coupling parameter is purely imaginary.

Appendix D. Derivation of the Willis parameters in case of a unit cell presenting a
single resonator

This section is motivated by nonlocal aspects of the Willis coupling and the fact that structures are often
bounded in practice. Moreover, it helps in a better understanding of coupling terms that arise in case of
more complex asymmetric unit cells.

Appendix D.1. Derivation of the Willis parameters in case of a unit cell presenting a single Helmholtz
resonator
We consider a unit cell composed of a straight duct of length d and radius r loaded by an HR of reduced
impedance Z̄HR and located at l(1) such that d = l(1) + l(2). The total transfer matrix reads as

W (d) = TW (0) = Tl(2) THRTl(1) W (0) , (D.1)

where the transfer matrix accounting for the propagation along each length and the HR are provided in
equations (B.1) and (B.2). Assuming kd � λ, in such a way that kl(1) = ζ (1)kd and kl(2) = ζ(2)kd, with
ζ(j) = l(j)/d, j = 1, 2, are also much smaller than the wavelength, but also that 1/Z̄HR is a O

(
(kd)2

)
term

(because it varies like ω at low frequencies), and making use of equation (7) leads to

χe =
1

2d

(
ρ̄(2)l(2) − ρ̄(1)l(1)

ZHR
+ iωl(2)l(1)

(
ρ̄(2)

K̄(1)
− ρ̄(1)

K̄(2)

))
+O

(
(kd)3

)

=
ρ̄

2d

l(2) − l(1)

ZHR
+O

(
(kd)3

)
,

ρe =
1

d

(
ρ̄(1)l(1) + ρ̄(2)l(2)

)
+O

(
(kd)3

)
,

= ρ̄+O
(
(kd)3

)
,

1

Ke
=

1

d

(
l(1)

K̄(1)
+

l(2)

K̄(2)
− i

ωZ̄HR

)
+O

(
(kd)3

)
.

=
1

K̄
− i

ωZ̄HRd
+O

(
(kd)3

)
.

(D.2)

At first glance, the effective parameters appear as the sum of those of a laminated two-material unit cell,
equation (C.3) and additional terms related to the presence of the HR. The main tube is identical along the
segments 1 and 2, thus K̄(1) = K̄(2) and ρ̄(1) = ρ̄(2) making the Willis parameter associated with the two
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materials to collapse. The effective bulk modulus and density then read as those proposed in [26, 27]. The
presence of the HR affects the bulk modulus, which can become negative around the HR resonance. The
Willis parameter only accounts the possible phase shift, when a material is bounded by bounds that do not
coincide with the natural unit cell bounds, i.e. when the HR cannot be centered in the unit cell. Please note
that the Willis parameter simply vanishes when l(1) = l(2) = d/2. Nevertheless, the term l(2) − l(1) translates
a momentum within the unit cell. While ρe and 1/Ke are also O

(
(kd)2

)
terms, χe is a O

(
(kd)3

)
term,

when 1/Z̄HR is assumed to be a O
(
(kd)2

)
term.

To prove that 1/Z̄HR should be a O
(
(kd)2

)
term (at least in the low frequency), we adopt a reductio ad

absurdum. Let us assume a centered HR (i.e. the Willis parameter vanishes) and that 1/Z̄HR is a O (kd) term
for example. The equation (D.2) are thus derived from a first order Taylor expansion of the elements of the
total transfer matrix. Under these assumptions, det (T) ≈ 1 − iωρ̄d/Z̄HR +O

(
(kd)2

)
	= 1 does not satisfy

the reciprocity condition. Thus, 1/Z̄HR is assumed to be a O
(
(kd)2

)
term. Note that this relies more on a

frequency analysis rather than on a kd analysis. We can therefore use the power of ω instead of the power of
kd to express the order of Taylor expansion in the following.

Appendix D.2. Derivation of the Willis parameters in the case of a unit cell presenting a single clamped
plate
We consider a unit cell composed of a straight duct of length d and radius r in which a plate of reduced
impedance Z̄p is clamped at l(1) such that d = l(1) + l(2). The total transfer matrix reads as

W (d) = TW (0) = Tl(2) TpTl(1) W (0) , (D.3)

where the transfer matrix accounting for the propagation along each length and the CP are provided in
equations (B.1) and (B.4). Assuming kd � λ, in such a way that kl(1) = ζ (1)kd and kl(2) = ζ(2)kd, again with
ζ(j) = l(j)/d, j = 1, 2, are also much smaller than the wavelength, but also that Z̄p is a O

(
(kd)2

)
term

(because it varies like ω), and making use of equation (7) leads to

χe =
Z̄p

2d

l(1) − l(2)

K̄
+O

(
(kd)3

)
,

ρe = ρ̄− iZ̄p

ωd
+O

(
(kd)3

)
,

1

Ke
=

1

K̄
+O

(
(kd)3

)
.

(D.4)

The effective bulk modulus and density read as those proposed in [28]. The presence of the CP affects the
density, which can become negative around the resonance. The Willis parameter only accounts the possible
phase shift, when a material is bounded by bounds that do not coincide with the natural unit cell bounds,
i.e. when the CP cannot be centered in the unit cell. Please note that the Willis parameter simply vanishes
when l(1) = l(2) = d/2. Nevertheless, the term l(1) − l(2) translates a momentum within the unit cell. Note
that the fact that the main tube is identical along the 1 and 2 segments has already been accounted for and
that an analysis similar to that performed in appendix D.1 can be carried out to prove that Z̄p should be
assumed to be a O

(
(kd)2

)
term. Nevertheless, this assumption is even more tedious than that made in the

case of the Helmholtz resonator, because Z̄p physically diverges at very low frequency.

Appendix E. Measurement of the direct and reverse orientation reflection and
transmission coefficients

Let us label the upstream and downstream 1/4 in Grass microphones 1, 2, 3, and 4 from the loudspeaker to
the anechoic end. The pressure pj is thus recorded at location xj, the first interface of the structure is located
at xs and the structure is of length d. A method based on the scattering matrix is preferred, because
anechoic termination is never fully anechoic and thus back propagating waves are always present due to
reflection at the end of duct [30]. The ingoing i and outgoing o waves at the interfaces of the samples
(vanishing phase is imposed at these interfaces) can thus be reconstructed to form the first set of equations

{
po

u = R+pi
u + Tpi

d,

po
d = Tpi

u + R−pi
d.

(E.1)
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Turning the sample over and repeating the procedure (second set of measurements are mark with), gives
another set of equations ⎧⎨

⎩
po′

u = R−pi′
u + Tpi′

d ,

po′
d = Tpi′

u + R+pi′
d .

(E.2)

These two sets of equations form an overdetermined system to solve for R+, R−, and T.

Appendix F. Recovery procedure of the effective parameters from the measured
reflection and transmission coefficients

The two state vectors at both sides of the sample are related by

W(d) = exp (Ad) W(0) = V diag
(

eΣ
±d
)

V−1W(0), (F.1)

where diag is the diagonal matrix, Σ± are the eigenvalues of A and V the corresponding eigenvector matrix.
For a Willis material, the constitutive matrix of which is given in equation (2),
Σ± = ±iω

√
χ2 + ρ/K = ±iωσ,

V =
1√
2

[
K (χ+ σ) K (χ− σ)

1 1

]
, and

V−1 =
1√
2

[
1/Kσ (σ − χ) /σ
−1/Kσ (σ + χ) /σ

]
.

(F.2)

Introducing R+, R−, and T in the state vectors equation (F.1) leads to 2 systems of equations⎡
⎣ 1 + R+

−1 + R+

Z

⎤
⎦ = exp (Ad)

[
T
−T

Z

]
, and

[
T
T

Z

]
= exp (Ad)

⎡
⎣1 + R−

1 − R−

Z

⎤
⎦ .

(F.3)

Introducing r± =
(
Z + Z±) / (Z − Z±), where Z± = K (σ ± χ), the reflection coefficients at the interface

between a semi-infinite background medium (of impedance Z) and the Willis material in the direct and
reverse orientations, these equations can be inverted to yield

r+ =
−
(
R−R+ + 1 − T2

)
±
√

(R−R+ + 1 − T2)2 − 4R−R+

2R+
,

r− =
−
(
R−R+ + 1 − T2

)
±
√

(R−R+ + 1 − T2)2 − 4R−R+

2R− ,

e−iωσd =
T

R+r− + 1
=

T

R−r+ + 1
=

R+ + r+

Tr+
=

R− + r−

Tr−
.

(F.4)

The sign of the first two equations are chosen to satisfy the passivity condition and χe, ρe, and Ke are
subsequently evaluated. These equations are slightly different from those given in [9] and extend the
method proposed in [41, 42], which was already used in [43].

Appendix G. Direct numerical calculation of the effective properties from the total
transfer matrix

Once the total transfer matrix T is calculated, it is directly assimilated to exp Anum
e d. From equation (F.1), it

is clear that the eigenvectors of T and Anum
e are identical and that the exponential of the eigenvalues of

Anum
e d are the eigenvalues of T. Following the idea of [13], we immediately end up with

Anum
e =

1

d
V diag

(
log

(
Λ±))V−1, (G.1)

where Λ± are the eigenvalues of T and V the associated eigenvector matrix. The three quantities χnum
e , ρnum

e ,
and Knum

e are subsequently evaluated.
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