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We present a method to systematically optimize nonlinear damage detection in multiple scattering
media by the nonlinear Vibro-Acoustic Modulation (VAM) technique. The latter consists here of exciting
a medium simultaneously with a high frequency ultrasonic sinusoidal burst and with a low frequency
continuous sinusoidal wave. Modulation of the high frequency (probe) by the low frequency (pump) is
made possible by the presence of nonlinear scatterers, i.e. cracks, defects. A signal processing technique
consisting of a closed loop system drives the automatic adaptation of the pumping frequency, yielding to
the optimization of the nonlinear modulation (NM) of the output probing coda signal without a priori
information on the medium and the scatterers. The correlation coefficient between a reference output
probe signal without the pumping wave and an output modulated probe signal with a pumping wave
was considered as our cost function. A multiple scattering solid beam where nonlinear scatterers can
be controllably added or removed is designed and tested. The first step of this study is an empirical search
of the correlation coefficient dependency on the pumping frequency to verify the performances of the
proposed method. Then the implemented optimization algorithm based on genetic algorithm (GA) is
used to find automatically the optimal pumping frequency. The obtained optimization results show a
good agreement with the empirical study. Moreover, the genetic algorithm allowed to find the optimal
pump frequency adapted to each configuration of nonlinear scatterers. This relatively fast search of the
optimal nonlinear response could be extended to nonlinear scatterer imaging applications using the
information on the resonant modes spatial shapes together with the associated optimal response.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Nonlinear ultrasonic nondestructive testing has known a great
development during the last decades. Numerous studies have
shown the possibility to detect damages at earlier stages than with
linear ultrasonic methods. The integrity of the structure can be
easily preserved by an earlier maintenance. The presence of a non-
linear defect, such as a crack or a delamination, can give rise to
nonlinear phenomena, among which are the generation of higher
harmonics, subharmonics, wave modulation or resonance fre-
quency shift. Several methods based on the detection of these
phenomena have been proposed [1–7]. One of the most widely
studied methods is the Vibro-Acoustic Modulation (VAM) [8,9] or
the Nonlinear Wave Modulation Spectroscopy (NWMS) [10], which
belongs to the class of nonlinear modulation or nonlinear mixing
methods. With the VAM, micro-damage can be detected by follow-
ing the amplitude modulation induced on a probe signal (e.g. high
frequency ultrasound) by a pump signal (e.g. low frequency vibra-
tion). Nonlinear modulation techniques have been widely used on
samples with simple geometries in which coherent waves propa-
gate [11,12]. However, the use of these methods has been poorly
studied in environments with complex geometries, which lead to
multiple scattering of the waves. Among the few reported results
in such case, Zhang et al. have demonstrated that a global inspec-
tion of multiple scattering materials is possible by combining the
Coda Wave Interferometry (CWI) technique with a nonlinear mod-
ulation method [13,14].
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Generally, the pump frequency is chosen to correspond to one
of the vibration modes of the studied sample in order to amplify
the vibration response [9,15–18]. A preliminary modal analysis
is, then, necessary for identifying and selecting the resonance fre-
quencies of the sample. It is important to underline that such a
procedure requires a further experimental setup and time. Further-
more, a possible drawback of a modal excitation is that the crack or
the damaged zone can be located at a strain node of the pump or
probe wave, which compromises the generation of the nonlinear
modulation. To overcome this problem, a frequency swept pump
and/or probe signals have been used [13,17,19–21,18,22]. As such,
several resonance modes are excited and an averaged effect over a
wide frequency range is detected, without low sensitivity zones.
Dunn et al. suggest that selecting the resonant frequencies as a
pumping frequency is not ideal, because the system nonlinearities
are maximum at those frequencies and the resonant peaks shift in
frequency with changing amplitude [23].

In order to optimize and to refine the sensitivity of the nonlin-
ear modulation method to detect damage, various signal process-
ing techniques have been adopted. These methods make it
possible to extract the nonlinear modulation information in the
frequency domain [20,21,24–28]. The VAM was also successfully
associated with the time reversal technique for localizing and
imaging damage in materials [29–31]. All these post-processing
techniques aim for improving the crack detection with fixed exci-
tations, while it has been proved that the effect of excitation
parameters, such as the frequency, can improve the VAM sensitiv-
ity [18,22]. Pieczonka et al. have used a swept sine chirp probe
excitation and modal frequency pump excitation associated with
an advanced signal processing technique to find the optimal probe
frequency enhancing the VAM sensitivity [17]. Recently, a novel
method in which the pump frequency is omitted and the high fre-
quency is amplitude-modulated and contains 3 frequencies that
interact in the presence of nonlinearity has been reported [32].
However, to our knowledge, no study using VAM has tried to find
the optimal excitation that improve the sensitivity of the damage
detection automatically by a closed loop system.

Previous results using the optimal command principle for non-
linear systems were initiated by Ménigot et al. [33,34] in medical
ultrasound imaging. A first attempt in NDT was applied in [35]
then in [36]. The originality of these results is to search for the
optimal input excitation parameter/shape without any a priori
knowledge on the studied system, by using known optimization
algorithms. The key point of this method lies in the choice of the
cost function which must best write the optimization purpose.

The present study constitutes an extension to the NDT domain,
especially, to the VAM technique, of the method demonstrated in
[33], in which the optimal command was applied to medical ultra-
sonic imaging. A conventional VAM system is, then, replaced by a
closed loop VAM system permitting a real time optimization of
input excitations parameters. We focused, here, on the pump fre-
quency parameter since the nonlinear modulation intensity
increase with the pump amplitude [18,37,38]. The aim of our study
is therefore to find automatically the best pumping frequency
which maximizes the nonlinear modulation occurring between
the pump and the probe signals without a priori information. The
proposed method requires no preliminary modal analysis and
use a simple optimization genetic algorithm. In a first time, the
cost function must be adapted to the VAM. An empirical search
of the cost function behavior as a function of the optimization
parameter was achieved in order to show the relevance of our
choices.

The remainder of the paper is organized as follow, in the Sec-
tion 2, we present our closed loop optimization system for the
VAM technique. Section 3 describes the experiment including the
studied sample and the setup. The Section 4 is devoted to the
experimental results of the empirical optimization, a modal analy-
sis for a comparison purpose, and the genetic algorithm optimiza-
tion. Finally, a discussion and conclusion are given in Section 5.

2. Closed loop pump frequency optimization

The proposed method is an optimal command method using a
closed loop, in order to optimize the VAM sensitivity of crack
detection. Indeed, it makes it possible to find the pump frequency
which optimizes the nonlinear modulation effects. The cost func-
tion and its parameters need to be adequately chosen. Here, only
an iterative optimization procedure is implemented. The conven-
tional open loop system is replaced by a closed loop system in
which the transmitted pump frequency is modified by adding a
feedback, ensuring the optimization of the cost function. The
closed loop system of the VAM optimization is described in Fig. 1.

2.1. Cost function

As mentioned above, the goal of our study is to find automati-
cally the best pump frequency f �p, which maximizes the Nonlinear
modulation (NM) effects. Usually, to quantify the resulting NM
effects in the context of multiple scattering media, the Coda Wave
Interferometry (CWI) in the time domain is used [13,14,39,40]. We
have chosen to proceed similarly, and extract the nonlinear modu-
lation information in the time domain as it seems to be more
accessible. Indeed, the frequency response is very complex in mul-
tiple scattering media, and the modulation sidebands are difficult
to see (see Section 3.3).

The correlation coefficient q between the received probe coda
signal without pumping and with the pump excitation constitutes
our cost function. With the presence of a nonlinear scatterer in the
sample, the probe signal is expected to be modulated by the pump
excitation which induces to a decorrelation between the two sig-
nals. A correlation coefficient equal to unity means that there is
no influence of the pump on the probe wave, i.e., no nonlinear
modulation effect in the sample. On the contrary, for the same
pump amplitude value, a deviation of q from 1 indicates the pres-
ence of nonlinear damage leading to a nonlinear modulation effect.
In a theoretical point of view, the problem consists in calculating:

f �p ¼ argmin
f p

q f p
� �� �

: ð1Þ

During the optimization process, for each iteration k, the same
probe excitation signal xs tð Þ is transmitted to the sample without
the pumping signal (see Fig. 1 switch position 1), and the received
reference probe coda signal yr;k tð Þ is recorded for a next use. In a
second time (switch position 2), a pump excitation xp;k tð Þ at a fre-
quency f p;k is transmitted simultaneously with the probe excitation
to the medium. The modulated coda probe signal ym;k tð Þ is also
recorded. The added feedback consists in evaluating and optimiz-
ing a cost function, which is, in our case, the correlation coefficient
between the two recorded received signals q yr;k; tð Þ; ym;k tð Þ� �
within the time interval [t1; t2] such as:

q yr;k tð Þ;ym;k tð Þ� �¼
R t2
t1

yr;k tð Þ� yr;k tð Þ� �
ym;k tð Þ�ym;k tð Þ� �

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR t2
t1

yr;k tð Þ�yr;k tð Þ� �2dt R t2
t1

ym;k tð Þ�ym;k tð Þ� �2dt
q

ð2Þ
where yr;k tð Þ is the average of the reference signal within the inter-
val [t1; t2], and ym;k tð Þ that of the modulated signal. This coefficient
quantifies the resemblance between the reference probe signal and
the modulated probe signal by the pump signal. The higher the non-
linear modulation between the probe and the pump signals is, the
lower the value of the correlation coefficient is. An optimization



Fig. 1. Bloc diagram of closed loop optimization of pump frequency for the VAM technique. The same probe excitation signal xs tð Þ is transmitted to the sample without the
pumping excitation. The received reference probe coda signal yr;k tð Þ is recorded for a next use(switch position 1). In a second time (switch position 2), a pumping excitation
xp;k tð Þ at a frequency f p;k is transmitted simultaneously with the probe excitation to the medium. The modulated coda probe signal ym;k tð Þ is also recorded. The added feedback
consists of evaluating and minimizing the correlation coefficient q between yr;k tð Þ and ym;k tð Þ. The optimization algorithm allowed to find a new pumping frequency f p;kþ1.
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algorithm is required to find a new pumping frequency f p;kþ1, at the
iteration k + 1, which maximizes the NM effect and therefore mini-
mizes the correlation coefficient. The frequency is then modified
and all the process described above is reiterated until the algorithm
converges toward the best solution. In our study, the genetic algo-
rithm was applied.

2.2. Genetic algorithm

To find iteratively the pumping frequency giving the global
minimum of the correlation coefficient, the genetic algorithm is
used [41]. It is a search optimization technique based on the prin-
ciples of genetics and natural selection. The genetic algorithm
allows a population composed of a set of pumping frequencies to
evolve under specified selection rules to a state that maximizes
the ”fitness” (i.e., minimizes the correlation coefficient) [34,42].
The first step (called generation 1) consists of choosing randomly
N pumping frequencies from a uniform distribution on a given
frequencies interval. In our case, we have chosen
10 Hz 6 f p 6 900 Hz. This choice is directly related to the empirical
optimization for a comparison purpose. Indeed, a largest initial
population could been chosen. The correlation coefficient is evalu-
ated for each pumping frequency value and sorted in descending
order. To prepare the next step, the N/2 best pumping frequencies
that minimize the correlation coefficient are kept for the next gen-
eration k + 1 and become parents. N/2 new pumping frequencies
named offspring are generated following the expressions [41,42]:

offspring1 ¼ f pm � b f pm � f pd
� �

offspring2 ¼ f pm þ b f pm � f pd
� � ð3Þ

where b is a random value between 0 and 1. the subscripts m and d
discriminates between the mum and the dad pumping frequencies.
A percentage of the samples is mutated to obtain a robust optimiza-
tion. There are some algorithm parameters that must be chosen
such the population size N and the mutation rate R. In our case,
N = 12 and the mutation rate R = 40% [34]. Finally, after cost func-
tion evaluation, the pumping frequency with the lower correlation
coefficient is the best solution of generation k + 1. The genetic algo-
rithm is adapted to global optimization problem; it means that it
will be able to find the global minimum even if the function pre-
sents local minima. The GA is good for at identifying promising area
of the search space but less efficient at fine-tuning the approxima-
tion to the minimum [43].
3. Material

3.1. Sample description

An aluminium bar (600 mm � 15 mm � 3 mm), with density
q = 2700 kg/m3, Poisson ratio r ¼ 0:33, and Young modulus
E = 69 GPa [44], is used as the specimen for our experiments. The
probe wave propagation velocity in the bulk of the bar is estimated
to 4838 m/s. 10 tapped holes with a 4 mm diameter and localized
at distances of 10 mm, 30 mm, 50 mm, 100 mm and 200 mm from
each sides of the bar center are drilled (see Fig. 2 from S1 to S10
from left to right). Identical screws (m = 4.42 g) can be placed in
the tapped holes to mimic nonlinear solid contacts (cracks) such
as in [45,39,40,46]. These holes constitute linear scatterers when
no screw is present. According to the number of nonlinear scatter-
ers on the bar, different levels of ‘‘effective” damage can be
obtained.

In the present study, three configurations have been more par-
ticularly studied: the first one (Config 1) corresponds to the case
where no screw is placed in the sample bar; the reference. Never-



Fig. 2. Specimen schemes of the three configurations. One Aluminium bar (600 mm � 15 mm � 3 mm) containing 10 tapped holes. Config 1: no screws are placed. Config 2: 2
screws are placed at S2 and S9. Config 3: all the screws are placed on the bar.
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theless, one fixation screw is placed in the middle to insure the link
between the shaker and the bar (S0 in Fig. 2). Configuration 2 (Con-
fig 2) corresponds to the case where only 2 screws are positioned
at S2 and S9, and a third configuration (Config 3) is the case where
all screws are placed (at S1, S2, S3, S4, S5, S6, S7, S8, S9, and S10).
Note that the nonlinearity level in the sample depends on the
screw number and the nuts tightening.

3.2. Experimental setup

The closed loop pump frequency optimization process requires
the experimental setup depicted in Fig. 3. Two broadband piezo-
electric transducers with 250 kHz central frequencies for transmit-
ting and receiving the probe signal are glued to the ends of the
sample. For the transmission of the probe signal, a 100 mVpp sinu-
soidal burst of 3 periods of 250 kHz frequency, repeated every
20 ms, was emitted by a function generator (AFG3022, Tektronix,
Beaverton, Oregon, USA) and amplified to 60 dB (100Vpp) by a
Fig. 3. Experimental setup for the closed loop V
power amplifier (Type 2713, Bruël & kJær, Nærum, Danemark).
Simultaneously, a lower frequency continuous sine pump signal
is generated by the computer-controlled function generator (Tek-
tronix, AFG3021C, Beaverton, Oregon, USA) to change the excita-
tion frequency during the closed-loop optimization process. The
pump signal is amplified by a power amplifier (PA100E, Bruël &
kJær, Nærum, Danemark), and transmitted to the shaker (LDS
V406, Bruël & kJær, Nærum, Danemark) which is connected to
the center of the sample by a screw. The coda probe signal is
detected by the receiving transducer and amplified by a preampli-
fier (Ciprian, Saint ISMIER, France), then, transmitted to an oscillo-
scope (LT 264ML, Lecroy, Chestnut Ridge, NY, USA). In order to
improve the signal to noise ratio, an average of 300 successive
acquisitions is carried out, and a coda averaged signal is recorded.
Each measurement lasts about 10s. Both the function generator
and the oscilloscope are controlled by MATLAB (Mathworks, Nat-
ick, MA, USA). The pump signal is desynchronized from the probe
so that the nonlinear effects are correctly distributed over the suc-
ibro-Acoustic Modulation (VAM) technique.
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cessive acquisitions and averaged over the acquired signal. By
comparison, An experimental modal analysis is achieved to iden-
tify the frequencies of the first structural resonances of the sample.
For this purpose, a frequency swept sine signal from 5 Hz to
1000 Hz is generated using a signal analyzer (SR785, Stanford
Research Systems Inc., Sunnyvale, CA, USA). The signal is amplified
by a PA100E power amplifier,then, transmitted to a LDS406 shaker.
The data are acquired by an accelerometer (352C23, PCB Piezotron-
ics Inc, Depew, NY, USA) then transmitted to the signal analyzer.
Both the input excitation and the output response are used to
obtain the averaged Frequency Response Function (FRF) of the
sample. The excitation and the acquisition are controlled by a GPIB
connection via MATLAB.
3.3. Nonlinear modulation effects on the probe coda signal

In order to show the NM effects on the temporal coda signal,
two configurations are considered. The first one corresponds to
the case without screws (Config 1), and the second one corre-
sponds to the Config 2. The pump frequency is 150 Hz. Fig. 4 shows
the received probe coda signal from the Config 1 (Fig. 4) and Config
2 (Fig. 4d). For each case, early and late temporal windows are
shown with and without the presence of the pump excitation
(Fig. 4). The pump presence causes no detectable change on the
probe coda signal obtained from the intact sample, for early and
late windows: there is no nonlinear modulation of the probe by
the pump with a correlation coefficient of 1. On the contrary, for
the damaged sample, it can easily be noted that the two coda sig-
nals recorded with and without the pumping wave are different for
the late window t=[1] ms (Fig. 4f), with a correlation coefficient
q ¼ 0:976. It indicates that a NM has occurred between the probe
and the pump waves. Moreover, the nonlinear effects are more vis-
ible in the late window because, at this time, the wave has crossed
the medium and interacted with the nonlinear scatterers several
times. From previous implementations of the nonlinear modula-
Fig. 4. Experimental temporal coda probe signals obtained from the Config 1 (without s
without the pump excitation. The pump excitation is a continuous sine signal at a reson
respectively, during an early time interval between [0.2, 0.25] ms. (c) and (f) are captur
tion of a coda wave by a pump wave in a multiple scattering med-
ium [13,14,46], the decorrelation is either due to a localized
velocity variation, to an amplitude-dependent dissipation effect
or to an amplitude-dependent scattering effect. By introducing
internal solid contacts in the medium, between the screws and
the holes, amplitude-dependent clapping, tapping and frictional
effects are expected. These results consolidate our choice of quan-
tifying the nonlinear modulation effects by calculating the correla-
tion coefficient between the probe coda signals obtained with and
without the presence of the pump excitation, in a time interval
between t1 = 1 ms and t2 = 1.2 ms. It is important to notice that
the choice of the central time and the width of the temporal win-
dow in which the correlation coefficient is estimated, obeys to
some constraints [47]. The characteristic scattering time t* is esti-
mated according to the method proposed in [48], and is find to be
around 3 ls for our specimen. The starting time of our window
t1 = 1 ms satisfies the condition t1 � t�. This ensures a global
inspection of the entire studied sample. Moreover the time interval
width is set to 200 ls, such as it includes enough signal periods (50
periods of the probe signal at 250 kHz). The choice of the window
position is also limited by the signal quality. Indeed, the more t is
increased, the more the signal to noise ratio is degraded and the
higher the uncertainty on the result is.

In parallel, we illustrate in Fig. 5, the frequency spectra (right) of
the coda probe signals (left), obtained for Config 2, with and with-
out the presence of the pump wave excitation at f p = 150 Hz. The
selected time window is Dt = [1,1.2]ms. We can notice that both
frequency spectra are centered on 250 kHz, and include peaks
due to the multiple scattered probe signal. The modulation side-
bands are difficult to see in this case, and the only difference
between the two spectra is an amplitude variation and a slight fre-
quency shift. Moreover, the frequency resolution is not sufficient to
observe the modulation sidebands when f pump � f probe. Therefore,
we choose to extract to modulation effects information in the time
domain.
crews): (a), (b) and (c), and for the Config 2 (with screws): (d), (e) and (f), with and
ance frequency f p = 150 Hz. (b) and (e) are captures of the coda signals (a) and (d),
es of (a) and (d), respectively, during a late interval between [1] ms.



Fig. 5. (left) Experimental probe coda signals obtained from the Config 2, with and without the presence of the pump. The pump excitation is a continuous sine wave at
150 Hz. The coda signal is filtered with a hanning window for a duration Dt = [1,1.2]ms. (right) The frequency spectra of the coda signals.
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During all this study, it should be noticed that the decorrelation
values are not observed higher than 2.5%. We recall, here, that we
want to test our approach in a rather unfavorable configuration,
i.e., when the variation of the correlation coefficient is small.
Indeed, a stronger nut tightening and a higher pump amplitude
would have given higher levels of decorrelation.
4. Experimental results

In this section, the main experimental results are presented.
First an experimental modal analysis is performed in order to
obtain the resonance modes of the sample for a comparison pur-
pose. Then, an empirical research of the correlation coefficient q
behavior versus the pump frequency is presented and compared
Fig. 6. Comparison between the resonance frequencies obtained from the experimenta
coefficient versus pump frequency at the sample resonance frequencies areas for the two
minimum peaks of the correlation coefficient versus pumping frequency.
to the modal analysis results. Finally, a closed loop optimization
of the correlation coefficient by the genetic algorithm is performed
and presented.
4.1. Empirical optimization: Correlation coefficient dependency on the
pump frequency

The frequency response function (FRF) is obtained using the
experimental input and output data obtained from the experiment
described in the Section 3.2. This preliminary experiment allows
identifying the frequency resonance modes of the sample in the
Configs 2 and 3. Fig. 6a and c show the FRFs obtained for Configs
2 and 3, respectively, in a frequency range from 5 Hz to 900 Hz.
We can see that the magnitude of the resonance peaks and the cor-
l FRF of the Config 2 (a) and the Config 3 (c). Experimental results of correlation
sample configurations: (b) Config 2 and (d) Config 3. The FRF peaks coincide with the
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responding frequencies are different for the two configurations.
The results show that there is a shift in the natural frequencies
and an overall change in the frequency response due to the effect
of the added screws.

The first performed experiment is to check the existence of glo-
bal or local minima for the correlation coefficient versus the pump
frequency. This step is called ‘‘empirical optimization”. For time
saving, a pump frequency sine sweeping from 10 Hz to 900 Hz
with a step of 10 Hz is achieved. This allows a global view of the
correlation coefficient dependency on the pump frequency. For this
first pass, the prominent observation is the presence of local min-
ima peaks localized at specific vibration frequencies corresponding
well to the resonances of the bar, and q ’ 1 elsewhere. To refine
the results and to get a better accuracy, a second sweeping was
achieved with a finer frequency step of 1 Hz, over the frequency
regions where q deviates from 1 (Fig. 6b and d). The procedure
cited in the Section 2.1 is adopted to calculate the correlation coef-
ficient for each pump frequency. As illustrated in Fig. 6, the pump
frequencies that give minima peaks of q coincide well with the res-
onance frequencies of the sample for the Configs 2 and 3. This con-
Table 1
The correlation coefficient q and the f p values corresponding to the minimum peaks
obtained from the empirical optimization (EO) and the resonance frequencies
obtained from the Frequency Response Function (FRF) for Config 2 and 3.

Modes Config 2 Config 3

qEO f p;EO(Hz) f p;FRF (Hz) qEO f p;EO(Hz) f p;FRF (Hz)

1st Mode 0.981 23 22.1 0.979 22 22.1

2nd Mode 0.975 150 148.7 0.981 144 145.7

3rd Mode 0.998 400 401.0 0.986 361 365.8

4th Mode 0.991 862 861.3 0.984 770 773.9

Fig. 7. Genetic algorithm (GA) optimization results for the Config 2: (a) Empirical optimi
illustrated. (b) The correlation coefficient qversus generations. (c) The corresponding pu
generation. (For interpretation of the references to colour in this figure legend, the read
firms the expected effects that at a resonance frequency of the
sample, the vibration amplitude is naturally amplified by construc-
tive interferences, leading to a more efficient nonlinear modulation
effect. Also, we can note a frequency shift to the lower frequencies
with the increase of the number of screws in the plate, as it can be
seen in Fig. 6b and d. Additionally, we can see clearly that for the
same resonance mode, the correlation coefficient values vary from
one configuration to another. In fact, the second minimum peak
corresponding to f p = 150 Hz is the most important for the Config
2; q = 0.975 (Fig. 6b) while q = 0.981 at f p = 144 Hz for the Config
3 (Fig. 6d). We can also notice the third q peak is very close to 1
(q = 0.998) for the Config 2 (Fig. 6d) and equal to 0.986 for the Con-
fig 3. These observations confirm the well-known fact that in the
pump resonance configuration, the NM efficiency on the probe
wave by the pump wave depends on the pumping frequency/mode
and on the exact position of the nonlinear scatterers. Based on the
obtained curves, it can be stated that for each configuration, it
exists an optimal pump frequency that maximizes the nonlinear
modulation effects and, thus, the damage detection sensitivity.
This optimal frequency corresponds to the frequency giving the
lowest minimum of q. The empirical experiment also shows that
the correlation coefficient is a good indicator to evaluate the non-
linear wave mixing in the sample. For an easier comparison of
results obtained from Fig. 6, Table 1 summarizes the correlation
coefficient minima peaks values and the corresponding pumping
frequencies obtained from the empirical optimization (EO) and
those obtained from the FRF for both configurations.

4.2. Optimal pumping frequency excitation

Fig. 7 shows the results of the pump frequency optimization for
the Config 2 and Fig. 8 shows those obtained for the Config 3 when
zation and GA iteration numbers (red circles), a zoom on the GA convergence area is
mp frequency versus generations. The GA converges to f p;opt = 153.2 Hz after the 4th

er is referred to the web version of this article.)



Fig. 8. Genetic algorithm (GA) optimization results for the Config 3: (a) Empirical optimization and GA iteration numbers (red circles), a zoom on the GA convergence area is
illustrated. (b) The correlation coefficient qversus generations. (c) The corresponding pump frequency versus generations. The GA converges to f p;opt = 22.17 Hz after the 7th

generation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Experimental optimization results of the genetic algorithm covergence and the
empirical values of the global minimum obtained by the empirical search, for the
Config 2 and 3.

Config 3 Config 2

q f p;opt(Hz) q f p;opt(Hz)

Genetic Algorithm 0.971 22.17 0.991 153.2
Empirical optimization 0.979 22.00 0.975 150.0
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using the genetic algorithm optimization. For more clarity, the
result of the empirical optimization is represented in Figs. 7a and
8a with a zoom on the GA covergence area. The initial population
was included in a frequency range between 10 Hz and 900 Hz, with
a population size of 6 for the Config 2 and 12 for the Config 3. We
can see that in both cases, the optimal pump frequency is reached
after 4 generations for the Config 2 with an optimal pump fre-
quency of 153.2 Hz and q = 0.991 (Fig. 7b and c), and after 7 gen-
erations for the Config 3 with f p = 22.17 Hz and q = 0.971 (Fig. 8b
and c). As it is illustrated in Figs. 7a and 8a the obtained results
are quite similar with those obtained by the empirical optimiza-
tion. For Config 2, the optimal pump frequency is reached by the
genetic algorithm with a slight discrepancy in the pump frequency
and the corresponding correlation coefficient. Indeed, we can see in
Fig. 7a, that the GA converges nearly to the global minimum at
f p = 153.2 Hz, in a pump frequency range between 10 and
900 Hz, including four (4) local minima of the cost function, but
the accurate value of this minimum, at f p = 150 Hz, is not reached.
We suppose that a greater number of iterations should improve
this result. Moreover, it is important to notice that for the empirical
search, the step between two pump frequencies is chosen empiri-
cally, this may be the origin of the discrepancy observed between
the empirical and the automatic optimization. For the Config 3, the
optimal pump frequency is nearly reached. For both cases, the
pump frequency converges while q remains variable for the same
value of the pump frequency. This can be clearly seen in Fig. 8b and
c where the pump frequency converges to f p = 22.17 Hz, and the
corresponding q still varies slightly. This observation is directly
due to the experimental conditions since the coda signal is very
sensible to small temperature changes. Moreover, the correlation
coefficient value reaches a lower value than that obtained by the
empirical optimization (Fig. 8a). It is important to mention that
the empirical cost function is not a continuous function, and a
measurement is made with a pump frequency step of 1 Hz. We
think, that a finer pump frequency step between two successive
cost function measurements should give a better concordance
between the empirical and the automatic search by the GA.
Another possible explanation is that for the empirical optimization,
one measurement of the cost function has been made for each
pump frequency value between 10 and 900 Hz, while for the GA
optimization, and after convergence, several measurements have
been made at the same optimal pump frequency (resonance fre-
quency). In fact, exciting a sample at its resonance frequency dur-
ing a long time (conditioning), could gives rise to a greater
decorrelation between the reference coda signal and the modu-
lated coda signal. Indeed, for the modal excitation, the vibration
response is amplified such as the medium does not reach the equi-
librium and the reference signal is still affected by the previous
iterations. This may be linked to ”slow dynamics” effects [49].

We can also note that the algorithm convergence is faster when
the population size is lower. The strong point of our approach is
that the algorithm converged to the global minimum of the corre-
lation coefficient without a priori information. For more clarity,
Table 2 summarizes the results obtained by both the empirical
and the GA optimization.
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5. Discussion and conclusion

In this work, a widely studied nonlinear ultrasonic nondestruc-
tive testing method has been combined with the optimal com-
mand method: an open loop Vibro Acoustic Modulation system
has been enriched with a feedback system. The main idea was to
achieve an optimal damage detection by finding automatically
the best input pump frequency. This input frequency maximizes
the nonlinear modulation effects induced by the presence of non-
linear scatterers and, therefore, should increase the sensitivity of
the VAM method. The best pump frequency adjusted to each con-
figuration has been successfully found by the feedback method.
This method is based, principally, on the good choice of a so called
”cost function” and the optimization parameter. Moreover, the
experiment setting is easy and not user dependent. The genetic
algorithm was tested on two sample configurations with different
levels of nonlinearity to demonstrate the adaptivity of the pro-
posed method. It is found able to determine automatically the opti-
mal pump frequency over a wide frequency range including 4
resonance modes. Even if the genetic algorithm is not always effi-
cient to find the accurate optimal value, it guarantees to find the
global optimum region quite fast since four (4) generations were
sufficient in our case. A preliminary empirical search was achieved
to check for the behavior of the cost function, the correlation coef-
ficient as a function of the optimization parameter (the pump fre-
quency). The results of this empirical search, requiring a long blind
experimental search, have been presented in the form of correla-
tion coefficient versus pump frequency. The main outcome is the
existence of frequencies, which correspond to some of the reso-
nance frequencies of the sample, giving a maximum of decorrela-
tion (or a minimum correlation). It constitutes a first suitable
result which confirms our hypothesis of choosing the correlation
coefficient of the probe coda signal, with and without pumping
to quantify the NM effects, and the pumping frequency as an opti-
mization parameter. The quantitative variation of qwith the pump
resonance frequencies, for the different configurations is related to
the modal vibration shapes and the associated strain amplitude
changes from a resonance mode to another, at the location of the
nonlinear scatterers. For different arrangements of nonlinear scat-
terers, we observe differences in the values of the correlation coef-
ficient, because a given resonant mode does not necessarily excites
differently located nonlinear scatterers with the same efficiency.
Similarly, for a given medium configuration, but when comparing
two different resonant modes, the nodes and anti-nodes positions
are not located identically, and they do not excite with the same
efficiency a given nonlinear scatterer. As such, using a single pump
frequency leads to the apparition of blind zones for the VAM,e.g.
when a single scatterer is at a strain node. For this reason, a prelim-
inary modal analysis to determine a resonance modes of the stud-
ied medium seems to be not sufficient to ensure an increase of the
VAM sensitivity detection.

The proposed method, in a resonance configuration, ensures to
avoid the low sensitivity regions associated with the strain nodes,
which could compromise the nonlinear scatterer detection. More-
over, for a fixed pump amplitude, the adjusted pump frequency
excitation may bring maximum detection sensitivity for nonlinear
damages, which can be very useful to detect early stage damage in
materials. Furthermore, the advantage of the automatic optimiza-
tion is a time gain compared to the empirical optimization which
takes about 15 times more then our method.

The optimal command can be extended to other NDT methods
by defining the right cost functions adapted to the optimization
purpose. Also, as a perspective, the genetic algorithm outcomes
could be used as the initialization for a gradient descent algorithm
in order to refine the results. In addition, information on the local
minima of the correlation coefficient may be relevant for locating
the nonlinear scatterers: each resonant mode constitutes a spatial
sensitivity kernel for the method and information stacking for sev-
eral modes may offer imaging capabilities.
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