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a b s t r a c t

We study the dynamics of an elastic structure composed of a cylindrical rod in contact with

a bead at one extremity. Wave propagation within the cylindrical rod is considered linear

and dispersionless while the bead-rod contact shows a highly nonlinear behavior as expected

from the Hertz’s model of contact. The resonance curves of the nonlinear contact depend on

the excitation amplitude, where a downshift of the resonance frequency with increasing exci-

tation amplitude is observed. The prediction of the resonance frequency shift by the Hertz’s

model is compared to the experimental results and shows a disagreement. A better agree-

ment is found by considering the losses with a viscoelastic model, namely the Kuwabara and

Kono or Brilliantov model. The observation of the nonlinear effects linked to the resonance of

the mass-spring system can lead to the design of nonlinear elastic metamaterials, where the

wave propagation is controlled by nonlinear isolated resonators.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In studying granular materials, especially when considering the wave dynamics, the definition of the contact law between the

particles is of primary importance. The elastic component of the normal contact force between two elastic spheres, without solid

bridge between them, is well described in acoustics by the Hertz’s contact law [1], which remains relevant in many cases [1,2].

In this model, the relation between the force F and the overlap between the two spheres 𝛿 scales as F∝ 𝛿3/2, which represents

a highly nonlinear relation that purely comes from the geometry of the problem. In addition to the nonlinear behavior, another

consequence of the Hertz’s model is the low equivalent moduli of the contact compared to the elastic parameters of the material

constituting the bodies in contact. As a result, the velocities of acoustic waves in granular media are small compared to the

velocities of acoustic waves propagating in the bulk of elastic solids. The problem of one bead in contact with a homogeneous

elastic medium can be viewed, at frequencies much below the first spheroidal resonance of the bead, as the problem of a rigid

mass connected to the elastic medium by a nonlinear stiffness. This bead in contact can therefore be considered as a nonlinear

isolated resonator since the low equivalent moduli of the contact induces a resonance of this mass-spring system at frequencies

where the incoming wavelength in the elastic medium is much larger than the diameter of the bead.

The wave propagation within an elastic solid can be controlled by the interaction of the elastic wave with nonlinear isolated

resonators, namely elastic spheres in contact. These features have been used to design an acoustic rectifier [3], tunable functional

switches [4], tunable phononic crystals [5] or to study the attenuation of surface waves in a colloidal based metamaterial [6,7].

Nevertheless, the fine design of a metamaterial based on the nonlinear behavior of granular materials requires a quantitative

agreement between the model of contact and the actual experimental behavior.
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Fig. 1. (a) Picture and (b) schematics of the experimental setup. (c) Example of measured displacements of the bead 𝛿a normalized by the static overlap 𝛿0 predicted by the

Hertz model, see Sec. 4.1, at different amplitudes of excitation. The resonance frequency depends on the amplitude of excitation and at the larger amplitudes on whether

the excitation frequency sweep is performed from low to high frequencies or from high to low frequencies. (d) Experimental protocol of excitation amplitude. Example of

one measurement protocol with the resonance frequency (e) in the linear regime and (f) in the nonlinear regime, where the curves have been shifted for more visibility in

both cases. The dashed curves correspond to the data removed from the analysis.

The comparison of the predictions of the contact models with experimental measurements have essentially been performed

by studying the collision process and the coefficient of restitution of a bouncing ball (see Refs. [8–12] and the references therein).

The problem of collision between two particles has large implications, from astrophysics (Saturn’s rings and planet formation

for instance) to industrial processes (granulation, handling of fine powders to name a few) and numerous models have been

proposed (see Refs. [10,11] and the references therein).

Here, we propose a different approach to study the granular contact restraining ourselves to the case of elastic or viscoelastic

contact, which are relevant in the case of acoustic wave propagation (small oscillating or pulsed strains). We consider the case

of one bead in contact with a homogeneous elastic solid and which is maintained in contact only by its own weight. This struc-

ture presents a resonance frequency and can be considered as a nonlinear isolated elastic resonator. The resonance frequency

depends on the amplitude of excitation as it can be seen in Fig. 1(c), where the resonance frequency is decreasing with increas-

ing excitation amplitude. It offers the possibility to compare the experimental results of the widely observed nonlinear effect of

resonance frequency shift with the predictions of the theoretical models and conclude whether the latter capture correctly this

feature. Others nonlinear effects related to the nonlinear behavior of the contact such as harmonic generation can be observed

experimentally. These effects are not further investigated in the present work. The experimental setup, which is shown in

Fig. 1(a) and (b), is reduced to its simplest form and the unknown parameters are therefore limited. The amplitude-dependence

of the resonance frequencies of granular media has been previously used to characterize the compaction of a granular assembly

[13,14]. In addition, nonlinear elastic resonances are typical in geomaterials [15], cracked solids and more generally mesoscopic

materials containing internal solid contacts [16,17], and for this reason have been also widely studied in the context of ultrasonic

non destructive testing [18–21].

This article is organized as follows. In Sec. 2, the experimental setup is described. In Sec. 3, the modeling of the wave propa-

gation in the elastic rod is reviewed. In Sec. 4, the theoretical models to be compared to the experimental results are presented

while in Sec. 5, the theoretical predictions of the resonance frequency shift by each contact model are derived. Then, in Sec. 6, the

theoretical predictions are compared to the experimental results and finally, in Sec. 7, the obtained results including difficulties

arising with the analysis of the Q factors are discussed.

2. Experimental setup

The acoustic wave is excited on one side of a cylindrical rod by a piezoelectric transducer (a longitudinal Panametrics-NDT

V1011), which is coupled to the rod with honey. On the other side, the rod is in contact with a spherical bead, which is maintained

only by its own weight as shown in Fig. 1(a) and (b). The rod is made of stainless steel with a Poisson’s ratio of 𝜈 = 0.27, a mass
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density 𝜌= 7.7 · 103 kg m−3, a Young’s modulus in the range E= 190–210 GPa, a yield stress of Y= 6.12 GPa, a surface energy

𝛾 = 0.7 J m−2 and an equilibrium separation z0 = 4 · 10−10 m [2,22]. The bead is also made of stainless steel, and its material

parameters are assumed to be the same as those of the rod. The length of the rod is lrod = 10 cm, its diameter is ar = 12 mm. The

role of the rod is to ensure a contact between two bodies constituted of similar materials and to ensure that the acoustic wave is

plane and longitudinal. The first acoustic longitudinal resonance of the rod is measured at 8.5 kHz (the interface between the rod

and the piezoelectric transducer is neither purely rigid nor free, that is why this first resonance cannot be predicted easily with

the sound velocity and the length of the rod). The radius of the bead is rbead = 7.938 mm. The section of the rod in contact with

the bead has been polished to enhance the reproducibility of the results. The roughness of the bead is ∼25 nm. The dynamic

displacement of the bead is measured by a laser vibrometer. The excitation and acquisition are performed using a Stanford

SR 785 analyzer in a swept sine mode from 1.5 to 3.5 kHz, from low to high frequencies and from high to low frequencies, as

excitation signal. The amplitude of the excitation signal follows the protocol shown in Fig. 1(d).

The first measurement is performed at very low amplitude of excitation in order to determine the resonance frequency in

the linear regime. The resonance frequency found from this first measurement is considered as the reference resonance fre-

quency f0 for the protocol. The amplitude of excitation is then increased step by step, and between each step, the measurement

at low amplitude is performed again in order to monitor the evolution of the linear resonance frequency f0(n). If the shift

Δf0 = [f0(n) − f0]∕f0 of the measured linear resonance frequency compared to the reference frequency is larger than 2%, the fol-

lowing (higher amplitude) measurements of the protocol are removed from the analysis. It is assumed that a value of Δf0 larger

than 2% is a signature of a change of state of the system, which can come from a change of position of the bead at the top of the

rod during the preceding phase of high amplitude excitation. The experimental dataset is composed of 28 amplitude protocols.

An example of the results obtained from one measurement protocol is shown in Fig. 1(e) and (f).

3. Wave propagation in rods

The compressional wave propagation takes place in the rod. The plane wave propagation is assumed when the radius of

the rod is much smaller than the wavelength. Thus, the considered frequency range is assumed to be at low frequencies, i.e.,

𝜔∕(2𝜋)< VT∕(2𝜋ar) ≃ 40 kHz where 𝜔 is the cyclic frequency and VT is the transverse wave velocity in the material constitut-

ing the rod, and the wave is considered as longitudinal and the propagation unidimensional. The dispersion relations of the

longitudinal modes can be found by numerically solving Pochhammer-Chree equation [23]

2p(q2 + k2)J1(par)J1(qar)∕ar − (q2 − k2)2J0(par)J1(qar) − 4k2pqJ1(par)J0(qar) = 0, (1)

where q2 = 𝜔2∕V2
T
− k2, p2 = 𝜔2∕V2

L
− k2, k is the wave number of the compressional wave determined by Eq. (1), Jn are Bessel

function of the first kind and order n, and VL is the velocity of longitudinal wave in the material constituting the rod. At low fre-

quencies, the dispersion of the first longitudinal mode remains small and the group and phase velocities vg and v𝜙, respectively,

can be found from the Rayleigh’s equation

vg ≃ v𝜙 ≃
√

E

𝜌

[
1 − 𝜈

(
kar

2

)2
]
, (2)

where E is the Young’s modulus of the material constituting the rod, 𝜌 and 𝜈, its mass density and its Poisson’s ratio, respectively.

The group velocity of the first longitudinal mode is estimated to be vg = 4950–5205 m. s−1 as shown in Fig. 2. Considering the

frequency range of the excitation signal and as can be seen in Fig. 2, the dispersion is negligible, the compressional wave velocity

in the rod is considered constant and the smallest wavelength of the compressional wave in the rod is then 𝜆r = 1.41–1.49 m,

which is much larger than the size of the bead.

4. Contact models

4.1. Hertz model

Following the Hertz theory of contact [1,24], the overlap 𝛿 between two spheres, with a radius r1 and r2, in contact under a

force F is

𝛿 =
[

3

4

F

E∗R1∕2

]2∕3

, and F = 4E∗R1∕2𝛿3∕2∕3, (3)

where R is the relative radius of the contact which is deduced from

1

R
= 1

r1

+ 1

r2

, (4)

and

1

E∗
=

1 − 𝜈2
1

E1

+
1 − 𝜈2

2

E2

, (5)
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Fig. 2. Group velocity of the first longitudinal mode from the Pochhammer-Chree equation resolution with E= 210 GPa (blue dots) and E= 190 GPa (green dots) and from

the Rayleigh’s equation with E= 210 GPa (red continuous curve) and E= 190 GPa (orange continuous curve). (For interpretation of the references to colour in this figure

legend, the reader is referred to the Web version of this article.)

where E1,2 and 𝜈1,2 are the Young’s modulus and Poisson’s Ratio, respectively, of the beads 1 and 2. In our case, the bead of radius

r1 is in contact with a plane surface. This sphere-plane contact can be modeled considering that the radius r2 tends to infinity

and consequently R= r1. The amplitude-dependent normal stiffness KN of the contact is obtained from the force-displacement

relation in Eq. (3) with

KN = 𝜕F∕𝜕𝛿 = 2E∗(R𝛿)1∕2. (6)

The overlap 𝛿 can be decomposed into a static overlap 𝛿0, resulting here from the applied static force induced by the weight of

the bead, and a dynamic overlap 𝛿d = 𝛿a sin(𝜏) with 𝜏 =𝜔t, which is due to the acoustic wave. At the first order of approximation

and by considering that the amplitude of the acoustic overlap 𝛿a is much smaller than the static overlap 𝛿0 i.e., 𝛿a ≪ 𝛿0, the

contact between the bead and the rod can be approximated by the normal linear stiffness

K0 = 𝜕F

𝜕𝛿

||||𝛿0

= 2E∗(R𝛿0)1∕2. (7)

From the normal linear stiffness, the linear resonance frequency of the mass-spring system can be found for a mass mb of the

bead with f0 = (K0∕mb)1∕2∕(2𝜋). The static external force F0 applied on the contact is only due to the weight of the bead, no

additional normal force is introduced. The static overlap, linear stiffness and linear resonance frequency are predicted to be,

considering the range of values of Young’s Modulus, δ0 = 55–50 nm, K0 = 4.3 · 106–4.6 · 106 N m−1 and f Hertz
res

= 2.60 − 2.70 kHz.

4.2. Viscoelastic model

In the numerous studies on the collision between two particles, dissipative forces are added to the purely elastic contact

model from Hertz. Dissipation at the contact level can come from different mechanisms that contribute to the energy losses.

These mechanisms of energy losses are for instance the radiation of acoustic waves in the two bodies, the possible plastic defor-

mation, the losses due to the viscoelastic behavior of the material constituting the beads among others [25]. Only the losses due

to viscoelasticity are considered in this model by assuming that there is no plastic deformation at the contact and by neglect-

ing the acoustic energy radiation [25,26]. To assess if potential plastic deformations have to be expected in our experiment,

a limiting force Fl, above which plastic deformations start to occur, can be evaluated. A criteria is empirically defined for the

maximum pressure applied on the contact as pl = 1.6Y [1,2], where Y is the yield stress of the material. The maximum pres-

sure applied on the contact pm is related to the applied force with pm = [24FE∗2∕(𝜋3R2)]1∕3, which finally gives the estimation

of the limiting force Fl = 1.63𝜋3Y3R2∕(24E∗2) ≃ 5.9 · 103 − 7.2 · 103 N [1,2]. This is much larger than the estimated maximum

dynamic force at 3 kHz Fd =mb𝜔
2𝛿0 ≃ 0.29–0.32 N, which is on the same order than the static force F0 ≃ 0.16 N applied here.

To evaluate the importance of the radiation of acoustic energy into the rod, we make the analogy between the contacting sur-

face and a point force source. The acoustic radiated power by a point force source in an elastic half space is approximated with

Πr ∼ 𝜔2F2
d
∕(𝜋𝜌V3

L
) [28], where VL is the velocity of the longitudinal wave in the medium, Fd = mb𝜔

2𝛿d is the dynamic force

from the dynamic displacement 𝛿d, the pulsation 𝜔 corresponds here to the resonance frequency f Hertz
0

. The Q factor of the

radiation losses Qr is estimated as the ratio of the kinetic energy of the bead Ek ∼ mb𝜔
2𝛿2

d
∕2 to the acoustic radiated power, i.e.,

Qr ∼ 𝜔Ek∕Πr ∝ 𝜋𝜌V3
L
∕(2𝜔3mb) ∼ 104 in our case. This estimation indicates that the acoustic radiation losses are very small. The

acoustic radiation can not always be neglected due to the frequency dependence of Qr . For instance, in an experimental study of
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the dynamics of the elastic contact between a single metallic nanoparticle and a substrate, it has been suggested that important

losses can be attributed to acoustic leakage from the nanoparticle to the substrate [29].

Among the models of viscoelastic contact between two spheres, we have selected here the model developed in Refs. [25–27],

where a viscous stress proportional to the strain rate [30] is introduced into the analysis of the contact problem. The viscoelastic

description corresponds therefore to a Kelvin-Voigt model. The dissipation due to viscoelasticity adds a dissipative part in the

normal force which is written [26,27]

F = 4

3
E∗R1∕2

(
𝛿3∕2 + 3

2
A𝛿1∕2 𝜕𝛿

𝜕t

)
, (8)

with

A = 1

E

1 + 𝜈

1 − 𝜈

[
4

3
𝜂1(1 − 𝜈 + 𝜈2) + 𝜂2(1 − 2𝜈)2

]
, (9)

and where the two beads (or the bead and the rod in the present case) are constituted of the same viscoelastic material with

a Young’s modulus E, a Poisson’s ratio 𝜈 and two bulk viscous constants 𝜂1,2. Due to the lack of information on the dissipative

coefficients 𝜂1,2, the viscous bulk constants are considered as fitting parameters, in comparison to the experimental results,

see Sec. 6, with 𝜂1 = 𝜂2 ≡ 𝜂. The definition of the parameter A changes following the references. The one given in Ref. [26] has

been corrected in Ref. [31] and has been recalculated in Ref. [27]. The definition in this latter reference is used here, being the

most recent definition. The geometry of the problem of the contact between two spheres induces, in addition to the nonlin-

ear force-displacement relation, a displacement-dependent dissipative force. From this nonlinear model, the dependence of the

restitution coefficient en on the impact velocity v0 can be predicted and compared to experimental measurements. This depen-

dence is derived in Ref. [9] using a general nonlinear spring dash-pot model. This derivation is reproduced here. The general

form of the elastic force is

f el ∝ 𝛿1+𝛼, (10)

and the general form of the viscoelastic force is

f vis ∝ 𝜕𝛿

𝜕t
𝛿𝜉0

(
𝜕𝛿∕𝜕t

𝜕𝛿v∕𝜕t

)𝜉1

, (11)

where ∂𝛿v/∂t is a typical velocity scale. The velocity dependence of the restitution coefficient is then [9]

1 − en ∝ v
[2(𝜉0+𝜉1)−𝛼(1−𝜉1)]∕(2+𝛼)
0

. (12)

From experimental measurements, the exponent in Eq. (12) is found to be equal to 1/5 [8,9], i.e.,

2(𝜉0 + 𝜉1) − 𝛼(1 − 𝜉1)
2 + 𝛼

= 1

5
, (13)

which is the case for the viscoelastic model in Eq. (8) demonstrating the agreement between this model and experiments on

collision of particles.

4.3. Adhesion

At the contact level, an adhesion can appear due to the interatomic forces. Many models have been developed, among which

are the Dejarguin-Muller-Toporov model (DMT) [32], the Johnson-Kendall-Robert model (JKR) [33] and the Maugis-Dugdale

model (MD) [34]; each of them being relevant depending on the problem under study. The prevalence of one of the model can

be determined with the adhesion map of Johnson et al. [35]. The adhesion map is governed by two parameters. The first one is

the Muller’s parameter 𝜇 defined with [36,37]

𝜇 = 32

3𝜋z0

(
𝛾2R

E∗2

)1∕3

, (14)

where 𝛾 is the surface energy, z0 is the equilibrium separation. Similarly, the Tabor’s parameter 𝜆 [38] can be used and is defined

as 𝜆= 1.16𝜇. It should be noticed that the work of adhesion w (commonly denoted as surface energies Δ𝛾 = 𝛾1 + 𝛾2 − 𝛾12) is

often used instead of the surface energy 𝛾 . When the two contact surfaces are made of the same material, we have w= 2𝛾 . The

second parameter is the ratio of the external applied force to the adhesion force. If the external applied force F is large enough

compared to the adhesion force Fa i.e., Fa/F< 0.05, then the Hertz model can be applied [35]. Considering a small external force

compared to the adhesion force and if 𝜇< 1, then the DMT model applies. If 𝜇> 5, then the JKR model applies. If 1 <𝜇< 5, then

the MD model applies.

Here, considering the surface energy 𝛾 and the equilibrium separation z0 of stainless steel, 𝜇= 57–61 and the JKR model

applies since the static external force F0 is not sufficiently large compared to the adhesion force (pull-off force) Fa = 3𝜋𝛾R, i.e.,
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Fig. 3. Force-overlap F− 𝛿 relation from the Hertz model (red curve) and the JKR model (blue dashed curve). The static overlaps are marked by circle for both models. (For

interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fa/F0 = 0.3> 0.05. The relation between the external force F and the overlap 𝛿 is not explicit but is implicit through the contact

radius a. The contact radius is controlled by [37]

a3 = 3R

4E∗
[F + 2 + Fc + (4FFc + 4Fc)1∕2]. (15)

The overlap 𝛿 and the force F are

𝛿 = 𝜋a

2E∗
(p0 + 2p′

0
) and F = 𝜋a2

(
2p0

3
+ 2p′

0

)
, (16)

with

p0 = 2aE∗

𝜋R
and p′

0
= −

(
4𝛾E∗

𝜋a

)1∕2

. (17)

The linear stiffness of the contact is written [37]

K
jkr

0
= 2E∗a[3 − 3(ac∕a)3∕2]∕[3 − (ac∕a)3∕2], (18)

where a3
c = 3FcR∕(4E∗). The static overlap predicted by the JKR model is 𝛿

jkr

0
= 67 − 62 nm, the resonance frequency is f

jkr
res =

2.74 − 2.86 kHz. The force displacement relation of the Hertz and JKR model are plotted in Fig. 3.

4.4. Roughness

The surface roughness of the beads can also affect the force-displacement relation. By considering the contact between two

spheres with fractal rough surfaces, the following relation between the stiffness and the applied force is found [39]:

KN ∝ F1∕(H+1), (19)

where H (0<H≤ 2) is the Hurst exponent that characterizes the roughness of the surfaces. For H= 2, the Hertz law is found.

This leads to a force-displacement relation of the form

F ∝ 𝛿n = 𝛿(1+H)∕H. (20)

Therefore, 3∕2≤ n<+∞ depending on the value of H. Following another approach, previous studies indicate that the values of

the exponent n can be modified by the presence of an oxide layer, whose elastic modulus is much lower than the one of the

initial material, at the surface of the sphere and forms a soft shell. The soft shell model gives n= 2 [40].

5. Resonance frequency shift

Using the Hertz or JKR models, the linear resonance frequency is predicted to be below 3 kHz, which is far below the first

resonance of the rod measured at f rod
0

≃ 8.5 kHz. This experimental system can therefore be reduced to the simplest case of

single mass-spring system, the mass being the mass of the bead mb, the spring being the contact between the bead and the rod.

As stated before, the stiffness of the contact is found by deriving the nonlinear force-displacement relation KN =∂F/∂𝛿 and thus
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depends on the overlap 𝛿, which can be decomposed into a static part 𝛿0 and a dynamic part due to the acoustic wave 𝛿a sin(𝜏),
giving 𝛿= 𝛿0 + 𝛿a sin(τ). At very low amplitude of excitation, the acoustic amplitude 𝛿a is negligible against the static overlap

𝛿0. The resonance frequency only depends on the static part of the overlap.

When the acoustic amplitude becomes non-negligible against the static overlap, the resonance frequency depends on the

amplitude of excitation. The resonance frequency fres is proportional to the square root of the ratio of the stiffness KN of the

contact to the mass mb, i.e., f res = (KN∕mb)1∕2∕(2𝜋). Then, at the first order, Δf∕f0 ≃ (ΔKN∕K0 −Δm∕mb)∕2. Since the mass of

the bead mb is constant in the case here, the resonance frequency shift Δf∕f0 is only proportional to the relative modification of

the stiffness Δf∕f0 ≃ΔKN∕(2K0). The relative modification of the stiffness ΔKN can be found by averaging the stiffness KN over a

wave period, which is written ΔKN∕K0 = ⟨KN − K0⟩∕K0 = ⟨∂F∕∂𝛿− K0⟩∕K0. Finally, we obtain Δf∕f0 ≃ ⟨∂F∕∂𝛿 − K0⟩∕(2K0) [13,41].

This procedure can be applied to all the contact models exposed in Sec. 4.

5.1. Hertz model

Considering the force-displacement relation in Eq. (3), we find that

ΔKN − K0

K0

= 2E∗(R𝛿)1∕2 − 2E∗(R𝛿0)1∕2

2E∗(R𝛿0)1∕2
=
(
𝛿a sin 𝜏 + 𝛿0

𝛿0

)1∕2

− 1. (21)

Finally, the resonance frequency shift predicted by the Hertz model is found with

Δf hertz

f0

≃ 1

4𝜋 ∫
2𝜋

0

(
𝛿a

𝛿0

sin 𝜏 + 1

)1∕2

d𝜏 − 1

2
, (22)

which can be solved numerically.

5.2. Viscoelastic contact

Considering the force-displacement relation in Eq. (8), the stiffness KN of the contact is

KN = 𝜕F(𝛿0 + 𝛿a sin 𝜏)
𝜕𝛿

=
𝜕
{

4

3
E∗
√

R
[
(𝛿0 + 𝛿a sin 𝜏)3∕2 + 3

2
A𝜔(𝛿0 + 𝛿a sin 𝜏)1∕2𝛿a cos 𝜏

]}
𝜕𝛿a sin 𝜏

, (23)

where 𝜔 is the cyclic pulsation at the resonance. Finally, the resonance frequency shift predicted by the viscoelastic model is

Δf vis

f0

≃ 1

4𝜋 ∫
2𝜋

0

(
𝛿a

𝛿0

sin 𝜏 + 1

)1∕2

d𝜏 + A

4𝜋𝛿
1∕2

0
∫

2𝜋

0

𝜕(𝜔(𝛿0 + 𝛿a sin 𝜏)1∕2𝛿a cos 𝜏)
𝜕𝛿a sin 𝜏

d𝜏 − 1

2
, (24)

which can also be solved numerically. Because of the nonlinear behavior of the viscoelastic losses induced by the geometry of the

problem (contact sphere-plane), the viscoelastic losses have an influence on the resonance frequency shift, which is represented

by an additional term in Eq. (24) compared to the prediction in Eq. (22).

5.3. Adhesion

Since there is no explicit relation between the force and the displacement in the JKR model, the prediction of the resonance

frequency shift has to be performed numerically.

The resonance frequency shift predicted by the Hertz, viscoelastic and JKR models are shown in Fig. 4 as a function of the

overlap 𝛿a∕𝛿0. From the normalization by the static overlap 𝛿0, the resonance frequency shifts predicted from the Hertz and JKR

models do not depend on the Young’s Modulus and for the sake of simplicity, the resonance frequency shift is predicted from the

viscoelastic model considering only one value of the Young’s Modulus E= 210 GPa. The predictions from the viscoelastic model

present a large resonance frequency shift while the predictions from the Hertz and JKR models do not substantially differ. The

JKR model will therefore not be considered in the comparison with the experimental measurement of the resonance frequency

shift.

5.4. Surface roughness

Considering the force-displacement relation in Eq. (20), the stiffness is

KN = 𝜕F

𝜕𝛿
= nC(𝛿0 + 𝛿)n−1, (25)

where C is a constant. The resonance frequency shift is then predicted with

Δf

f0

≃ 1

4𝜋 ∫
2𝜋

0

(
𝛿a

𝛿0

sin t + 1

)n−1

dt − 1

2
. (26)
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Fig. 4. Theoretical predictions of the resonance frequency shift Δf∕f0 as a function of the acoustic overlap 𝛿a from the Hertz (red dotted curve), JKR (green continuous

curve) and viscoelastic with 𝜂= 1.05 MPa s (black dashed curve) models. Theoretical predictions of the resonance frequency shift without the first order approximation,

i.e., Δf∕f0 = (
√

KN∕mb −
√

K0∕mb)∕
√

K0∕mb from the viscoelastic model (gray continuous curve). The predictions from the viscoelastic model are the ones giving the

largest values of resonance frequency shift, which could invalidate the first order approximation of Δf/f0. The deviation between the gray continuous curve and the black

dashed curve remains small, thus confirming that the first order approximation can be used. The acoustic overlap 𝛿a is normalized to the static overlap 𝛿0 predicted by the

Hertz model. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 5. Maximum resonance frequency shift for 𝛿a = 𝛿0 as a function of the exponent of the force-displacement relation predicted from Eq. (26).

The maximum frequency shift for 𝛿a = 𝛿0 as a function of the exponent n is shown in Fig. 5. The frequency shift is negative if

1< n< 2, and is positive otherwise. The minimum value predicted in this case of resonance frequency shift is around −0.05 for

a value of the exponent close to the one of the Hertz model n= 3∕2. As seen in Fig. 1(c), the resonance frequency is decreasing

with increasing excitation amplitude. This indicates that 1< n< 2 and that this model can predict a resonance frequency shift

similar or smaller than the one predicted by the Hertz model.

6. Experimental results

The bead and the rod are assumed to be composed of the same material, the dissipative constant is chosen to be

𝜂 = 1.05 MPa s giving A= 1.1 · 10−5.

The measured linear resonance frequencies f0 of each of performed protocols can be compared to the predictions of the Hertz

and the JKR models f Hertz
0

and f
jkr

0
, which is shown in Fig. 6. The range of experimentally measured linear resonance frequencies

is larger than the range of the combined predictions of both Hertz and JKR models. This is attributed to the irregularity of the

surfaces in contact. For instance, the roughness of bead surface is 25 nm (manufacturer’s data), which is not negligible compared

to the static overlap predicted, 𝛿0 = 55–67 nm. In conclusion, these experimental results do not allow us to discriminate between

those two models.

In Fig. 7, the experimental measurements of the resonance frequency shift are compared to the theoretical predictions from

the Hertz and the viscoelastic models of contact. The Hertz model, as well as the JKR model and the model including the surface
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Fig. 6. Comparison between the experimental linear resonance frequencies and the predictions from Hertz (yellow area) and JKR (blue area) models. (For interpretation of

the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 7. Resonance frequency shift Δf/f0 in linear scale (left) and in logscale (right) as a function of the normalized acoustic amplitude 𝛿a/𝛿0 in logscale. The acoustic ampitude

𝛿a is the displacement measured at the top of the bead at the resonance. The static displacement 𝛿0 is found from the Hertz theory considering the weight of the bead. The

theoretical resonance frequency shifts are predicted from the Hertz model ΔfHertz/f0 (red dotted curve) and from the viscolelastic model Δfvis/f0 (black dashed curve). (Left)

The gray dots correspond to the measurements with increasing frequencies for the sweep. The orange dots correspond to the measurements with decreasing frequencies

for the sweep. (Right) Mean value of the frequency shift (blue continuous curve) and interval of 90% of confidence (blue area). (For interpretation of the references to colour

in this figure legend, the reader is referred to the Web version of this article.)

roughness following the conclusions of Sec. 5, underestimate the resonance frequency shift. It should be noticed that there is

no fitting parameter in the Hertz model in Eq. (22) that could allow us to find a good agreement between the Hertz model and

the experimental results. In Fig. 7, the x-coordinate is normalized by 𝛿0, which is the only contributing parameter in Eq. (22).

Moreover, the disagreement between the Hertz model can also be seen on the slope of the frequency shift with the displacement

amplitude in the right panel in Fig. 7. The main contribution of the Hertz model shows a dependence proportional to 𝛿2
a [41],

whereas the experimental results show a dependence closer to 𝛿
3∕2
a , which is impossible to achieve using the Hertz model. On

the other hand, the viscoelastic model shows a good agreement with the experimental results.

7. Discussion on the damping parameters of the viscoelastic model

7.1. Comparison with previous studies

The agreement between the experimental results and the viscoelastic model depends on the chosen value for the viscous

constant 𝜂. In this section, the chosen value of 𝜂 is compared to the ones found in previous comparison between theoretical

predictions and experimental datas. The estimation of the parameters in this paper are based on the Brilliantov model [26,27],

which is similar to the Kuwabara-Kono model, which is written as [25]

Fkk = kn𝛿
3∕2 + 𝛾n𝛿

1∕2 𝜕𝛿

𝜕t
. (27)
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Fig. 8. Q factors of the linear resonance curves as a function of f lin
0

. The Q factors are estimated using the −3 dB method.

The Kuwabara-Kono model has been used in Ref. [10], where the constants kn and 𝛾n have been scaled to fit previous experimen-

tal measurement of the impact restitution coefficient between two beads. In Ref. [10], the material constants for the stainless

steel bead experiments are E= 193 GPa, 𝜈 = 0.35, 𝜌= 7830 kg.m−3 and the radii of the beads are r1 = r2 = 1.27 cm. The stiffness

constant kn is found from kn = 4E∗R1/ 2/3= 1.17 · 1010 kg/m3/2 and the fit gives the value 𝛾n = 3.31 · 104 kg.m−1/2 s−1. By using

the material and geometric constants given in Ref. [10] and by using 𝜂 = 1.05 MPa.s with Eqs. (8) and (9), we obtain 𝛾n = 7.8 ·
104 kg. m−1/2 s−1, which is of the same order as the value given in Ref. [10].

7.2. Q factor analysis

Using the force-displacement relation in Eq. (8) and keeping only the linear contributions, the linear equation of motion of

the bead is in the form

mb

𝜕2𝛿d

𝜕t2
+ 2E∗A(R𝛿0)1∕2 𝜕𝛿d

𝜕t
+ 2E∗(R𝛿0)1∕2𝛿d = 0. (28)

The Q factor of the linear oscillator is then

Q = 𝜔0mb∕[2E∗A(R𝛿0)1∕2], (29)

with 𝜂 = 1.05 Mpa. s, Q= 5. At small amplitude, the measured Q factor of the reference resonance curves are 20<Q< 100 as

shown in Fig. 8. It should be noticed that no correlation appears between the resonance frequencies shown in Fig. 6 and the

measured Q factors for the same resonance curves as it can be seen in Fig. 8. In Fig. 9, the experimental resonance frequency

shift is compared to those predicted with 𝜂= 0.3 MPa s, giving Q= 20 and 𝜂= 55 kPa s, giving Q= 100. By decreasing the value

of 𝜂, the effect of the viscous losses on the resonance frequency shift decreases as expected. For Q= 100, the predicted reso-

nance frequency shift is close to the one predicted by the Hertz model. Here, in addition to their contribution to the nonlinear

resonance frequency shift, the viscoelastic losses are the only contribution to the Q factors of the linear resonance curves. The

different measured Q factors of the linear resonance as seen in Fig. 8 should importantly affect the viscoelastic contribution

to the nonlinear resonance frequency shift. This is not the case in experiments since noticeable differences do not appear in

the nonlinear resonance frequency shift as can be seen in Fig. 7 where all the protocols have led to similar results without any

relation to their initial linear Q factors that are exposed in Fig. 8, this is in contradiction to the theoretical predictions visible in

Fig. 9.

The evolution of the Q factor with the excitation amplitude cannot be estimated precisely by measuring the width of the res-

onance curve at half amplitude (or −3 dB method) when the resonance curve becomes asymmetric. The amplitude-dependence

of the inverse Q factor Δ(1∕Q) = 1∕Q(𝛿a) − 1∕Qref can be found from the relation [16]

Δ
(

1

Q

)
= 1

Qref

(
V𝛿ref

Vref𝛿a

− 1

)
. (30)

where Qref is the Q factor of the reference curve, V are the excitation voltage amplitudes (Vref being the voltage excitation

amplitude of the reference measurement), 𝛿a is the displacement amplitude measured at the resonance corresponding to the

excitation voltage amplitude V and 𝛿ref is the displacement amplitude measured at the resonance corresponding to the exci-

tation voltage amplitude Vref . It can be seen in Fig. 10 that the inverse Q factors do not show a clear trend, considering the

dispersion of the data points, on the amplitude below amplitudes of displacement of the same order as 𝛿0.
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Fig. 9. Resonance frequency shift Δf∕f0 in logscale as a function of the normalized acoustic amplitude 𝛿a∕𝛿0 in logscale. The acoustic ampitude 𝛿a is the displacement

measured at the top of the bead at the resonance. The static displacement 𝛿0 is found from the Hertz theory considering the weight of the bead. Frequency shift predicted

from the Hertz model ΔfHertz∕f0 (red dotted curve) and from the viscolelastic model Δfvis∕f0 with Q= 5 (black dashed curve), Q= 20 (violet dashed curve) and Q= 100

(green dashed curve). Mean value of the frequency shift (blue continuous curve) and interval of confidence (blue area). (For interpretation of the references to colour in

this figure legend, the reader is referred to the Web version of this article.)

Fig. 10. Inverse Q factor shift Δ1∕Q in linear scale as a function of the normalized acoustic amplitude 𝛿∕𝛿0 in logscale. The gray dots correspond to the measurements with

increasing frequencies for the sweep. The orange dots correspond to the measurements with decreasing frequencies for the sweep. (For interpretation of the references to

colour in this figure legend, the reader is referred to the Web version of this article.)

In conclusion of this section, the analysis shows us that the viscoelastic model cannot capture entirely the experimental

results. The viscoelastic model enables to reproduce either the Q factor of the linear resonances (using 𝜂 = 55–330 kPa s) or the

nonlinear resonance frequency shift (using 𝜂 = 1.05 MPa s), but not both of them at the same time. This observation highlights

the necessity to refine the model for the viscoelastic losses. In the same manner, the absence of correlation between the linear

resonance frequency and the Q factor as well as the dispersion in the measured Q factor values indicate that there are additional

dependencies for the Q factor. These latter could come from the roughness of the surfaces or the humidity of the surrounding

air, leading to an additional layer of viscous fluid at the surface of the bead. For instance, it has already been observed that the

presence of a viscous fluid at the surface of the beads induces a hardening of the contacts and increases the dissipation [42,43].

A control of the humidity in the surrounding air seems relevant for future experiments in order to test this assumption.

8. Summary

In this study, one bead in contact with an elastic solid is considered as a nonlinear isolated elastic resonator. The nonlinear

effect of resonance frequency shift, i.e., amplitude-dependent resonance frequency, is analyzed and the experimental results are

compared to the theoretical predictions of various contact models. The conclusion is that the classical Hertzian model, the JKR

model with adhesion and a model including the roughness of the surfaces in contact are unable to capture the experimental
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nonlinear behavior. By taking into account viscoelastic losses at the level of the contact, the theoretical predictions are able to

reproduce the experimental results. However, the viscoelastic model can reproduce either the measured linear Q factor or the

nonlinear resonance frequency shift, but not both of them at the same time. This highlights the importance of the dissipative

forces in the linear and nonlinear behavior of the granular contact, but further works are needed. Interestingly, we found that the

nonlinear resonance frequency shift is a robust feature of the bead-rod contact problem unlike the linear Q factor and even the

linear resonance frequency. This study is a necessary step towards the design of granular-based metamaterials for the purpose

of elastic wave control. We believe this study could also guide future research for the investigation of the dynamics of inter-grain

contacts with losses.
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