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Supplemental Material Note 1: Details of empirically-based theoretical equations

Although it is not true in the current fatigue test since the controlled parameter is the imposed

displacement of a clamped side of the plate, it is considered that the cyclic loading is strain-

controlled. Therefore, the part of the theoretical damage index associated to the cumulative dam-

age, Dc, is proposed to be modelled using the Lemaitre-Plumtree rule [1–3] that accounts for the

evolution of the stress response of the material due to the material fatigue in a strain-controlled

cyclic loading:

Dc(N,x) =

[
1−
(

1− N
N f

)1/(1+PN)
]

exp
[
−4ln2

(x−∆x)2

σ2

]
, (S1.1)

where N f is the number of cycles to produce a critical amount of damage (as outlined in Ref. [4])

and PN , a dimensionless quantity, represents the damage exponent which depends on the plastic

strain amplitude. Note that the value of PN can range from one-digit number to two-digit number

[3]. In Eq. (S1.1), the Lemaitre-Plumtree rule dictates the dependence of Dc on N. Assuming

that the cumulative damage is concentrated in the center of the plate where the imposed fatigue

stresses are the largest [see Fig. 4(c)], the spatial distribution of the effect of cumulative damage

is proposed to be captured with a narrow Gaussian distribution along the scanning distance x with

the parameters σ (full width at half maximum: FWHM) to control its width and ∆x to control the

position of its maximum. The Gaussian distribution is here taken, after experimental observations

of the spatial distribution of the relative variation of the ZGV frequency (see Fig. 6) and that of

the optical microscope [see inset in Fig. 7(d)]. According to the the stress distribution [see Fig.

4(c)], the extent of the damage in the center of the plate should increase quicker than that in the

side parts. The Gaussian distribution width σ should thus rigorously decrease as N increases,

hence concentrating the damage more and more to the center. Yet, looking at the experimental

results of the distribution in Fig. 6, the Gaussian distribution width in Zone I is observed to be

quasi-constant. It has thus been assumed to set σ as a constant in Eq. (S1.1).

For the other two terms of D, Db and Dt , the Miner-linear damage hypothesis [2, 5] is consid-

ered to model their dependence on N: linear dependence of the form N/N f . Indeed, it is assumed

that the metal fatigue is weaker is Zone II and Zone III and, therefore, that the stress response

evolves linearly with N. Since the buckling-caused residual stress has the form of a cosine func-

tion with respect to x [see Eq. (3)], so is the spatial distribution of Db, which leads to the following

2



expression:

Db(N,x) =
N
N f

∣∣∣∣cos
(

π
x−∆x
L+δ l

)∣∣∣∣ , (S1.2)

where δ l stands for the elongation of the specimen due to the traction (assumed to be the same

for all unloading) and the absolute value accounts for the fact that, whether the loading stress is

positive or negative, contributes to the damage the same way. Note that the latter is an assumption

to simplify the model and barely correct since it is known that materials usually present greater

yield strength in compression than in tension. The global traction applied to the plate and related

to Dt is assumed to be uni-axial, implying that its effect on the plate thickness does not depend on

x and therefore that:

Dt(N) =
N
N f

. (S1.3)

Supplemental Material Note 2: Details of the finite element simulations

The acoustic wave equation in its vectorial expression is written as,

∇ · [C : (∇+∇
t)u]−ρ

∂ 2u
∂ t2 = S, (S2.1)

where C is the 4th order stiffness tensor, u is the displacement field, ρ stands for the density of the

material, and the source term S in the right hand part is the gradient of the thermal stresses induced

by the laser absorption, expressed as,

S = [Sx,Sz]
T = ∇ · [C : α∆T ]. (S2.2)

In Eq. (S2.2), α is the thermal dilatation tensor. The temperature rise T = T (x,z, t) could be

calculated by solving the heat equation [6],

ρCp
∂T (x,z, t)

∂ t
−κ∇

2T (x,z, t) = β I0e−β z f (t)G(x) , (S2.3)

where Cp is the heat capacity per unit mass of the material, I0 = ηI is the absorbed intensity of the

laser beam, β is the optical absorption coefficient, f (t) is the normalized time distribution of the

laser intensity and G(x) is the Gaussian distribution of the normalized laser intensity expressed as,

G(x) =
2
d

√
ln2
π

exp
[
−4ln2

x2

d2

]
,

with d the FWHM of the Gaussian distribution. In Eq. (S2.3), κ represents the thermal conductiv-

ity, the operator ∇2 = ∂ 2

∂x2 +
∂ 2

∂ z2 denotes the Laplacian.
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TABLE S1. Mechanical, thermal and optical properties of the aluminum plate used in this work for both

theoretical calculations and numerical simulations.

Value

Young’s modulus (GPa) E 70

Poisson ratio ν 0.35

Density (kg/m3) ρ 2700

Thickness (µm) 2h 75

Pulse energy (µJ) I 70

Pulse duration (ns) τ 0.75

Pulse wavelength (nm) λL 1064

Pulse FWHM (µm) d 20

Absorption coefficient (%) η 6∼7

Heat Capacity (J/kg·K) Cp 897

Thermal expansion (1/K) α 2.3·10−5

Penetration depth (nm) 1/β 8.98

Thermal conductivity (W/m·K) κ 237

Noting that the optical penetration depth (1/β ) is small in the case of aluminum (∼ 9 nm at 1064

nm), the volume source is chosen to be replaced, in the numerical model, by a shear stress dipole

with a short pulse duration, as indicated in the reference [7]. Note that all the model parameters

for aluminum can be found in Tab. S1. The two-dimensional FEM model is therefore constructed

in the following usual order:

1. the geometry is defined,

2. the boundary conditions are set (for instance, the shear stress dipole at the surface),

3. the mesh and mesh parameters are set,

4. the solver parameters are chosen adequately (for instance, the time step) to solve the above-

described wave equation [see Eq. (S2.1) with S = 0] in two dimensions.

First, the geometry of the plate is defined. The plate is chosen to be split in three parts. The

central part ranges in x = [−3.75,3.75] mm and is the one from which the calculations will be

used for analyzes. In order to avoid the reflections from the left and right vertical boundaries of the

central part, two symmetric perfect matching layers (PML), with gradient high loss, are added to
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FIG. S1. Results of the numerical simulations for the intact specimen (N = 0) : (a) first eleven temporal

opto-acoustic signals (normal velocity of the front surface [z = −h] calculated by numerical simulations

from the epicenter (x = 0 mm) to x = 0.1 mm with a step of 10 µm and (b) their Fourier spectrum; (c) zoom

for x ∈ [−0.20.2] mm of the spatial distribution of the normalized amplitude of the normal velocity in a 75

µm-thick aluminum plate at 15 ns after the wave generation.

the left and right ends of the model at x =±3.75 mm. In the central part, the geometry of the plate

evolves as a function of the loading cycles N. This evolution is provided by the theory proposed

in Sec. 5.1 [see Eqs. (7)-(8) and Fig. 8]. For each given N, despite the changes in the geometry of

the model, there are clear and uniform definitions of boundary conditions on the four sides of the

modelled plate (upper, lower, left, and right surfaces). The upper and lower surfaces of the two-

dimensional model are set to be free. Those upper and lower surfaces in the intact case (N = 0) are

chosen to be flat and located at z = +h and z = −h, respectively, with 2h = 75 µm. In the cases

of the damaged plate, the positions of the upper and lower surfaces are represented by functions

of x and of N : zup(N,x) = +h[1+D(N,x)] and zlow(N,x) = −h[1+D(N,x)], respectively (see

the colored profiles in Fig. 8). The right-end surface of the right PML and the left-end surface of

the left PML are set to be free, although it does not change much if they are set to be fixed. The
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FIG. S2. Numerical simulations of the normal velocity distribution at about 90 periods, i.e. t ∼= 90/ f (N),

for intact (N = 0) and damaged (N = 4000, 9500 and 10000) specimens, taking into account the reduction

of thickness as illustrated in Fig. 8.

last boundary conditions to impose is the shear stress dipole at the lower surface. The temporal

distribution f (t) of the generation source is a Gaussian function which can be written as

f (t) =
2
τ

√
π

ln2
exp
(
−4ln2

t2

τ2

)
, (S2.4)

where τ is the temporal pulse duration. Note that while setting f to be the temporal distribution of

the acoustic source, the choice is made to calculate the velocity field instead of the displacement

field, mainly for numerical stability reason.

To finish the configuration of the model, the central part of the geometry is meshed by setting

the mesh geometry to be triangular and the mesh step to be 1 µm. The finite element meshes are

therefore fine enough (compared to the ZGV mode wavelength, about 300 µm in the studied case)

near the excited zone in order to obtain the transient velocity field with a good spatial accuracy.

The PML are meshed using a much coarser mesh size of 15 µm in order to save computing time.

Finally, the time step is chosen to be 1 ns (equal to the experimental acquisition time step) and

the total time of the simulation is set to be 5 µs which is long enough for Fourier transform with

a relative good accuracy. The simulated results by the above-described model in the case of an

intact (N = 0) plate of aluminum are shown in Fig. S1: (a) first eleven temporal opto-acoustic

signals (normal velocity of the front surface (z = −h) calculated by numerical simulations from

the epicenter (x = 0 mm) to x = 0.1 mm with a step of 10 µm and (b) their Fourier spectrum; (c)
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zoom for x ∈ [−0.2, 0.2] mm of the spatial distribution of the normalized amplitude of the normal

velocity at 15 ns after the wave generation.

From Fig. S1(a), we can see clearly the temporal oscillations corresponding to the ZGV res-

onance in both the excitation position (x = 0) and the detected points far from it (x = 0.01, 0.02

... 0.1 mm). An evident decrease of the amplitude of the ZGV resonance is also observed due to

the spatial distribution related to the interference pattern discussed previously. From Fig. S1(b),

three main pieces of information can be obtained: (i) a sharp peak, corresponding to the ZGV

resonance at a frequency of about 38.42 MHz, is always observed in the frequency spectrum from

the epicenter to x = 0.1 mm; (ii) a second relatively weaker peak around 62.10 MHz is also seen

which corresponds to the cut-off frequency of the A2 resonance (there is no A2A3-ZGV resonance

in the studied case due to the chosen material with a Poisson’s ratio of 0.35 [8]); (iii) a sharp

peak around 125 MHz is obtained and corresponds to the S3S6-ZGV resonance. From Fig. S1(c),

standard wavefronts of longitudinal waves (represented by L), shear waves (represented by T), and

waves reflected at the back surface of the plate (z = h), with mode conversion (LT) or not (2L),

are respectively observed. The Rayleigh waves (R in black) propagating only at the surface where

the generation is achieved (z =−h) are also observed. All these numerical results demonstrate the

good numerical reproduction of the usual features observed in laser ultrasonic experiments con-

ducted on metals and therefore qualitatively validate the developed model. The numerical model is

then run four times, each time only changing the parameter N (the number of loading cycles) and

therefore the geometry of the plate: N ∈ [0, 4000, 9500, 10000]. The Fig. S2 depicts four snap-

shot of the normalized normal velocity distribution within the whole range of valid calculations,

where (x,z) ∈ [−3.75,3.75]× [−0.0375,0.0375] mm2. Note that each snapshot is taken at a time

corresponding to approximately 90 periods of the S1S2-ZGV resonance, i.e. at t ' 90/ fZGV(N,0)

for the sake of the comparison. In Fig. S2(a), the classical interference pattern of a ZGV res-

onance is seen between −1 mm and 1 mm, while the propagating modes have escaped the area

of the wave generation and propagate towards the left-end and right-end of the plates with differ-

ent group velocities. In Fig. S2(b)-(d) where the plate is damaged, the same observations could

be made, although the spatial extend of the ZGV-related interference pattern in the central part

seems to decrease as N increases. Qualitatively, this is due to the expected decrease of the ZGV

wavelength with decreasing thickness of the plate.
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FIG. S3. The Q-factor evolutions measured in sample 1, 2, and 3 (failure at approximately 12500, 16000

and 14000 loading cycles, marked as triangles, circles, and squares) as a function of normalized fatigue

lifetime, compared to the calculations of numerical simulations (solid line) from Fig. 11(b).

Supplemental Material Note 3: Discussions about the reproducibility of experiments

In this section, we discuss the reproducibility of experimental results. As mentioned in Sec.

1, the repeatability of the ZGV frequency variations has already been discussed and presented in

our previously published work [9]. However, the quality factor (Q-factor) of the ZGV resonance

was not discussed in this paper [9]. Therefore, in Fig. S3, we show here the comparison of the

Q-factors estimated from the ZGV resonance of three aluminum samples, subjected to the same

fatigue process, with failures after 12500, 16000 and 14000 loading cycles. For details of the ZGV

frequency results about these three samples, please see Page 3-4 and Fig. 3 in Ref. [9]. In Fig.

S3, the x-axis is normalized by the total loading cycles of each sample. The drop of the Q-factors

is found to lie in the [28%, 37%] interval of fatigue lifetime (see the gray area in Fig. S3). This

reproducible drop of the Q factor after about 30% of the fatigue lifetime of the three samples is

an experimental observation that we believe has a potential opportunity to improve the current

modelling.
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